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Abstract. Least-squares modification is an optimal method of modifying Stokes’ formula. This method can 
be categorized as a generalization of the spectral combination methods as it considers the truncation error of the 
integral formulas in its combination process. In short, this method involves the modification parameters based on 
minimizing the error of terrestrial gravimetric data, satellite data and the truncation error of the integral. In this 
respect, the choice of the geopotential model definitely plays an important role. This paper uses the recent com-
bined geopotential model EGM08 for generating the spectra of gravity anomaly and its error. Numerical results 
show that EGM08 improves least-squares modification by about 10 cm comparing to the traditional way.

Keywords: biased estimator, unbiased estimator, degree variance, global root mean squares error, optimiza-
tion, spectral combination.

1. Introduction

The geoid is an equipotential surface which is the best 
approximation of the mean sea level. The geoid is a 
physical shape of the Earth and is extended through the 
continents. This surface is considered as vertical datum 
on heights. One of the most well-known methods of 
determining such a surface is using Stokes’ integral the 
formula of which needs a global coverage of terrestrial 
gravimetric data. Molodenski et al. (1962) were the first 
who suggested modifying the kernel of this integral in 
order to minimize the effect of the far zone data. In fact, 
modification changes the spectrum of the kernel to be 
more sensitive to the data around the computation point 
rather than to the far zone data. Following Molodenski 
et al. (1962), many other modification methods were 
proposed, such as Wong and Gore (1969), Meissl (1971), 
Colombo (1981), Vanicek and Kleusberg (1987) etc. 
These methods are categorized as deterministic ones in 
which the truncation error of the integral is minimized. 
Later, Sjöberg (1980 and 1981) proposed a stochastic 
method to combine the integral formula with geopoten-
tial models and named this method spectral combina-
tion. Sjöberg (1984a) introduced the spectral combina-
tion method that included the error of a geopotential 
model and the truncation error of the integral and called 
it least-squares modification (LSM) which helped Sjöberg 
(1984b) with finding ways of including the error spectra 
of terrestrial gravimetric data. This method of modifi-
cation considering the error of the geopotential model, 

terrestrial data and the truncation error of the integral 
is categorized as a stochastic approach to modification. 
Sjöberg theoretically (1986) compared LSM and other 
deterministic methods.

Sjöberg (1991) further investigated LSM consider-
ing a different degree of modification and the geopoten-
tial model. He partitioned his method into two parts a) 
biased LSM (BLSM) and b) unbiased LSM (ULSM). Con-
sequently, these stochastic methods were investigated 
and tested by other researchers, like Nahavandchi (1999) 
and Hunegnaw (2001). Sjöberg (2003) finally presented 
a general model for LSM and optimum LSM (OLSM). 
Ågren (2004) also used ULSM in his computation for his 
works on geoid determination. Ellmann (2005) numeri-
cally tested and compared these three stochastic meth-
ods.

The above introduced information about stochas-
tic modification shows that this method is sensitive to 
the spectra of geopotential coefficients and its errors as 
well as to terrestrial data. Therefore, a type of the geo-
potential model and the quality of terrestrial data play an 
important role in the LSM process. However, the error 
spectra of the models are restricted to a certain degree 
and order which does not satisfy LSM. Thus, some ana-
lytical models are used to generate high degree spectra, 
e.g. Kaula (1963) model, Tscherning/Rapp (TR) (1974) 
model or Jekeli and Moritz model (Jekeli 1978). Howev-
er, the recent geopotential model EGM08 was developed 
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to degree and order 2160 and can be a successor for such 
analytical models. Also this model contains useful infor-
mation due to the high degree spectra of the error. This 
paper investigates this replacement and compares both 
cases of using the analytical model and EGM08. Besides, 
it considers the global root mean square error (RMSE) of 
the integral geoid estimators modified by BLSM, ULSM 
and OLSM based on both models. Such a study has not 
been reported until now and it is useful for researching 
LSM in the future. 

2. The eGm08

EGM2008 has been released by the NGA (National Ge-
ospatial-Intelligence Agency, US) EGM Development 
team. The long wavelength structure of this model was 
extracted from GRACE (Tapley 2005) data to degree 
and order 60 (Kenyon et al. 2007) and terrestrial grav-
ity anomalies through the whole work with 5′ × 5′ reso-
lution for short wavelength structure. First, a primarily 
model (EGM05) was developed by Pavlis et al. (2004) to 
test the feasibility of such developments. Based on the 
acceptable results of this model having relatively good 
agreements with satellite altimetry, GPS/Leveling and 
deflection of vertical data, they proceeded with the fur-
ther development of EGM08. In order to estimate the 
propagated error in the data on the geopotential coef-
ficients, Pavlis and Saleh (2004) used the discredited 
integral formulas as a functional relation between the 
obtained data (e.g. terrestrial gravity anomaly, airborne 
gravimetry, satellite altimetry, marine gravity) and the 
coefficients. They stated that such estimation was suf-
ficient for high degree coefficients. The effect of terrain 
was also considered based on the shuttle radar topog-
raphy mission (SRTM) (Werner 2001) and a new topo-
graphic database DTM2006 was developed by Pavlis et 
al. (2006) and based on SRTM and BEDMAP. To clarify 
ice and water column thinness, information on bathym-
etry from altimetry and ship sounding data, the former 
version DTM2002 was presented. 

3. Least-squares modification of Stokes’ formula

The geoid can be expressed by the below presented in-
tegral well-known Stokes’ formula (Heiskanen and Mo-
ritz 1967):  

RN P S g Q d( ) ( ) ( ) ,
4 σ

= ψ ∆ σ
πγ ∫∫   (1)

where: R is the radius of a reference sphere, γ is normal 
gravity at computation point P, r is the geocentric distan-
ce at ψ, is the geocentric angle between P and integration 
point Q with the following expression: 

cos cos cos sin sin cos( ),′ ′ ′ψ = θ θ + θ θ λ −λ   (2)

where: θ  and λ  are the co-latitude and longitude of P 
and ′θ and ′λ are that of integration point Q. σ  is the unit 
sphere, ∆g(Q) is the gravity anomaly at sea level and 
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is a spectral form of Stokes’ function with the spectrum:

n n
2 .

1
Ω =

−
 (4)

Equation (1) shows that the integration should be 
performed globally, which means that ∆g(Q) with a glo-
bal coverage is required. Therefore, we should look for 
an approach to modify the integral in such a way that 
the contribution of the far zone data is minimized. Dif-
ferent methods for modifying Stokes’ formula have been 
presented; however, in this case, concentration is on sto-
chastic approaches as in Sjöberg (1984a) and (1984b). 

A general estimator of the geoid presented based on 
LSM by Sjöberg (2003). Let us start a discussion applying 
this geoid estimator:
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where: L = M is the maximum degree of modification 
and the geopotential model that also may differ. In this 
case, the estimator will be unbiased through degree M, 
for more details see Sjöberg (1991), bn is a parameter that 
differs according to the type of the estimator, and 
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is the modified Stokes’ kernel function and sn are the 
estimated modification parameters. The closed form of 
Stokes’ function is (Heiskanen and Moritz 1967: 94, Eq. 
2-164):

S 1( ) 6sin 1
sin( / 2) 2

ψ ψ = − + − ψ    

2cos 5 3ln sin sin .
2 2
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In order to show the sources gravity anomaly is de-
rived from, we separate them into ∆gT for terrestrial and 

g EGM∆  for geopotential model based data and ng EGM∆  
is the spectrum of g EGM∆  in Eq. (5). Modification pa-
rameters sn are obtained solving the following system of 
equations:

M

kr r k
r

a s h
2

,
=

=∑   k = 2,3,…, M, (8)

where: kra  and kh  change choosing LSM. This system 
of equations is constructed taking a derivative of the  
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global RMSE of the estimator with respect to sn. The 
BLSM parameters are derived from setting n nb s ,=  in the 
geoid estimator Eq. (5) and solving the system of equa-
tions Eq. (8) with the following elements (Sjöberg 2003):

rk r r kr kr r rk ka dc E E2 2 2
0 0( ) ( ) ( )= σ + δ − ψ σ − ψ σ +  

nr nk n n
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and k
2σ  is the error spectrum of terrestrial gravimetric 

data and kdc  is the error spectrum of gravity anomaly 
obtained from the existing geopotential model. For more 
details on the computation of k

2σ  the reader is referred 
e.g. to Sjöberg (1986), Ågren (2004) and Ellmann (2005). 

rke 0( )ψ  are the well-known Paul’s coefficients (Paul 
1978) and kQ 0( )ψ  is the truncation coefficient of Sto-
kes’ integral, that can be evaluated recursively (Hagiwara 
1972). The spectrum of gravity anomaly is evaluated us-
ing the geopotential model for those degrees below the 
maximum degree of modification. The analytical mod-
els like Kaula, TR are used for the degrees above that 
maximum degree. According to Ellmann (2005) and 
Ågren (2004), the TR model is superior with respect to 
others from the modification aspect. Relying on their 
conclusion, we use this model in our numerical studies 
through this paper.

The global RMSE of the BLSM geoid estimator is:
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ULSM parameters are derived, if we select bn = 
L

n n nb Q s0( )= ψ +  and solve the system of Eq. (8) with the fol-
lowing elements (Sjöberg 2003):
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where:
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The global RMSE of this estimator is:
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The OLSM parameters of the estimator are derived 

if we set L
n n n n n nb Q s c c dc0( ) /( ) = ψ + +   and solve Eq. 

(8) with the following elements (Sjöberg 2003):
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The global RMSE of the estimator will be:
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4. Numerical investigations

Two geopotential models EGM96 (Lemoine et al. 1998) 
and EGM08 are used to generate the signal and error 
spectra of gravity anomaly. Correlation length 0.1° is 
considered to generate the error spectrum of terrestrial 
gravimetric data. In this case, we assume that the error of 
terrestrial data is 5 mGal. Any geopotential model is re-
stricted to a certain degree of spherical harmonics. As we 
know, the maximum degree of EGM96 and EGM08 are 
360 and 2160 respectively. Therefore, the signal and error 
spectra are limited to these degrees. In order to combine 
Stokes’ integral with the geopotential model, the integral 
is written in a spectral form and the spectra of the geo-
potential model and the integral formula are combined.  
The degree of modification in this study is L = M = 150 
which means that we use geopotential models EGM96 
and EGM08 taking into account such degree and order. 
In case we use EGM96, higher spectra than degree 150 
are extracted from the TR model to degree 2000 and 
when using EGM08, they are extracted from the mod-
el itself. In order to show differences between these two 
types of data, we plot their corresponding spectra in Fig. 
1a showing that Kaula and TR models follow a similar 
pattern with increasing the signal degree and the signal 
spectra of the models are larger than that of EGM08. 
Fig. 1a also discloses that the error spectra of EGM08 
are larger than its corresponding signal degree when de-
gree 1800 is reached. Figure 1b illustrates variances in 
the error degree of EGM08 and EGM96. As mentioned 
above, the modification degree is 150, and therefore in 
this figure, we plotted EGM96 error considering this de-
gree called a traditional method. Since the error spectra 
of EGM96 are not available coming after its maximum 
degree, we also use the signal itself as the error spectra. 
This is a traditional way of using the geopotential model 

in all LSM methods. Ellmann (2005) selects the TR mod-
el following the degree of modification as the error spec-
tra and therefore we can see a jump in the error spectra 
of the geopotential model in Fig. 1b. Taking into account 
personal communication with Ellamnn, the author did 
not find it problematic in the LSM methods. As the fig-
ure presents, the error spectra of EGM08 are smaller 
than those of EGM96.

As shown in Fig. 1, EGM08 is superior to the tradi-
tional method of LSM in which a combination of EGM96 
and the TR model is used. First, EGM08 has been com-
puted based on real high resolution data all over the 
globe. Second, the error spectra of the geopotential coef-
ficients are smaller than those of EGM96.

In this case, we concentrate on LSM methods and 
compare the results of modification methods based on 
TR and EGM08. Further, thinking of our goal of modi-
fication, we consider the geocentric angle 3°. The system 
of equations, Eq. (8), will be ill-conditioned for estimat-
ing the modification parameters based on ULSM and 
OLSM. The reason for this instability was theoretically 
expressed by Ågren (2004) and numerically displayed by 
Ellmann (2005). However, the consequence of this insta-
bility is totally harmless and with a simple regularization, 
the system of equations can be solved. Here we take ad-
vantage of the truncated singular value decomposition 
to stabilize the system of equations. Figure 2 shows the 
modified Stokes’ kernel based on TR and EGM08 models 
with respect to the original kernel. As the figure presents, 
the kernel modified by EGM08 decreases faster than that 
modified based on the TR model. It holds for all LSM 
methods. Figures 2b and 2c indicate that the kernel 
modified by the TR model decreased before reaching the 
end of cap size (geocentric angle 3°) while this is not the 
case for the EGM08 model, although the consequence of 
this matter may not be important.

 Fig. 1. Signal degree variances of EGM08, some analytical models (a), error degree variances  
of EGM08, EGM96 and the TR model (b) 
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Fig. 2. The modified kernels based on the TR and EGM08 
models: a) BLSM, b) ULSM and c) OLSM

Figure 3 shows the global RMSE of the estima-
tors modified applying BLSM, ULSM and OLSM meth-
ods. The computations are preformed from the geocen-
tric angle 3° to 10° and Fig. 3a shows the global RSME 
of the estimators modified using the TR model for dif-
ferent geocentric angles. The figure also displays that 
BLSM and OLSM propagate the largest and the smallest 
error respectively and ULSM is a method in the mid-
dle of these two methods. However, differences are very 
small and may be negligible in practice. Figure 3b illus-
trates a similar plot for the estimators by using EGM08 
to generate the spectra. This figure demonstrates in-
significant difference between ULSM and OLSM. Dif-
ference between BLSM and the others can reach 5 mm 
which is significant in precise geoid determination 

 

 

 

Fig. 3. The global RMSE of BLSM, ULSM and OLSM 
estimators modified using: a) TR and b) EGM08 models

aspects. An important point is that Fig. 3 presents differ-
ence between the error of the modified estimators based 
on the TR model and EGM08. Moreover, the figure dis-
closes that in case of using EGM08, the errors are con-
siderably reduced. Roughly speaking, EGM08 improves 
the estimators twice. 

Up to now, the main source of these improvements 
has not been clear. Thus, in order to investigate it, let us 
assume zero error in terrestrial data which means that 
we absolutely rely on the quality of terrestrial data. The 
LSM process is repeated based on this assumption and 
the global RMSE of the modified estimators is visual-
ized. In such a case, the main sources of the errors are 
from the geopotential model and the truncation of the 
integral formula. Figure 4a shows that the global RMSE 
is between 1 cm and 13 cm. A comparison between this 
figure and Fig. 3a indicates that errors in terrestrial data 
are significant. One can see in Fig. 4b that the errors are 
reduced by about 2 cm.

In this case, let us consider no error in the geo-
potential model where the only error source will be the 
truncation error of the integral formula. Figs. 5a and 5b 
point to insignificant improvement in the estimators. 
We know that truncation error depends on the spectra 
of gravity anomaly generated either from the existing  
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analytical model (e.g. the TR model) or from a high de-
gree geopotential model (e.g. the EGM08). However, 
improvements in estimating the global RMSE are below 
the level of 1 cm and are significant for determining a 
precise geoid model. The carried out numerical studies 
reveal that the main reason for improving the modified 
estimators is mostly related to data error rather than to 
truncation error. The error of the geopotential model has 
the main role in this respect and it is quite reasonable as 
the long wavelength structure of the geoid is constructed 
from such a model and definitely the error of this impor-
tant portion of the gravity field can significantly change 
the error of the estimator and correspondingly the ge-
oid. The study also shows that the use of the TR model 
and EGM08 for generating the signal spectra of gravity 
anomaly insignificantly reduces truncation error.

5. Conclusions

EGM08 solves the problem of lacking spectra for LSM 
methods, and therefore there is no need using the ana-
lytical models that only follow the general pattern of the 
spectra of gravity anomaly. This study has disclosed that 
in LSM, the signal spectra of gravity anomalies can re-
duce the global RMSE of the estimators by a few millim-
eters. In conclusion, improving LSM is mostly related to

 

Fig. 5. The global RMSE of BLSM, ULSM and OLSM 
estimators modified using: a) TR and b) EGM08 models with 

zero error in terrestrial data and geopotential model

the small standard error of the geopotential coeffi-
cients and advantage of the high degree spectra of grav-
ity anomaly is mostly related to the truncation error of 
Stokes’ integral that can be significant in precise geoid 
determination. The study also displays that EGM08 re-
duces the global RMSE of the estimator to 10 cm.
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