Evaluating ACOMP, FLAASH and QUAC on Worldview-3 for satellite derived bathymetry (SDB) in shallow water

    Abdul Basith   Affiliation
    ; Ratna Prastyani   Affiliation


Bathymetry map is instrumental for monitoring marine ecosystem and supporting marine transportation. Optical satellite imagery has been widely utilised as an alternative method to derive bathymetry map in shallow water. Nonetheless, interactions between electromagnetic energy and Earth’s atmosphere causing the atmosphere effects pose a significant challenge in satellite-derived bathymetry (SDB) application. In this study, Worldview-3 imagery was used to obtain bathymetry map in shallow water. Three atmospheric correction models (ACOMP, FLAASH and QUAC) were employed to eliminate atmospheric effects on Worldview-3 imagery. Three simple band ratios involving coastal blue, blue, green and yellow band were used to test the performance of atmospheric correction models. ACOMP combined with blue and green band ratio efficaciously provided the best performance where it explained 77% of model values. Bathymetry map obtained from Worldview-3 was also validated using bathymetry data acquired from bathymetric survey over the study area. The estimated depths shared aggregable results with measured depths (depth < 20 m) with accuracy of 2.07 m. This study shows that robust atmospheric correction combined with suitable simple band combinations offered bathymetry map retrieval with relatively high accuracy.

Keyword : bathymetry, SDB, Worldview-3, ACOMP, FLAASH

How to Cite
Basith, A., & Prastyani, R. (2020). Evaluating ACOMP, FLAASH and QUAC on Worldview-3 for satellite derived bathymetry (SDB) in shallow water. Geodesy and Cartography, 46(3), 151-158.
Published in Issue
Oct 29, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Bernstein, L. S., Adler-golden, S. M., Jin, X., Gregor, B., & Sundberg, R. L. (2012a). Quick atmospheric correction (QUAC) code for VNIR-SWIR spectral imagery: Algorithm details. In 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS). IEEE.

Bernstein, L. S., Jin, X., Gregor, B., & Adler-Golden, S. M. (2012b). Quick atmospheric correction code: algorithm description and recent upgrades. Optical Engineering, 51(11), 111719.

Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., Gardner, J. A., Adler-Golden, S. M., Matthew, M. W., Berk, A., Bernstein, L. S., Acharya, P. K., Miller, D., & Lewis, P. (2002). FLAASH, a MODTRAN4based atmospheric correction algorithm, its applications and validation. International Geoscience and Remote Sensing Symposium (IGARSS), (pp. 1414–1418). IEEE.

Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063–7081.

Digital Globe. (2010). The Benefits of the eight spectral bands of Worldview-2 (pp. 1–12).

Eugenio, F., Marcello, J., Martin, J., & Rodríguez-Esparragón, D. (2017). Benthic habitat mapping using multispectral highresolution imagery: Evaluation of shallow water atmospheric correction techniques. Sensors, 17(11), 2639.

Giardino, C., Brando, V. E., Gege, P., Pinnel, N., Hochberg, E., Knaeps, E., Reusen, I., Doerffer, R., Bresciani, M., Braga, F., Foerster, S., Champollion, N., & Dekker, A. (2019). Imaging spectrometry of Inland and Coastal waters: State of the art, achievements and perspectives. Surveys in Geophysics, 40(3), 401–429.

Harris Geospatial. (2009). Atmospheric correction module: QUAC and FLAASH User’ s guide. Atmospheric Correction Module: QUAC and FLAASH User’s Guide (pp. 20–21).

Hell, B., Broman, B., Jakobsson, L., Jakobsson, M., Magnusson, Å., & Wiberg, P. (2012). The use of bathymetric data in society and science: A review from the Baltic Sea. Ambio, 41(2), 138–150.

Hernandez, W. J., & Armstrong, R. A. (2016). Deriving bathymetry from multispectral remote sensing data. Journal of Marine Science and Engineering, 4(1), 8.

Ilori, C. O., Pahlevan, N., & Knudby, A. (2019). Analyzing performances of different atmospheric correction techniques for Landsat 8: Application for coastal remote sensing. Remote Sensing, 11(4), 1–20.

Jawak, S. D., Vadlamani, S. S., & Luis, A. J. (2015). A synoptic review on deriving bathymetry information using remote sensing technologies: Models, methods and comparisons. Advances in Remote Sensing, 4(2), 147–162.

Kotchenova, S. Y., & Vermote, E. F. (2007). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Applied Optics, 46(20), 4455–4464.

Liang, S., Li, X., & Wang, J. (Eds.). (2012). Atmospheric correction of optical imagery. In Advanced Remote Sensing (p. 117).

Lyzenga, D. R. (1981). Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and landsat data. International Journal of Remote Sensing, 2(1), 71–82.

Lyzenga, D. R., Malinas, N. P., & Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2251–2259.

Mavraeidopoulos, A., Pallikaris, A., & Oikonomou, E. (2018). Satellite Derived Bathymetry (SDB) and safety of navigation. The International Hydrographic Review, (17), 7–19.

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425– 1432.

Mishra, D. R., Narumalani, S., Rundquist, D., Lawson, M., & Perk, R. (2007). Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach. Journal of Geophysical Research: Oceans, 112(8), 1–18.

Nuha, M. U. (2019). Optimization of analytical parameters to derive bathymetry with high resolution satellite imagery on shallow water. Univeristas Gadjah Mada.

Parente, C., & Pepe, M. (2018). Bathymetry from worldview-3 satellite data using radiometric band ratio. Acta Polytechnica, 58(2), 109–117.

Philpot, W. D. (1989). Bathymetric mapping with passive multispectral imagery. Applied Optics, 28(8), 1569.

Richter, R., & Schläpfer, D. (2002). Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/ topographic correction. International Journal of Remote Sensing, 23(13), 2631–2649.

Said, N. M., Mahmud, M. R., & Hasan, R. C. (2017). Satellitederived bathymetry: Accuracy assessment on depths. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII(October), 159–164.

Sánchez-Carnero, N., Ojeda-Zujar, J., Rodríguez-Pérez, D., & Marquez-Perez, J. (2014). Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: The mouth of the Guadiana Estuary. International Journal of Remote Sensing, 35(2), 493–514.

Shi, L., Mao, Z., & Wang, Z. (2018). Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery: A case study of inland rivers. IOP Conference Series: Earth and Environmental Science, 121(3), 032036.

Smith, M. J. (2015). A comparison of DG AComp, FLAASH and QUAC atmospheric compensation algorithms using WorldView-2 IMagery.

Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1 II), 547–556.

Vanhellemont, Q., & Ruddick, K. (2016). Acolite for Sentinel-2: Aquatic applications of MSI imagery. ESA Special Publication SP-740, 9–13.