GEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset


The study investigated geomorphology of the Japan Trench located east of Japan, Pacific Ocean. A high-resolution GEBCO Gridded Bathymetric Dataset was used for modeling, mapping and visualization. The study aimed to compare and analyse variations in the geomorphic structures of the two parts of the trench and to visualize variations in the geological, geophysical and bathymetric settings. Technically, the cartographic work was performed using scripting based on the Generic Mapping Toolset (GMT). Modelled cross-sectioning orthogonal profiles transecting the trench in a perpendicular direction were automatically digitized and graphed in the two segments. The results of the bathymetric analysis shown that the southern part is shallower: with deeper values in absolute (139 samples between –7000 to –8000 m) and statistical records (the most frequent values are within –5500 to –5800 m) comparing to the northern segment (–5300 to –5500 m). The geomorphological analysis shows a more complicated relief in the northern part of the trench, which has a higher seismic activity. The southern part has a gentler slope on the Honshu island side. The geoid modeling along the trench ranges in 0–20 mGal. The highest values are recorded by the Honshu Island (>40 mGal). The rest of the area has rather moderate undulations (20–40 mGal). The free-air marine gravity of the Sea of Japan is <40 mGal. The results include 2D and 3D graphical models, thematic cartographic maps, spatial and statistical analysis of the Japan Trench geomorphology. Tested GMT functionality can be applied to future regional bathymetric modeling of the ocean trenches. All presented maps and graphs are made using GMT scripting toolset.

Keyword : GMT, cartography, geoinformatics, geospatial analysis, Japan Trench

How to Cite
Lemenkova, P. (2020). GEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset. Geodesy and Cartography, 46(3), 98-112.
Published in Issue
Oct 8, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abe, K. (1977). Tectonic implications of the large shioya-oki earthquakes of 1938. Tectonophysics, 41(4), 269–289.

Arai, K., Inoue, T., Ikehara, K., & Sasaki, T. (2014). Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake. Earth and Planetary Science Letters, 408, 9–15.

Bose, S., Saha, P., Mori, J. J., Rowe, C., Ujiie, K., Chester, F. M., Conin, M., Regalla, C., Kameda, J., Toy, V., Kirkpatrick, J., Remitti, F., Moore, J. C., Wolfson-Schwehr, M., Nakamura, Y., & Gupta, A. (2015). Deformation structures in the frontal prism near the Japan Trench: Insights from sandbox models. Journal of Geodynamics, 89, 29–38.

Boston, B., Moore, G. F., Nakamura, Y., & Kodaira, S. (2017). Forearc slope deformation above the Japan Trench megathrust: Implications for subduction erosion. Earth and Planetary Science Letters, 462, 26–34.

Dowdeswell, J. A., & Vásquez, M. (2013). Submarine landforms in the fjords of southern Chile: implications for glacimarine processes and sedimentation in a mild glacier-influenced environment. Quaternary Science Reviews, 64, 1–19.

Dumont, M., Reninger, P. A., Pryet, A., Martelet, G., Aunay, B., & Join, J. L. (2018). Agglomerative hierarchical clustering of airborne electromagnetic data for multi-scale geological studies. Journal of Applied Geophysics, 157, 1–9.

Ferrini, V. (2018, November 28 – December 1). Briefing on the work of GEBCO (General Bathymetric Chart of the Oceans). In 19th Meeting of the Meso American – Caribbean Sea Hydrographic Commission (MACHC), Cartagena de Indias, Colombia.

Fujie, G., Ito, A., Kodaira, S., Takahashi, N., & Kaneda, Y. (2006). Confirming sharp bending of the Pacific plate in the northern Japan trench subduction zone by applying a traveltime mapping method. Physics of the Earth and Planetary Interiors, 157, 72–85.

Fukuda, S., Sueoka, S., Hasebe, N., Tamura, A., Arai, S., & Tagami, T. (2019). Thermal history analysis of granitic rocks in an arc-trench system based on apatite fission-track thermochronology: A case study of the Northeast Japan Arc. Journal of Asian Earth Sciences, 1, 100005.

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., & Hillenbrand, C. (2007). Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45.

GEBCO Committee. (2016). General Bathymetric Chart of the Oceans (GEBCO) – from the coast to the deepest trench. Hydro International.

Hayakawa, T., Kasahara, J., Hino, R., Sato, T., Shinohara, M., Kamimura, A., Nishino, M., Sato, T., & Kanazawa, T. (2002). Heterogeneous structure across the source regions of the 1968 Tokachi-Oki and the 1994 Sanriku-Haruka-Oki earthquakes at the Japan Trench revealed by an ocean bottom seismic survey. Physics of the Earth and Planetary Interiors, 132, 89–104.

Ikehara, K., Kanamatsu, T., Nagahashi, Y., Strasser, M., Fink, H., Usami, K., Irino, T., & Wefer, G. (2016). Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years. Earth and Planetary Science Letters, 445, 48–56.

Ito, T., & Ogawa, Y. (1994). Origin of ferro-manganese nodules from the Japan Trench oceanward slope. The Geographical Journal, Tokyo Geographical Society, 103, 684–695 (in Japanese with English abstract).

Janssen, C., Naumann, R., Morales, L., Wirth, R., Rhede, D., & Dresen, G. (2015). Co-seismic and/or a-seismic microstructures of JFAST 343 core samples from the Japan Trench. Marine Geology, 362, 33–42.

Kawakatsu, H., & Seno, T. (1983). Triple seismic zone and the regional variation of seismicity along the Northern Honshu Arc. Journal of Geophysical research: Solid Earth, 88(B5), 4215–4230.

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5(1), 28–42.

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449–458.

Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., & Taira, A. (2012). Coseismic fault rupture at the trench axis during the 2011 TohokuOki earthquake. Nature Geoscience, 5, 646–650.

Kotov, S., & Pälike, H. (2019). Enhanced Principal Tensor Analysis as a tool for 3-way geological data reconstructions. Computers and Geosciences, 123, 161–171.

Kotov, S., & Pälike, H. (2017). Principal tensor analysis as a tool for paleoclimatic reconstructions. In 18th International Association for Mathematical Geosciences Conference 2017 (p. 67). IAMG, Perth.

Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C. D., Kruger, S., Forwick, M., Gauger, S., & Lemenkova, P. (2006). The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In K. Gohl (Ed.), Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.

Kumar, M. (2013). Free “Cook Book” for gridding bathymetric data. EOS Transactions American Geophysical Union, News, 94(9), 88.

Lay, T., Yamazaki, Y., Ammon, C. J., Cheung, K. F., & Kanamori, H. (2011). The 2011 MW 9.0 off the Pacific coast of Tohoku earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth Planets Space, 63, 797–801.

Lemenkova, P., Promper, C., & Glade, T. (2012, June 2–8). Economic assessment of landslide risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL) (pp. 279–285). Banff, Canada.

Lemenkova, P. (2018a). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35–42.

Lemenkova, P. (2018b). Hierarchical cluster analysis by R language for pattern recognition in the bathymetric data frame: a Case study of the Mariana Trench, Pacific Ocean. Virtual Simulation, Prototyping and Industrial Design. Proceedings of the 5th Conference, 2(5), 147–152.

Lemenkova, P. (2018c). Factor Analysis by R programming to assess variability among environmental determinants of the Mariana Trench. Turkish Journal of Maritime and Marine Sciences, 4, 146–155.

Lemenkova, P. (2019a). An empirical study of R applications for data analysis in marine geology. Marine Science and Technology Bulletin, 8(1), 1–9.

Lemenkova, P. (2019b). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, 2, 73–91.

Lemenkova, P. (2019c). Testing linear regressions by StatsModel library of python for oceanological data interpretation. Aquatic Sciences and Engineering, 34, 51–60.

Lemenkova, P. (2019d). Regression models by Gretl and R statistical packages for data analysis in marine geology. International Journal of Environmental Trends, 3(1), 39–59.

Lemenkova, P. (2019e). Numerical data modelling and classification in marine geology by the SPSS statistics. International Journal of Engineering Technologies, 5(2), 90–99.

Lemenkova, P. (2019f). Scatterplot matrices of the geomorphic structure of the Mariana Trench at four tectonic plates (Pacific, Philippine, Mariana and Caroline): a Geostatistical Analysis by R. Problems of Tectonics of Continents and Oceans. Proceedings of the 51st Tectonics Meeting, 1, 347–352.

Lemenkova, P. (2019g). Statistical analysis of the Mariana Trench geomorphology using R programming language. Geodesy and Cartography, 45(2), 57–84.

Lemenkova, P. (2019h). GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39–48.

Lin, W., Byrne, T. B., Kinoshita, M., McNeill, L. C., Chang, C., Lewis, J. C., Yamamoto, Y., Saffer, D. M., Moore, J. C., Wu, H.-Y., Tsuji, T., Yamada, Y., Conin, M., Saito, S., Ito, T., Tobin, H. J., Kimura, G., Kanagawa, K., Ashi, J., Underwood, M. B., & Kanamatsu, T. (2016). Distribution of stress state in the Nankai subduction zone, southwest Japan and a comparison with Japan Trench. Tectonophysics, 692, 120–130.

Ludwig, W. J., Ewing, J. I., Ewing, M., Murauchi, S., Den, N., Asano, S., Hotta, H., Hayakawa, M., Asanuma, T., Ichikawa, K., & Noguchi, I. (1966). Sediments and structure of Japan Trench. Journal of Geophysical Research, 71, 2121–2137.

Marks, K. M. & Smith, W. H. F. (2012). Radially symmetric coherence between satellite gravity and multibeam bathymetry grids. Marine Geophysical Research, 33, 223–227.

Monahan, D. (2004). GEBCO: the second century. Looking towards a general bathymetric chart. Hydro International, 8(9), 45–47.

Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., & Weatherall, P. (2018). The Nippon Foundation – GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences, 8(2), 63.

Miura, S., Takahashi, N., Nakanishi, A., Tsuru, T., Kodaira, S. & Kaneda, Y. (2005). Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics, 407, 165–188.

Nakamura, Y., Kodaira, S., Miura, S., Regalla, C. & Takahashi, N. (2013). High resolution seismic imaging in the Japan Trench axis area of Miyagi. Northeast. Jpn. Geophysical Research Letters, 40, 1713–1718.

Ogawa, Y., Kobayashi, K., Hotta, H., & Fujioka, K. (1997). Tension cracks on the oceanward slopes of the northern Japan and Mariana Trenches. Marine Geology, 141, 111–123.

Rabinowitz, H. S., Savage, H. M., Plank, T., Polissar, P. J., Kirkpatrick, J. D., & Rowe, C. D. (2015). Multiple major faults at the Japan Trench: Chemostratigraphy of the plate boundary at IODP Exp. 343: JFAST. Earth and Planetary Science Letters, 423, 57–66.

Roberts, N. M., Tikoff, B., Davis, J. R., & Stetson-Lee, T. (2019). The utility of statistical analysis in structural geology. Journal of Structural Geology, 125, 64–73.

Smirnoff, A., Paradis, S. J., & Boivin, R. (2008). Generalizing surficial geological maps for scale change: ArcGIS tools vs. cellular automata model. Computers & Geosciences, 34(11), 1550–1568.

Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67.

Schenke, H. W., & Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 25(81), 16–21.

Smith, W. H. F. (1993). On the accuracy of digital bathymetric data. Journal of Geophysical Research, 98(B6), 9591–9603.

Smith, W. H. F., & Sandwell, D. T. (1995). Marine gravity field from declassified Geosat and ERS-1 altimetry. EOS Transactions American Geophysical Union, 76, Fall Mtng Suppl, F156.

Stagpoole, V., Schenke, H. W., & Ohara, Y. (2016). A name directory for the ocean floor. Eos, 97.

Suetova, I. A., Ushakova, L. A., & Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142.

Tani, S. (2017). Understanding oceans. In The UNESCO Courier (pp. 65–69).

Tsuru, T., Park, J.-O., Takahashi, N., Kodaira, S., Kido, Y., Kaneda, Y., & Kono, T. (2000). Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data. Journal of Geophysical Research, 105, 16403–16413.

Tucker, L. R. (1964). The extension of factor analysis to three-dimensional matrices. In H. Gulliksen, & N. Frederiksen (Eds.), Contributions to mathematical psychology (pp. 109–127). Holt, Rinehart and Winston.

von Huene, R., & Lallemand, S. (1990). Tectonic erosion along the Japan and Peru convergent margins. Geological Society of America Bulletin, 102, 704–720.<0704:TEATJA>2.3.CO;2

von Huene, R., & Culotta, R. (1989). Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics, 160, 75–90.

Wakita, K. (2013). Geology and tectonics of Japanese islands: a review – the key to understanding the geology of Asia. Journal of Air Transport Management, 31, 75–87.

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., & Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2(8), 331–345.

Wessel, P., & Watts, A. B. (1988). On the accuracy of marine gravity measurements. Journal of Geophysical Research, 93, 393–413.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: improved version released. EOS Transactions American Geophysical Union, 94(45), 409–410.

Wessel, P. & Smith, W. H. F. (2018). The generic mapping tools. Version 4.5.18 technical reference and cookbook [Computer software manual]. U.S.A.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2019). The generic mapping tools. GMT Man pages. Release 5.4.5 [Computer software manual]. U.S.A.

Yagi, Y., Nakao, A., & Kasahara, A. (2012). Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth and Planetary Science Letters, 355–356, 94–101.

Yamano, M., Hamamoto, H., Kawada, Y., & Goto, S. (2014). Heat flow anomaly on the seaward side of the Japan Trench associated with deformation of the incoming Pacific plate. Earth and Planetary Science Letters, 407, 196–204.

Yoshii, T. (1979). Detailed cross-section of the deep seismic zone beneath northeastern Honshu, Japan. Tectonophysics, 55, 349–360.

Yu, Q.-Y., Bagas, L., Yang, P.-H., & Zhang, D. (2019). GeoPyTool: A cross-platform software solution for common geological calculations and plots. Geoscience Frontiers, 10(4), 1437–1447.