Share:


Spatial analysis of subway passenger traffic in Saint Petersburg

    Tatiana Baltyzhakova   Affiliation
    ; Aleksei Romanchikov   Affiliation

Abstract

The purpose of the paper is to create clear visualization of passenger traffic for Saint Petersburg subway system. This visualization can be used to better understand the passenger flow and to make more informed decisions in future planning. Research was based on officially published information about passenger traffic on subway station for years 2016 and 2018. Visualization was created with the variety of methods and software: Voronoi diagrams (QGIS software), social gravitation potential (R programming language), presentation of gravitation potential as a relief (Blender software), service zones of ground transport accessibility (2GIS, QGIS and Mapbox mapping platform). In this research, authors propose the use of intersection between the service zones and social gravitation potential isolines as an instrument for spatial analysis of traffic data. Analysis shown that current development of subway system does not correspond to passenger distribution. All stations were classified according to their accessibility and propositions about future directions of development were made.

Keyword : passenger traffic, traffic visualisation, social gravitation potential, R, Mapbox, Blender, spatial analysis, QGIS, public transport, subway system

How to Cite
Baltyzhakova, T., & Romanchikov, A. (2021). Spatial analysis of subway passenger traffic in Saint Petersburg. Geodesy and Cartography, 47(1), 10-20. https://doi.org/10.3846/gac.2021.11980
Published in Issue
Mar 31, 2021
Abstract Views
60
PDF Downloads
29
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

2GIS. (2020). Karta Sankt-Peterburga: ulicy, doma i organizacii goroda [Map of Saint Petersburg: city streets, buildings and organizations] (in Russian). https://2gis.ru/spb

Andrienko, G., Andrienko, N., Boldrini, C., Caldarelli, G., Cintia, P., Cresci, S., Facchini, A., Giannotti, F., Gio nis, A., Guidotti, R., Mathioudakis, M., Muntean, C. I., Pappalardo, L., Pedreschi, D., Pournaras, E., Pratesi, F., Tesconi, M., & Trasarti, R. (2020). (So) Big Data and the transformation of the city. International Journal of Data Science and Analytics. https://doi.org/10.1007/s41060-020-00207-3

Andrienko, N. Andrienko, G., & Rinzivillo, S. (2016). Leveraging spatial abstraction in traffic analysis and forecasting with visual analytics. Information Systems, 57, 172–194. https://doi.org/10.1016/j.is.2015.08.007

Andrienko, N., Andrienko, G., Patterson, F., & Stange, H. (2019). Visual analysis of place connectedness by public transport. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3198–3208. https://doi.org/10.1109/TITS.2019.2924796

Barnes, T. J., & Wilson, M. W. (2014). Big Data, social physics, and spatial analysis: The early years. Big Data & Society, 1(1), 1–14. https://doi.org/10.1177/2053951714535365

Barry, M., & Card, B. (2014). Visualizing MBTA Data. An interactive exploration of Boston’s subway system. http://mbtaviz.github.io/

Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R. Springer. https://doi.org/10.1007/978-1-4614-7618-4

Bumgardner, B. (2016). Mapping NYC subway traffic: an interactive. http://bryanbumgardner.com/mapping-nyc-subwaytraffic-an-interactive/

Chong, S. M. (2015). NYC subway traffic. http://piratefsh.github.io/mta-maps/public/

Chopra, S., Dillon, T., Bilec, M., & Khanna, V. (2016). A network-based framework for assessing infrastructure resilience: a case study of the London metro system. Journal of the Royal Society Interface, 13(118), 20160113. https://doi.org/10.1098/rsif.2016.0113

Dataveyes. (2013). Metropolitain. http://metropolitain.io/

Derrible, S. (2012). Network centrality of metro systems. PLoS One, 7(7), e40575. https://doi.org/10.1371/journal.pone.0040575

Flowmap.blue. (2020). Flowmap.blue – flow map visualization tool. https://flowmap.blue/

Gonzalez-Navarro, M., & Turner, M. (2016). Subways and urban growth: evidence from earth. Spatial Economics Research Centre. https://www.gov.uk/research-for-development-outputs/subways-and-urban-growth-evidence-from-earth

Goodwin, P., & Noland, R. B. (2003). Building new roads really does create extra traffic: a response to Prakash et al. Applied Economics, 35(13), 1451–1457. https://doi.org/10.1080/0003684032000089872

Huffman, D. (2019). Creating shaded relief in Blender. https://somethingaboutmaps.wordpress.com/2017/11/16/creating-shaded-relief-in-blender/

Itoh, M., Yokoyama, D., Toyoda, M., Tomita, Y., Kawamura, S., & Kitsuregawa, M. (2014). Visual fusion of mega-city big data: An application to traffic and tweets data analysis of Metro passengers. In 2014 IEEE International Conference on Big Data (Big Data) (pp. 431–440). IEEE. https://doi.org/10.1109/BigData.2014.7004260

Kommet agency. (2019). Passazhiropotok na stancijah metro Sankt-Peterburga [Passenger traffic on Saint Petersburg subway stations] (in Russian). https://kommet.ru/stats

Kozin, E. (2017). Enhancement of organizational and technical solutions regarding anchoring of completed construction facilities of underground railway system to operating control. Zapiski Gornogo instituta, 228, 674–680.

KRTI [Transport infrastructure development committee of Saint Petersburg]. (2018). Stroitel’stvo metropolitena [The construction of subway] (in Russian). https://krti.gov.spb.ru/stroitelstvo-metropolitena/

Levinson, D. (2012). Network structure and city size. PLoS One, 7(1), e29721. https://doi.org/10.1371/journal.pone.0029721

Lin, E., Park, J., & Züfle, A. (2017). Real-time Bayesian microanalysis for metro traffic prediction. In UrbanGIS’17: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics (pp. 1–4). https://doi.org/10.1145/3152178.3152190

Mapbox. (2020). About maps | Mapbox. https://www.mapbox.com/about/maps/

Massobrio, R., & Nesmachnow, S. (2020). Urban mobility data analysis for public transportation systems: a case study in Montevideo, Uruguay. Applied Sciences, 10(16), 5400. https://doi.org/10.3390/app10165400

Pebesma, E., & Bivand, R. S. (2005). Classes and methods for spatial data: the sp package. https://cran.r-project.org/web/packages/sp/vignettes/intro_sp.pdf

Pérez-Messina, I., Graells-Garrido, E., Jesús Lobo, M., & Hurter, C. (2020). Modalflow: cross-origin flow data visualization for urban mobility. Algorithms, 13(11), 298. https://doi.org/10.3390/a13110298

Saint Petersburg metro. (2017). Statisticheskie dannye metro [Subway statistic data] (in Russian). http://www.metro-spb.ru/statisticheskie-dannye/2016/

Shin, H. (2020). Analysis of subway passenger flow for a smarter city: knowledge extraction from Seoul metro’s ‘Untraceable’ big data. IEEE Access, 8, 69296–69310. https://doi.org/10.1109/ACCESS.2020.2985734

Stewart, J. Q. (1942). A measure of the influence of a population at a distance. Sociometry, 5(1), 63–71. https://doi.org/10.2307/2784954

Stewart, J. Q. (1947). Empirical mathematical rules concerning the distribution and equilibrium of population. Geographical Review, 37(3), 461–485. https://doi.org/10.2307/211132

Tanaka, K. (1950). The relief contour method of representing topography on maps. Geographical Review, 40(3), 444–456. https://doi.org/10.2307/211219

Xiao, F., & Yu, G. (2018). Impact of a new metro line: analysis of metro passenger flow and travel time based on smart card data. Journal of Advanced Transportation, 2018, 9247102. https://doi.org/10.1155/2018/9247102

Yang, J., Chen, S., Qin, P., & Lu, F. (2015). The Effects of subway expansion on traffic conditions: evidence from Beijing (Environment for Development Discussion Paper EfD DP 15–22). www.jstor.org/stable/resrep15032

Zhang, Y., Shi, H., Zhou, F., Hu, Y., & Yin, B. (2020). Visual analysis method for abnormal passenger flow on urban metro network. Journal of Visualization, 23, 1035–1052. https://doi.org/10.1007/s12650-020-00674-7