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Abstract. This paper investigates how the process of going bankrupt can be recognized much 
earlier by enterprises than by traditional forecasting models. The presented studies focus on the 
assessment of credit risk classes and on determination of the differences in risk class migrations 
between non-bankrupt enterprises and future insolvent firms. For this purpose, the author has de-
veloped a model of a Kohonen artificial neural network to determine six different classes of risk. 
Long-term analysis horizon of 15 years before the enterprises went bankrupt was conducted. This 
long forecasting horizon allows one to identify, visualize and compare the intensity and pattern of 
changes in risk classes during the 15-year trajectory of development between two separate groups 
of companies (150 bankrupt and 150 non-bankrupt firms). The effectiveness of the forecast of 
the developed model was compared to three popular statistical models that predict the financial 
failure of companies. These studies represent one of the first attempts in the literature to identify 
the long-term behavioral pattern differences between future “good” and “bad” enterprises from 
the perspective of risk class migrations. 
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Introduction 

In the literature, credit risk is mainly considered from the viewpoint of banks granting loans 
to companies (Bluhm et al., 2003; Schonfeld et al., 2018; Shimko, 2004). In practice, this risk 
also applies to companies providing trade credits to their partners. This risk is often defined 
as the probability of failure by the contractor to fulfill one or more contracts due to the in-
ability to meet financial obligations. According to Wilner (2000), companies threatened with 
bankruptcy tend to take trade credits rather than bank loans. Therefore, the firm granting 
credits to their contractors should monitor the level of bankruptcy risk of their borrowers. 
No such monitoring may result in a situation in which a “healthy” business, as a result of 
problems with obtaining its receivables from bankrupt companies, will face the risk of bank-
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ruptcy itself. Bankruptcy causes creditors of the insolvent firm to suffer losses in the form 
of uncollected receivables. 

Corporate bankruptcy prediction is a well-researched area in finance. Thus far, a large 
number of models have been proposed, starting with the development of statistical models 
(Altman, 1968; Alaka et al., 2018; Barboza et al., 2017; Mihalovic, 2016; Psillaki et al., 2010; 
Kumar & Ravi, 2007; Laitinen, 2007; Lukason & Hoffman, 2014; Orsenigo & Vercellis, 2013; 
Giannopoulos & Sigbjornsen, 2019) through the implementation of artificial intelligence 
methods that very often originated from different scientific disciplines (Brabazon & O’Neil, 
2004; Dong et al., 2018; Hosaka, 2019; Flores-Jimeno & Jimeno-Garcia, 2017; Xiao et al., 
2012; Lin et al., 2014; Lensberg et al., 2006; Sun et al., 2014; Jardin, 2015; Wu et al., 2010; 
Tian & Yu, 2017; Tsai, 2014; Ptak-Chmielewska, 2019; Kiang & Kumar, 2001). 

Despite the growing interest in corporate bankruptcy forecasting models, many questions 
remain unanswered. These models are not free from drawbacks and limitations, which are 
relatively rarely subject to substantive discussion in the literature. One of the important is-
sues is their stability (Gavurova et al., 2017; Li & Faff, 2019; Sayari & Mugan, 2017; Grice & 
Dugan, 2001; Ooghe & Balcaen, 2006; Jardin & Severin, 2011). Regardless of the modeling 
technique (linear or non-linear, regression or classification), models always have the same 
drawback of a short forecasting horizon. The standard models of forecasting corporate bank-
ruptcy cannot predict horizons longer than two to three years before the failure. Nonetheless, 
in most cases, bankruptcy is a continuous process that can be divided into several stages, 
starting with the appearance of the first signs of crisis, continuing through blindness to and 
ignorance of the financial and non-financial symptoms of economic crisis and erratic behav-
iors, until the final phase of the crisis, which is insolvency. Additionally, taking into account 
that a company’s collapse is the result of a set of causes, there is no one single reason that 
would be fully responsible for the bankruptcy of a given company. Thus, the author of this 
paper investigates how the process of going bankrupt can be recognized much earlier than in 
traditional forecasting models. The complexity and importance of this phenomenon in finance 
requires a comprehensive approach over a longer period of analyses. Therefore, the author 
set the following objectives for the present study:

1. To develop an universal, global model of self-organizing map (Kohonen model) with 
the assessment of six different risk classes for wide variety of enterprises from different 
regions of the world. Such a model with a risk map can enhance the prediction of fi-
nancial failures in three ways. First, it can identify and visualize the long-term pattern of 
firm collapse (in the form of migration between individual classes); second, it can more 
precisely define the level of risk (the most popular previous multivariate discriminant 
analyses models only specify if the company is at risk with no identification of the level 
of such risk); and third, it can improve the stability of forecast effectiveness.

2. To identify the long-term differences between non-bankrupt and future bankrupt 
enterprises in the risk class migration process. The important question to answer is 
whether there are any significant differences in development and conducting busi-
ness activities in a period as long as 15 years before the enterprises go into financial 
crisis. Examining the volatility of migrations between risk classes can reveal the first 
symptoms of going bankrupt long before the real bankruptcy risk occurs.
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3. To compare the effectiveness of the developed risk map with three traditional statisti-
cal bankruptcy forecasting models, including one discriminant analysis model, one 
logit model and one decision tree model. Such comparison let verify the usefulness 
of soft computing model in forecasting the risk of bankruptcy in situation of wide 
variety of economic conditions (global model) in comparison of traditional models 
that were estimated for specific economic region.

4. To develop specialized model of self-organizing map for group of enterprises from 
the same region. Such a model let compare the effectiveness of Kohonen model de-
veloped with global research approach and specialized area of forecast.

The paper consists of six sections. In the Introduction, the author presents the justifica-
tion for the topic, the study objectives and the contribution and innovation to the literature. 
Section 1 describes the common types of bankrupt enterprises. Section 2 introduces this 
study’s research assumptions. In Section 3, the author presents a developed model of self-
organizing maps. The comparative analysis of effectiveness and the discussion of the results 
are presented in Section 4. Last section concludes the paper.

1. Characteristics of the common types of bankrupting enterprises

To improve the reliability and stability of the forecasting model, we first need to understand 
the common types of bankruptcy. Previous studies often ignore facts during the estimation 
of forecasting models. However, each type of bankruptcy is characterized by varying intensity 
of the collapse. By identifying and differentiating three or four different patterns of going into 
insolvency, we can enhance the forecasting properties of the model. 

According to Ooghe and Prijcker (2008), who evaluated the causes of the crisis and the 
maturity of the enterprises that have collapsed, there are four main types of bankruptcy as 
follows:

 – Type I applies to companies that are characterized by a failed start-up of operations. 
Such companies, since their foundation, have had problems with proper functioning. 
They suffer from a lack of effective management, have no strategic advantage factor 
over the competition, have poorly developed customer bases, and their products are 
not attractive to potential customers. These types of companies are never profitable, 
are characterized by low liquidity, and their bankruptcy is possible to forecast practi-
cally from the start of business. Such companies have a very small chance of survival 
from the beginning. Type I bankruptcy concerns young, inexperienced companies 
lacking adequate capital and intellectual resources to be able to function. This type 
of bankruptcy is consistent with findings from studies on the types of bankruptcy 
conducted by Burgelman (1991), Fichman and Levintahl (1991), and Kale and Arditi 
(1998).

 – Type II refers to companies that have existed in the market for several years. Such 
companies are led by dynamic, ambitious management that did not have previous 
access to larger financial resources. Convincing banks to give them extra credit allows 
companies to execute investment plans. However, big ambitions and excessive opti-
mism of the management cause the overestimation of the plan to achieve income from 
sales and to aggressively gain significant market share. Insufficient revenue growth 
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does not allow such companies to pay their excessive commitments and operating 
costs. These companies are characterized by a weak structure of liabilities (excess 
liabilities with respect to equity held). This type of bankruptcy is consistent with the 
conclusions of the study by Argenti (1976).

 – Type III applies to enterprises that initially are no different from type II firms. Howev-
er, unlike the others, after the completion of the investment, they are successful in the 
market and gain market share. Their revenues significantly rise. Excessive optimism 
and ambition of management and the initial blindness due to achieved success cause 
the management to lose alertness and awareness of potential problems. The first symp-
toms of a deteriorating financial situation are ignored. In enterprises of this type, it is 
believed that this situation is temporary, and its origins lie outside the enterprise. Taking 
additional credits for the implementation of more ambitious targets causes some kind 
of “overheating” in the company. The collapse of the financial situation occurs. The 
company loses liquidity and, consequently, goes bankrupt (Laitinen & Lukason, 2014). 

 – Type IV refers to enterprises that have operated in the market for a dozen years or 
more. Such companies are characterized by apathy and blindness. Managers do not 
notice a dynamically changing environment and growing competitive rivalry. Such 
companies operate on the basis of outdated policies, procedures, and plans that years 
ago allowed them to succeed. In the absence of the awareness of restructuring, these 
companies consequentially lose market share, reduce their profitability, and have 
problems with liquidity. This is the last warning. The lack of decisive action or even 
further apathy of managers of such enterprises inevitably leads to bankruptcy. This 
type of bankruptcy is also confirmed by the studies of Gilbert (2005) and Wiseman 
and Bromiley (1996). 

An interesting approach to the characterization of the types of bankruptcy has been dem-
onstrated by Moulton and Thomas (1996), who distinguish between four types of bankruptcy 
due to the rate of change of revenues in an industry in which the firm operates and the rate 
of change in returns on assets and sales volume of these companies. The four featured types 
of bankruptcy are presented in Figure 1.

Figure 1. Types of corporate bankruptcy
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Along with the decline in the profitability of an industry, a competitive struggle between 
firms intensifies. Companies wanting to stay “alive” maintain sales by lowering prices. Fur-
ther decreases in the attractiveness of the industry make the weaker companies unable to 
withstand competitive pressures, which causes their collapse. This type of bankruptcy has 
also been highlighted in studies by Jayasekera (2018), Hambrick and D’Aveni (1988), Argenti 
(1976) and Zammuto and Cameron (1985).

Another type of bankruptcy occurs in the case of increasing profitability of the industry, 
but when the company’s profitability decreases. This may be the case for the consolidation 
of the industry, where weaker companies are forced out of it. Additionally, the entrance of 
a large company into an attractive industry can cause the bankruptcy of companies with a 
weaker position. This type of bankruptcy is also perceived in the research by Utterback and 
Suarez (1993).

The next type of bankruptcy applies to companies operating in an industry with decreas-
ing profitability. Such companies increase their sales through price wars. The intense price 
war, especially in the case of high barriers to exit from the sector, leads to a devastating battle 
between companies. In this case, only the companies with the strongest market positions are 
able to survive.

The last type of bankruptcy defined by Moulton and Thomas refers to companies that, 
despite the increasing sales of products and the increasing profitability of the industry, go 
bankrupt. The reason for their bankruptcy may be their blindness due to achieved success. 
Poor estimation of future investments and demand for company products as well as company 
mismanagement cause the financial crisis. The nature of this type of bankruptcy is similar 
to the fourth kind of bankruptcy of companies described above, as defined by Ooghe and 
Prijcker. 

The original division of insolvent companies into four different types of bankruptcy was 
suggested by Richardson, Nwankwo and Richardson (1994) in studies using the metaphor of 
a “frog”. They distinguished the following types of “frogs” – insolvent companies:

 – “Boiled frog” – This type of bankruptcy applies to businesses that have operated in 
the market for at least several years. A characteristic feature of such companies is 
that the board is satisfied with themselves. The company is “blind” to changes in the 
environment. The board is helplessly stuck in old strategic, tactical and operational 
plans. Johnson (1988) describes this phenomenon as a “strategic drift”. According to 
him, the paradigm of no change and a kind of inactivity in the company leads to the 
creation of a strategic gap between changes in the surroundings of the company and 
the company “drifting” in place. This type of bankruptcy is consistent with the theory 
presented earlier by Ooghe and Prijcker (type IV bankruptcy). 

 – “Drowned frog” – This type of bankruptcy shows that companies led by highly am-
bitious managers who, upon succeeding in a particular field, are strongly motivated 
to aggressively expand into new markets and business areas. The arrogance and the 
original success are at the base of this type of bankruptcy. The dynamic expansion of 
the company in all directions means that, at some point, this extra range of operations 
of the enterprise is not related to core resources, which ensured the earlier success 
of the company. Despite the fact that, very often, sales in such companies are rapidly 
growing, it is done at the expense of reducing the prices of products. In this type of 
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bankruptcy, the collapse of the financial situation is sudden and very intense. This 
type of bankruptcy is consistent with the second type of bankruptcy described by 
Ooghe and Prijcker.

 – “Tadpole” represents the bankruptcy of a company that has a failed start-up operation. 
Therefore, it applies to young companies. A number of potential causes of this type of 
company bankruptcy include the following:

 – overly optimistic assumptions for the plan concerning revenues on sales, obtained 
profits, gained market share, and the attractiveness of the company’s offer, and

 – low levels of entrepreneurship of owners or managers. Often innovators emphasize 
the importance of inventing a new product but devote little energy to plan its sales 
and marketing strategy. They think that somehow the product will sell itself. Here, 
one can also find a convergence of the described type of bankruptcy with type I 
described by Ooghe and Prijcker.

 – “Toad” – This type of bankruptcy applies to businesses operating for at least several 
years. It concerns megalomaniac companies that always focus on past successes. Man-
agers are characterized by megalomania on one hand and apathy towards changes in 
the environment on the other. The management of the company is based more on 
the beliefs and faith of the board about an ongoing success rather than real analysis. 
Some features of this type of bankruptcy are also consistent with the fourth type of 
bankruptcy defined by Ooghe and Prijcker.

2. Research assumptions

2.1. Variable and sample selection

The application of statistical methods and soft computing techniques to forecasting the finan-
cial situation of enterprises requires the adequate preparation of sets of examples on which 
the model will be trained and tested. Each of them must contain information describing the 
situation of the company in the form of input variables as financial ratios. In the study, the 
author created 2 populations of enterprises. The first population used data on 400 enterprises 
from countries around the world, including: the USA, the U.K., Canada, France, Germany, 
Spain, Finland, Poland, Italy, Sweden, Taiwan, China, Japan, Mexico, Colombia, Argentina, 
Brazil, and Chile. The second population consists data on 200 firms from EU region. In both 
populations the companies were firms from the service and manufacturing sector. The objec-
tive of the first population was to create global, universal forecasting model for wide variety 
of firms from different regions of the world. The aim of second population was to develop 
specialized model for risk forecasting for only European firms and then to able to compare 
their effectiveness and verify the abilities of self-organizing map for universal bankruptcy 
risk predictions.

For the learning process of global model, a learning sample consisting of 50 bankrupt 
and 50 non-bankrupt enterprises was created. To test the effectiveness of the model based on 
unknown companies from the model, the testing sample was created. This sample included 
150 enterprises at risk of bankruptcy and 150 firms with good financial conditions. In case 
of specialized model, the learning sample consisted 25 bankrupt and 25 non-bankrupt firms 
and the testing sample consisted 75 bankrupt and 75 non-bankrupt firms. The fact that 
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the company is in a good financial situation was assumed based on the overall analysis of 
financial statements. In the assessment, profitability, liquidity and debt ratios were mainly 
considered. The companies were selected for which there was no doubt that they are not 
at risk of falling. The enterprises at risk of bankruptcy were chosen based on the following 
three criteria:

 – information from the firm’s authorities about the threat of collapse,
 – court judgments declaring bankruptcy, and
 – liquidation of the company.

For all 600 enterprises, the author calculated the value of 30 financial ratios for the last 
15 years before the moment that the company was at risk of bankruptcy or was considered 
a good firm. Depending on the company, the 15-year financial statements taken for analysis 
covered the period from 1995 to 2016. The complete list of used input variables of the model 
is presented in Table 1.

Financial statements contain very rich economic content about given companies, which 
through various financial ratios can be used in the models predicting the risk of bankruptcy 
of firms. The value of analysis is determined by indicators with high information capacity, 
and therefore there is a tendency to reduce their number and group them properly (e.g. 
Altman, 2018; Delen et al., 2013; Dong et al., 2018; Laitinen et al., 2014; Liang et al., 2016; 
Ooghe & Balcaen, 2006; Tian et al., 2015; Tian & Yu, 2017). 

Table 1. The financial ratios used in the study

Symbol of input variable Computing formula

Profitability ratios
X1 Profit on sales / total assets
X3 (net income + depreciation) / total liabilities

X10 Income before tax / current liabilities
X13 Income before tax / total revenues
X15 Net income / total assets
X16 EBIT / total assets
X19 EBIT / interest paid
X22 Operating income / revenues from sales
X23 Profit on sales / stockholders’ equity
X24 Net income / stockholders’ equity
X25 Income before tax / revenues from sales

Activity ratios
X4 Operational costs / current liabilities
X7 Total revenues / total assets

X14 Inventories / total revenues

X21
(quick assets – current liabilities) / daily operating expenses 
with the denominator proxied by (sales – income before taxes – 
depreciation) / 365

X26 Total revenues / short-term receivables
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Symbol of input variable Computing formula

X27 Short-term receivables / current liabilities
Liquidity ratios

X2 (current assets – current liabilities) / total assets
X8 Current assets / current liabilities

X12 (Current assets – inventories) / current liabilities
X18 Cash / total assets
X28 Cash / current liabilities

Structural and debt  ratios
X5 Stockholders’ equity / total liabilities
X6 (stockholders’ equity + noncurrent liabilities) / fixed assets
X9 Current liabilities / total assets

X11 Total assets / total liabilities
X17 Current liabilities / stockholders’ equity
X20 Current assets / total liabilities
X29 Stockholders’ equity / total assets
X30 Fixed assets / total assets

2.2. Basic concepts of Kohonen model

The self-organizing map (SOM) is a non-parametric neural network with a desirable combi-
nation of data abstraction and spatialization. It is widely used for visual clustering in a wide 
range of applications (Chen et al., 2013). It is an unsupervised neural network proposed by 
Kohonen (1982) for visual cluster analysis. The term artificial neural network refers to the 
mathematical model of a complex network of computing nodes called neurons and their 
connections that imitate the actions of biological systems that can effectively solve specific 
problems. In contrast to the traditional statistical forecasting models (e.g., multivariate dis-
criminant analysis), the operations of a neural network are a purely mechanical approach to 
the analyzed phenomenon without the detection of internal relationships and the strength 
of existing relationships. Kohonen networks are a specific group of neural networks used in 
the process of classification and the grouping of data. They usually consist of a layer of input 
neurons and a single processing layer. Each neuron in the processing layer is connected to 
all inputs. The neurons of the map are located on a regular grid embedded in a low (usually 
2 or 3) dimensional space and are associated with the cluster prototypes by the connected 
weights. Each input vector is classified using the method of “nearest neighbor”. In the course 
of the learning process, the neurons compete with each other through the best matching 
principle in such way that the input is projected to the nearest neuron given a defined dis-
tance metric. The Kohonen algorithm that learns the SOM network introduces the concept of 
neighborhood neurons. It is understood in the sense of the geometric position with respect 
to the winner neuron. The weights of neurons located close to the winner are modified to be 
stronger than the more distant neurons. This effect is implemented by using the neighbor-

End of Table 1
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hood function. The winner neuron and its neighbors on the map are adjusted towards the 
input in proportion with the neighborhood distance. Consequently, the neighboring neurons 
likely represent the similar patterns of the input data space (Chen et al., 2013). 

An example of the structure of the SOM network is shown in Figure 2. 
The learning process is unsupervised. Training data do not contain any information about 
the desired outputs. The network is designed to independently classify the data based only 
on the the correlation occurring in them.

Figure 2. An example of the structure of a self-organizing maps (SOM)

As shown in Figure 2, in the SOM, the neurons of the input layer are connected with all 
the neurons of the output layer through synaptic weights. Thus, it is possible to establish a 
bi-dimensional map of different zones, such as failing and non-failing regions, and create 
risk classes. 

Recent studies (Jardin & Severin, 2011; Iturriaga & Sanz, 2015; Chen et al., 2013) show 
the advantages of using a self-organizing map for short- and medium-term forecasting com-
pared to the traditional forecasting models. Those researchers used the Kohonen network to 
predict the corporate collapse at horizons from one to five years. 

In contrast to the statistical models, models of soft computing techniques such as SOM 
models effectively deal with imprecisely defined problems, incomplete data, imprecision and 
uncertainty (Acosta-González & Fernández-Rodríguez, 2014). The issue of predicting bank-
ruptcy of companies has all of the above characteristics. In addition, these methods are 
suitable for use in systems which are designed to fit certain internal parameters to changing 
environmental conditions in a dynamic way (so-called learning systems). The difference be-
tween the traditional calculation methods and soft computing methods is based on reference 
to issues such as precision, reliability and accuracy. Soft computing techniques tolerate data 
imprecision, uncertainty and approximation. The essence of models based on computational 
intelligence is processing and interpretation of data of various nature (Zapranis & Ginoglou, 
2000). That is why author of the research conducts this study to verify the possibility of creat-
ing SOM model for population of enterprises from different economic regions.

2.3. Traditional statistical forecasting models used in the studies

To compare the effectiveness of two developed SOM models with other bankruptcy fore-
casting models, the author has chosen three popular traditional models from the existing 
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literature. To provide a variety of comparisons, each model taken is from a different region 
of the world where it was estimated, with different types of ratios used, and different fore-
casting techniques implemented. For all three models, the computing formulas for the ratios 
are given in Table 1.

The first model is the logit model (LOG) from North America estimated by Altman and 
Sabato (2007) and is based on 432 enterprises from that region:

 Z = 4.28 + 0.08 × X15 + 0.18 × X16 – 0.01 × X17 + 0.02 × X18 + 0.19 × X19.

The cutoff point of this model is the value of 0.5. It means that results above 0.5 indicate 
a high risk of financial failure (between 50% and 100% probability), and scores below 0.5 
indicate a low risk of bankruptcy (between 0% and 50%).

Figure 3. Structure of the decision tree model

The next model is the multivariate discriminant analysis model (MDA). It was construct-
ed by Taffler for forecasting the financial failure of British enterprises. It has following func-
tion (Agarwal & Taffler, 2007) with a solvency threshold of ZT = 0:

 ZT = 3.2 – 10.68 × X9 + 12.18 × X10 + 2.5 × X20 + 0.029 × X21.

The last model is the decision tree model (CR&T) estimated for European enterprises by 
Korol (2013). The structure of the model is presented in Figure 3. The gray areas represent 
the classification of a company in danger of bankruptcy, and the white area shows the clas-
sification of non-bankrupt firms.

3. Corporate bankruptcy forecasting model

Inputs to both SOM models are based on the correlation matrix by choosing only the features 
that are poorly correlated with each other and strongly correlated with the grouping variable, 
representing the information about the risk of bankruptcy. This approach ensured the selec-
tion of such features, which do not duplicate information provided by other financial ratios, 
while being good representatives of the ratios not selected as diagnostic. Using a learning 
sample consisting of 100 companies described by chosen 15 financial ratios (from X1 to X15 
from Table 1), a global model of self-organizing maps of size 10 neurons (rows) x 10 neurons 
(column) was developed, as shown in Figure 4 .
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Figure 4. Map of the self-organizing network with designated classes of risk of bankruptcy  
for global population of enterprises

On the map, the author distinguished the following 6 risk classes:
 – A – the highest level of credibility (a company with outstanding good credit reliabil-
ity),

 – B – very good solvency of the enterprise,
 – C – average solvency capabilities with visible risk,
 – D – the possible repayment of liabilities, increased uncertainty, and problematic credit 
exposure,

 – E – Liabilities are at high risk, and the company is vulnerable to bankruptcy, and
 – F – the bankrupt company with unacceptable risk.

As a result, the manager can use this map not only to evaluate the risk of bankruptcy 
of the analyzed company but also to assess the good financial situation of the company and 
to visualize the trajectory of the risk class migrations during the “life” of the enterprises. 
In addition, the black, bold line is the distinguishing area at which the company is at risk of 
bankruptcy and the zone of good economic situation of enterprises.

Due to the limited size of the paper, it is not possible to present the received trajectories 
for all 300 enterprises from the testing sample. To explain the range of possibilities of using 
the developed risk map, one example of the trajectory of a bankrupt firm is presented in 
Figure 4. 

The trajectory of this company (red arrows identify the year analyzed before bankruptcy 
in brackets) clearly presents a systematic increase in the risk of financial failure for the firm. 
A gradual decrease of the solvency capability can be seen, which shows the four visible stages 
of going bankrupt. During the period from 15 to 11 years before bankruptcy, the situation 
was classified as “B” class, indicating very good solvency of this enterprise. In the second 
stage (the 10th, 9th and 8th years before bankruptcy), the first symptoms of the financial crisis 
risk have started to be visible. The risk class migrated from “B” to “C”, indicating average 
solvency capabilities with visible risk. The crucial period for the analyzed firm was the 7th 
year before bankruptcy. At that time, the enterprise crossed the “bold line” on the map of 
the self-organizing network. The movement from risk class “C” (neuron 6×7) to “D” (neuron 
5×7) can be seen, showing the beginning of the third stage of going bankrupt. During the 

C C D D D E E F F F

C C D D D D E F F (4) F (3, 2, 1) 

B C C C C D E F F F
B B B (11) B C D E E E E
B B B B C D D (7) D E (6, 5) E
B B B B (13, 12) C C (10) C (9, 8) D E E
A A A A B B C D D D
A A A A B (14) B C D D D
A A A A B B C C C C
A A A A B (15) B B C C C
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next two years (6th and 5th year), the risk continued to increase. The company was classified 
as risk class “E” (neuron 5×9), indicating a high risk of bankruptcy. The fourth stage of the 
path of going into liquidation began 4 years before the enterprise went into real bankruptcy. 
The developed model effectively predicted in advance that bankruptcy was inevitable, and 
the risk was unacceptable (risk class “F”) at neurons 2×9 and 2×10. In the process of estima-
tion of SOM model only for European enterprises (the specialized model) the same research 
procedure was implemented. With the use of correlation matrix also the financial ratios from 
X1 to X15 were chosen. It is the sign that this set of ratios has the highest discrimination 
abilities to differentiate the bankrupt from non-bankrupt enterprises. The developed model is 
presented in Figure 5. This model also consists 6 risk classes (from A to F) but the allocation 
of them is different as shown in Figure 5.

C C C C D D E F F F

C C C C D D E F F F 

B B B B C D E F F F

B B B B C D E E E E

B B B B B C C D D D

A A A A A  B B C D D

A A A A A B B C D D

A A A A A B B C C C

A A A A A B B C C C

A A A A  A B B C C C

Figure 5. Map of the self-organizing network with designated classes of risk of bankruptcy  
for European firms

It is important to note that although the structure of the self-organizing map is the same 
for both samples of firms (10×10 neurons), the number of specific risk classes differ in two 
models. As it can be seen, the highest number of high-risk bankruptcies classes D, E and F 
occurs in the global SOM model for wide variety of enterprises. The global model consists as 
much as 40 such risk classes while the European SOM model consists only 29.

4. Results and discussion

To evaluate the effectiveness of the created models, the following formula was used (the 
symbols are explained in Table 2): 

 S = {1 – [(D1 + D2) / (BR + NBR)]} × 100%.

It should be stressed that, from the point of view of individual stock investors, banks, 
lenders or investment funds, in addition to analyzing the overall effectiveness (S) of the 
model, it is important to distinguish different types of errors generated by the model. The 
author has used the classification matrix presented in Table 2 with the identification of two 
kinds of errors, Type I and Type II. Type I error indicates the classification of a future bank-
rupt enterprise as a good firm. Buying shares or giving credit to a future bankrupt firm (Type 
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I error) will result in losses initially due to the decrease in prices of shares of the company, its 
liquidation and the problems of collecting back the previously given credit. Conversely, Type 
II error means the loss of “only” potential profits by deciding not to purchase the shares of 
“healthy” companies believing that this is a future bankrupt company. For this reason, from 
the point of view of cost generating errors, it is more important to consider Type I error 
than Type II.

Table 2. Classification matrix of bankruptcy risk forecasting models

Predicted status

Actual status 
Bankrupt Non-bankrupt

Bankrupt TRUE

Type I error  
E1 = D1 / BR × 100%, where D1 
is the number of bankrupted firms 
classified by the model as non-
bankrupt company, and BR is the 
number of bankrupt enterprises in 
the sample.

Non-bankrupt

Type II error
E2 = D2 / NBR × 100%, where 
D2 is the number non-bankrupt 
companies classified by the 
model as a company at risk of 
bankruptcy, and NBR is number 
non-bankrupt firms in the sample.

TRUE

When evaluating the effectiveness of the developed global SOM model (Table 3), it can 
be seen that one year, two years and three years before bankruptcy, the model achieved 
outstanding results with over 89% of enterprises correctly classified in the testing sample. By 
extending the period of analysis to the fourth, fifth, sixth and seventh year before bankruptcy, 
the effectiveness is decreased and fluctuated from 79.67% to 85%. In the literature, correct 
classifications at the level of eighty-plus percent are still considered as very good results. 
Extending the forecast horizon for another three years (the 10th, 9th and 8th year before bank-
ruptcy), there was a further decline in effectiveness to the level between 66% and 69%. It is 
also important to note that until the fifth year before bankruptcy, Type I error was smaller 
than 20%, while during the forecasting horizon of one year and two years before this error, 
it was only 4% and 6%, respectively. This finding is further proof of the very good predictive 
properties of constructed model.

It must be clearly stated that many of these companies were not at risk of bankruptcy 
eight years (or longer) before they went bankrupt. For this reason, another advantage of the 
created model is that it can be used for the identification of the first bankruptcy symptoms in 
a company, since the bankruptcy process is based on the intensity of migrations between class 
risks. By using this approach, it will be possible to identify the risks of bankruptcy long before 
the company enters into the real bankruptcy process and much earlier than the traditional 
forecasting models identify such risk. Figure 6 presents the risk class migrations for 150 non-
bankrupt (left side) and 150 bankrupt enterprises (right side) during the 15 years of analysis. 
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The non-bankrupt firms are characterized by the stability of their risk class classifica-
tion. It can be seen that the majority of them (between 115 and 140 firms) were classified 
into three safe classes, “A”, “B” or “C”. It is also important to note that throughout the whole 
forecasting horizon of 15 years, there are no major migrations between these classes. On the 
left-bottom of Figure 6 and in the details of Figure 8, the distribution of non-bankrupt firms 

Table 3. The results of the classification of enterprises based on the testing sample of the SOM model 
(in parentheses is the number of misclassified firms)

Years before 15 14 13 12 11 10 9 8

Type I error 61.33% 
(92)

58.67% 
(88)

52.0% 
(78)

51.33% 
(77)

50.0% 
(75)

47.33% 
(71)

46.0% 
(69)

44.67% 
(67)

Type II error 21.33% 
(32)

24.0% 
(36)

23.33% 
(35)

24.67% 
(37)

23.33% 
(35)

18.67% 
(28)

22.0% 
(33)

17.33% 
(26)

Overall effect. 58.67% 58.67% 62.33% 62.00% 63.33% 67.00% 66.00% 69.00%

Years before 7 6 5 4 3 2 1

Type I error 24.67% 
(37)

23.33% 
(35)

19.33% 
(29)

16.0% 
(24)

11.33% 
(17)

6.0% 
(9) 4.0% (6)

Type II error 16.0% 
(24)

15.33% 
(23)

16.0% 
(24)

14.0% 
(21)

10.67% 
(16)

11.33% 
(17) 7.33% (11)

Overall effect. 79.67% 80.67% 82.33% 85.00% 89.00% 91.33% 94.33%

Figure 6. Risk class migrations of non-bankrupt enterprises (left side) and bankrupt firms (right side) 
during the 15 years of analysis in the global testing sample 
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into risk classes is visualized. During the forecasting horizon of 15 years, “good” companies 
were classified into the following amounts:

 – risk class “A” from 28 to 41 firms,
 – risk class “B” from 42 to 64 companies, and
 – risk class “C” from 35 to 43 entities.

No “healthy” enterprises were classified into the worst risk class “F” during the whole 
period of analysis. Those in risk classes “E” and “D” fell from 11 to 37 firms (they were Type 
II errors generated by the model).

Figure 7. Distribution of bankrupt enterprises into risk classes during the 15 years  
of analysis in the global testing sample

In the case of 150 bankrupt enterprises, the high intensity of migrations between risk 
classes is clearly visible (Figure 6 and Figure 7). Fifteen years before the bankruptcy, 13 
firms fell into the two worst risk classes, “F” and “E”. These entities probably represent those 
described in Section 2 of this paper by the first type of bankruptcy described by Ooghe and 
Prijcker as those companies with failed start-up operations. All the risk classes besides risk 
class “A” (into this class only up to 5 entities were assigned) are characterized by huge migra-
tions as follows:

 – risk class “B” – 15 years before bankruptcy 36 firms, 1 year before only 2 entities,
 – risk class “C” – 15 years before bankruptcy 51 companies, 1 year before only 4 firms,
 – risk class “D” – 15 years before bankruptcy 45 entities, 1 year before 19 enterprises,
 – risk class “E” – 15 years before bankruptcy 12 firms, 1 year before 34 firms, and
 – risk class “F” – 15 years before bankruptcy 1 company, 1 year before as many as 91 
firms.

The above observations confirm the high usability of the proposed model in terms of both 
high effectiveness and possibility of identification of the pattern of going into the bankruptcy 
process. To prove high effectiveness of the presented SOM model, the author has conducted a 
comparative analysis of effectiveness of three traditional forecasting models presented in Sec-
tion 3.3 of this paper. The results for the forecasting horizon of 15 years are shown in Table 4.
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Figure 8. Distribution of non-bankrupt enterprises into risk classes during  
the 15 years of analysis in the testing sample

All three models (CR&T, logit, and multivariate discriminant analysis) are characterized 
by high effectiveness in the forecasting periods of one year and two years before bankruptcy 
(between 85.33% and 89%). However, in the forecasting horizon of three and four years 
before bankruptcy, the traditional models generate much worse results than the SOM model 
(the created SOM model has similar effectiveness as late as at the 8th year before bankruptcy).

Table 4. The results of the classification of enterprises based on the testing sample of three statistical 
models

Type of model

Years before
Agarwal and Taffler

2007 (MDA)
Altman and Sabato 

2007 (LOG) Korol 2013 (CR&T)

1 87.33% 89.0% 88.67%
2 85.33% 87.0% 86.33%
3 76.67% 77.67% 77.33%
4 68.33% 68.67% 69.33%
5 67.33% 68.33% 68.0%
6 65.0% 66.0% 66.33%
7 64.33% 65.33% 65.0%
8 68.0% 66.33% 67.33%
9 62.67% 63.33% 63.0%

10 61.67% 62.67% 62.33%
11 66.0% 61.67% 57.0%
12 57.33% 57.0% 55.33%
13 58.67% 58.0% 56.33%
14 59.67% 63.33% 56.67%
15 61.33% 62.67% 57.33%
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Looking at the results achieved by traditional forecasting models (Table 4), we can see 
that one year, two years and three years before bankruptcy the highest effectiveness obtained 
logit model of Altman and Sabato (89.00%, 87.00% and 77.67% respectively). Four years 
before insolvency the highest effectiveness achieved decision tree model of Korol (69.33%). 
As it was concluded before, in the forecasting horizon longer than four years all three mod-
els generate results lower than 69%. In the literature it is assumed as very low effectiveness.

In the last stage of research author evaluated the effectiveness of created SOM model for 
European enterprises (Table 5). 

Table 5. The results of the classification of European enterprises based on the testing sample of the SOM 
model (in parentheses is the number of misclassified firms)

Years before 15 14 13 12 11 10 9 8

Type I error 42.7% 
(32)

40%  
(30)

36%  
(27)

34.7% 
(26)

33.3% 
(25)

30.7% 
(23)

29.3% 
(22)

42.7% 
(19)

Type II error 42.7% 
(32)

41.3% 
(31)

41.3% 
(31)

40%  
(30)

38.7% 
(29)

37.3% 
(28)

34.7% 
(26)

42.7% 
(22)

Overall effect. 57.33% 59.33% 61.33% 62.67% 64% 66% 68% 57.33%

Years before 7 6 5 4 3 2 1

Type I error 18.7% 
(14)

17.3% 
(13)

16%  
(12)

12%  
(9)

9.3%  
(7)

5.3%  
(4)

4.0%  
(3)

Type II error 22.7% 
(17)

21.3% 
(16)

18.7% 
(14)

16%  
(12)

12%  
(9)

10.7% 
(8)

6.7%  
(5)

Overall effect. 79.33% 80.67% 82.67% 86% 89.33% 92% 94.67%

The aim of such approach was to check if effectiveness of specialized SOM model differs 
much from effectiveness of more universal SOM model that was estimated for wide variety 
of enterprises from very different economic regions. Although the allocation of risk classes 
is different in the European SOM model, it can be seen that the effectiveness of this model 
is very similar to effectiveness of global SOM model. In most years (from 1st to 15th year 
prior bankruptcy) the specialized model is characterized by slightly better effectiveness (e.g. 
94.67% versus 94.33% one year before, 92% versus 91.33% two years before, 86% versus 
85% four years prior bankruptcy). It is confirmation that self-organizing map model has 
high abilities of adaptability. It means that model keeps high predictive abilities even in wide 
variety of economic conditions in different regions.

Conclusions

The presented study proves that a model of the self-organizing map can enhance predic-
tion of financial failure in enterprises by showing the migration of risk classes that reflect 
not only a static snapshot of the financial situation but more importantly dynamic changes 
occurring in enterprises. Thus, this model identifies the long-term differences between non-
bankrupt and future bankrupt enterprises. By examining the volatility of migration between 
risk classes, the model revealed the first symptoms of going into bankruptcy long before the 
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real bankruptcy risk occurred in the firms, in a much shorter time than traditional forecast-
ing models needed to predict such risk. This result proved the superiority of the new model.

To summarize, this study showed that the developed global SOM model can be used for 
the following:

 – Forecasting bankruptcy risk (The model was highly effective in the short-term anal-
ysis (from 94.33% to 89.00%) and in the long-term analysis during the forecasting 
period from four years to as long as seven years before bankruptcy (from 85.00% to 
79.67%);

 – Tracking the trajectory of growth or decline of the company – in an example of one 
firm, the author showed that this model well visualizes the economic situation, mak-
ing it easier to track the classification path of the financial standing of the enterprise 
in the long-term horizon of 15 years;

 – Making better business decisions in the long term (10–15 years) – this model provides 
a good graphical tool to support managers in the decision-making process. A financial 
analyst can follow economic risks of a company on the map with insights into the 
patterns of bankrupt and non-bankrupt company development;

 – The precise identification of the level of risk with improved stability of forecast ef-
fectiveness.

Moreover, the study proved that SOM model is very effective in two very different re-
search approaches – in universal usage (with population of enterprises from different eco-
nomic regions) and in specialized usage (with homogenous population of firms).

 – It is worth to add that presented study can be used in several aspects:
 – Early warning against deteriorating financial situation of an audited enterprise,
 – Assessment of implementation of economic plans of company,
 – Evaluation of the solvency of counterparties,
 – Credit risk assessment by financial institutions,
 – Risk assessment of buying company shares by individual and institutional investors 
in global stock exchanges.

At this point, it should be also emphasized that the proposed early warning model should 
only act as a tool to support evaluation of financial condition of the company and facilitate 
the decision making process associated with this assessment. The author’s aim was not to 
develop an “application” to replace the use of various types of analyzes, such as a compre-
hensive economic analysis of particular areas of the company, or a SWOT analysis, etc. It 
is worth to add that in the study the wide variety of financial ratios covering the aspects of 
profitability, activity, debt and liquidity were used. The most crucial ratios in the process of 
forecasting the risk of bankruptcy are: the share of working capital in total assets (X2), cur-
rent liquidity (X8), net return on total assets (X15), turnover of total assets (X7), covering 
degree of fixed assets by stockholders’ equity and noncurrent liabilities (X6) and relation of 
total assets to total debts (X11).

The author is also aware of various limitations of the conducted study. The main difficulty 
is limited access to financial data of bankrupt enterprises. The ideal situation would be a pos-
sibility to develop this type of model separately for small and medium-sized companies and 
large companies, separately for the different sectors of the economy. Nevertheless, obtained 
results let set the future research directions. Author of this paper is going to continue this 
study by adding other indicators (for example, nonfinancial factors) to the early warning 
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model. Knowing the long-term risk class migrations of non-bankrupt and bankrupt enter-
prises we can try to implement to the model such factors as fluctuations of exchange rates, 
growth rate of GDP or other macroeconomic factors that directly and indirectly can influ-
ence the financial risk of enterprises.
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Acosta-González, E., & Fernández-Rodríguez, F. (2014). Forecasting financial failure of firms via genet-
ic algorithms. Computational Economics, 43, 133–157. https://doi.org/10.1007/s10614-013-9392-9

Agarwal, V., & Taffler, R. (2007). Twenty-five years of the Taffler z-score model – does it really have 
predictive ability? Accounting and Business Research, 37(4). 
https://doi.org/10.1080/00014788.2007.9663313

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). 
Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert 
Systems with Applications, 94, 164–184. https://doi.org/10.1016/j.eswa.2017.10.040

Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. 
Journal of Finance, 23, 589–609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Altman, E. (2018). Applications of distress prediction models: What have we learned after 50 years from 
the Z-score models? International Journal of Financial Studies, 6(3), 70. 
https://doi.org/10.3390/ijfs6030070

Altman, E., & Sabato, G. (2007). Modelling credit risk for SMEs – evidence from the US market. ABA-
CUS, 43(3), 332–356. https://doi.org/10.1111/j.1467-6281.2007.00234.x

Argenti, J. (1976). Corporate collapse – the causes and symptoms. McGraw-Hill.
Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. 

Expert Systems with Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006
Bluhm, Ch., Overbeck, L., & Wagner, Ch. (2003). An introduction to credit risk modeling. Chapman & 

Hall/CRC. https://doi.org/10.1201/9781420057362
Brabazon, A., & O’Neil, M. (2004). Diagnosing corporate stability using grammatical evolution. Journal 

of Applied Mathematics and Computer Science, 1, 293–310.
Burgelman, R. (1991). Intraorganizational mortality-liabilities of newness and adolescence. Organiza-

tion Science, 2(3), 239–262. https://doi.org/10.1287/orsc.2.3.239
Chen, N., Ribeiro, B., Vieira, A., & Chen, A. (2013). Clustering and visualization of bankruptcy trajec-

tory using self-organizing map. Expert Systems with Applications, 40(1), 385–393. 
https://doi.org/10.1016/j.eswa.2012.07.047

Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision 
tree approach. Expert Systems with Applications, (40), 3970–3983. 
https://doi.org/10.1016/j.eswa.2013.01.012

https://doi.org/10.1007/s10614-013-9392-9
https://doi.org/10.1080/00014788.2007.9663313
https://doi.org/10.1016/j.eswa.2017.10.040
https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
https://doi.org/10.3390/ijfs6030070
https://doi.org/10.1111/j.1467-6281.2007.00234.x
https://doi.org/10.1016/j.eswa.2017.04.006
https://doi.org/10.1201/9781420057362
https://doi.org/10.1287/orsc.2.3.239
https://doi.org/10.1016/j.eswa.2012.07.047
https://doi.org/10.1016/j.eswa.2013.01.012


802 T. Korol. Long-term risk class migrations of non-bankrupt and bankrupt enterprises

Dong, M. C., Tian, S., & Chen, C. W. S. (2018). Predicting failure risk using financial ratios: Quantile 
hazard model approach. North American Journal of Economics and Finance, 44, 204–220. 
https://doi.org/10.1016/j.najef.2018.01.005

Fichman, M., & Levintahl, D. (1991). Honeymoon and liability of adolescence- a new perspective on 
duration dependence in social and organizational relationship. Academy of Management Review, 
16(2), 442–468. https://doi.org/10.5465/amr.1991.4278962

Flores-Jimeno, R., & Jimeno-Garcia, I. (2017). Dynamic analysis of different business failure proccess. 
Problems and Perspective Management, 15(2), 486–499. https://doi.org/10.21511/ppm.15(si).2017.02

Gavurova, B., Packova, M., Misankova, M., & Smrcka, L. (2017). Predictive potential and risks of 
selected bankruptcy prediction models in the Slovak business environment. Journal of Business 
Economics and Management, 18(6), 1156–1173. https://doi.org/10.3846/16111699.2017.1400461

Giannopoulos, G., & Sigbjornsen, S. (2019). Prediction of bankruptcy using financial ratios in the 
Greek market. Theoretical Economics Letters, 9, 1114–1128. https://doi.org/10.4236/tel.2019.94072

Gilbert, C. (2005). Unbounding the structure of inertia – resource vs routine rigidity. Academy of Man-
agement Journal, 48(5), 741–763. https://doi.org/10.5465/amj.2005.18803920

Grice, J., & Dugan, M. (2001). The limitations of bankruptcy prediction models – some cautions for 
the researcher. Review of Quantitative Finance and Accounting, 17, 151–166. 
https://doi.org/10.1023/A:1017973604789

Hambrick, D., & D’Aveni, R. (1988). Large corporate failures as downward spirals. Administrative Sci-
ence Quarterly, 33(1), 1–23. https://doi.org/10.2307/2392853

Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural net-
works. Expert Systems with Applications, 117(1), 287–299. https://doi.org/10.1016/j.eswa.2018.09.039

Iturriaga, F. J., & Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks – a 
study of U.S. commercial banks. Expert Systems with Applications, 42(6), 2857–2869. 
https://doi.org/10.1016/j.eswa.2014.11.025

Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the 
future. International Review of Financial Analysis, 55, 196–208. 
https://doi.org/10.1016/j.irfa.2017.08.009

Jardin, P. (2015). Bankruptcy prediction using terminal failure processes. European Journal of Opera-
tional Research, 242(1), 286–303. https://doi.org/10.1016/j.ejor.2014.09.059

Jardin, P., & Severin, E. (2011). Predicting corporate bankruptcy using a self-organizing map – an 
empirical study to improve the forecasting horizon of a financial failure model. Decision Support 
Systems, 51(3), 701–711. https://doi.org/10.1016/j.dss.2011.04.001

Johnson, G. (1988). Rethinking incrementalism. Strategic Management Journal, 9(1), 73–91. 
https://doi.org/10.1002/smj.4250090107

Kale, S., & Arditi, D. (1998). Business failures-liabilities of  newness, adolescence and smallness. Journal 
of Construction Engineering and Management, 124(6), 458–464. 
https://doi.org/10.1061/(ASCE)0733-9364(1998)124:6(458)

Kiang, M., & Kumar, A. (2001). An evaluation of self-organizing map networks as a robust alternative 
to factor analysis in data mining applications. Information System Research, 12(2), 177–194. 
https://doi.org/10.1287/isre.12.2.177.9696

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernet-
ics, 43(1), 141–152. https://doi.org/10.1007/BF00337288

Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent 
techniques – a review. European Journal of Operational Research, 180, 1–28. 
https://doi.org/10.1016/j.ejor.2006.08.043

https://doi.org/10.1016/j.najef.2018.01.005
https://doi.org/10.5465/amr.1991.4278962
https://doi.org/10.21511/ppm.15(si).2017.02
https://doi.org/10.3846/16111699.2017.1400461
https://doi.org/10.4236/tel.2019.94072
https://doi.org/10.5465/amj.2005.18803920
https://doi.org/10.1023/A:1017973604789
https://doi.org/10.2307/2392853
https://doi.org/10.1016/j.eswa.2018.09.039
https://doi.org/10.1016/j.eswa.2014.11.025
https://doi.org/10.1016/j.irfa.2017.08.009
https://doi.org/10.1016/j.ejor.2014.09.059
https://doi.org/10.1016/j.dss.2011.04.001
https://doi.org/10.1002/smj.4250090107
https://doi.org/10.1061/(ASCE)0733-9364(1998)124:6(458)
https://doi.org/10.1287/isre.12.2.177.9696
https://doi.org/10.1007/BF00337288
https://doi.org/10.1016/j.ejor.2006.08.043


Journal of Business Economics and Management, 2020, 21(3): 783–804 803

Laitinen, E. (2007). Classification accuracy and correlation – LDA in failure prediction. European Jour-
nal of Operational Research, 183, 210–225. https://doi.org/10.1016/j.ejor.2006.09.054

Laitinen, E., & Lukason, O. (2014). Do firm failure processes differ across countries: evidence from 
Finland and Estonia. Journal of Business Economics and Management, 15(5), 810–832. 
https://doi.org/10.3846/16111699.2013.791635

Laitinen, E., Lukason, O., & Suvas, A. (2014). Behaviour of financial ratios in firm failure process: An 
international comparison. International Journal of Finance and Accounting, 3(2), 122–131.

Lensberg, T., Eilifsen, A., & McKee, T. E. (2006). Bankruptcy theory development and classification via 
genetic programming. European Journal of Operational Research, 169, 677–697. 
https://doi.org/10.1016/j.ejor.2004.06.013

Li, L., & Faff, R. (2019). Predicting corporate bankruptcy: What matters? International Review of Eco-
nomics & Finance, 62, 1–19. https://doi.org/10.1016/j.iref.2019.02.016

Liang, D., Lu, Ch., Tsai, Ch., & Shih, G. (2016). Financial ratios and corporate governance indicators in 
bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 
561–572. https://doi.org/10.1016/j.ejor.2016.01.012

Lin, F., Liang, D., Yeh, C. C., & Huang, J. C. (2014). Novel feature selection methods to financial distress 
prediction. Expert Systems with Applications, 41, 2472–2483. 
https://doi.org/10.1016/j.eswa.2013.09.047

Lukason, O., & Hoffman, R. (2014). Firm bankruptcy probability and causes – an integrated study. 
International Journal of Business and Management, 9(11), 80. https://doi.org/10.5539/ijbm.v9n11p80

Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in 
bankruptcy prediction. Economics and Sociology, 9(4), 101–118. 
https://doi.org/10.14254/2071-789X.2016/9-4/6

Moulton, W. & Thomas, H. (1996). Business failure pathways – environmental stress and organizational 
response. Journal of Management, 2(4), 571–595. https://doi.org/10.1016/S0149-2063(96)90025-2

Ooghe, H., & Balcaen, S. (2006). 35 years of studies on business failure – an overview of the classic 
statistical methodologies and their related problems. The British Accounting Review, 38, 63–93. 
https://doi.org/10.1016/j.bar.2005.09.001

Ooghe, H., & Prijcker, S. (2008). Failure processes and causes of company bankruptcy – a typology. 
Management Decision, 46(2), 223–242. https://doi.org/10.1108/00251740810854131

Orsenigo, C., & Vercellis, C. (2013). Linear versus nonlinear dimensionality reduction for banks credit 
rating prediction. Knowledge-Based Systems, 47, 14–22. https://doi.org/10.1016/j.knosys.2013.03.001

Psillaki, M., Tsolas, I. E., & Margaritis, D. (2010). Evaluation of credit risk based on firm performance. 
European Journal of Operational Research, 201, 873–881. https://doi.org/10.1016/j.ejor.2009.03.032

Ptak-Chmielewska, A. (2019). Predicting micro-enterprise failures using data mining techniques. Jour-
nal of Risk and Financial Managament, 12, 1–17. https://doi.org/10.3390/jrfm12010030

Richardson, B., Nwankwo, S., & Richardson, S. (1994). Understanding the causes of business failure 
crises. Management Decision Journal, 32(4), 9–22. https://doi.org/10.1108/00251749410058635

Sayari, N., & Mugan, C.D. (2017). Industry specific financial distress modeling. Business Research Quar-
terly, 20, 45–62. https://doi.org/10.1016/j.brq.2016.03.003

Shimko, D. (2004). Credit risk – models and management. Barra Risk Books.
Schonfeld, J., Kudej, M., & Smrcka, L. (2018). Financial health of enterprises introducing safeguard pro-

cedure based on bankruptcy models. Journal of Business Economics and Management, 19, 692–705. 
https://doi.org/10.3846/jbem.2018.7063

Sun, J., Li, H., Huang, Q., & He, K. (2014). Predicting financial distress and corporate failure – a review 
from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-
Based Systems, 57, 41–56. https://doi.org/10.1016/j.knosys.2013.12.006

https://doi.org/10.1016/j.ejor.2006.09.054
https://doi.org/10.3846/16111699.2013.791635
https://doi.org/10.1016/j.ejor.2004.06.013
https://doi.org/10.1016/j.iref.2019.02.016
https://doi.org/10.1016/j.ejor.2016.01.012
https://doi.org/10.1016/j.eswa.2013.09.047
https://doi.org/10.5539/ijbm.v9n11p80
https://doi.org/10.14254/2071-789X.2016/9-4/6
https://doi.org/10.1016/S0149-2063(96)90025-2
https://doi.org/10.1016/j.bar.2005.09.001
https://doi.org/10.1108/00251740810854131
https://doi.org/10.1016/j.knosys.2013.03.001
https://doi.org/10.1016/j.ejor.2009.03.032
https://doi.org/10.3390/jrfm12010030
https://doi.org/10.1108/00251749410058635
https://doi.org/10.1016/j.brq.2016.03.003
https://doi.org/10.3846/jbem.2018.7063
https://doi.org/10.1016/j.knosys.2013.12.006


804 T. Korol. Long-term risk class migrations of non-bankrupt and bankrupt enterprises

Tian, S., Yu, Y., & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of 
Banking & Finance, 52, 89–100. https://doi.org/10.1016/j.jbankfin.2014.12.003

Tian, S., & Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. Inter-
national Review of Economics and Finance, 51, 510–526. https://doi.org/10.1016/j.iref.2017.07.025

Tsai, Ch. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. 
Information Fusion, 16, 46–58. https://doi.org/10.1016/j.inffus.2011.12.001

Utterback, J., & Suarez, F. (1993). Patterns of industrial evolution, dominant desing, and firms’ survival. 
In R. Burgelman, Research on technological innovation, management policy (Vol. 5, pp. 47–87). 
Greenwich Press.

Wilner, B. (2000). The exploitation of relationships in financial distress – The case of trade credit. The 
Journal of Finance, 55(1). https://doi.org/10.1111/0022-1082.00203

Wiseman, R., & Bromiley, P. (1996). Toward a model of risk in declining organizations. Organization 
Science, 7(5), 524–543. https://doi.org/10.1287/orsc.7.5.524

Wu, Y., Gaunt, C., & Gray, S. (2010). A comparison of alternative bankruptcy prediction models. Jour-
nal of Contemporary Accounting & Economics, 6, 34–45. https://doi.org/10.1016/j.jcae.2010.04.002

Xiao, Z., Yang, X., Pang, Y., & Dang, X. (2012). The prediction for listed companies’ financial dis-
tress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory. 
Knowledge-Based Systems, 26, 196–206. https://doi.org/10.1016/j.knosys.2011.08.001

Zammuto, R., & Cameron, K. (1985). Environmental decline and organizational response. Research in 
Organizational Behavior, 7, 223–262.

Zapranis, A., & Ginoglou, D. (2000). Forecasting corporate failure with neural network approach: The 
Greek case. Journal of Financial Management & Analysis, 13(2), 11–21.

https://doi.org/10.1016/j.jbankfin.2014.12.003
https://doi.org/10.1016/j.iref.2017.07.025
https://doi.org/10.1016/j.inffus.2011.12.001
https://doi.org/10.1111/0022-1082.00203
https://doi.org/10.1287/orsc.7.5.524
https://doi.org/10.1016/j.jcae.2010.04.002
https://doi.org/10.1016/j.knosys.2011.08.001

