Forecasting, valuation and portfolio returns of stock market evolution: problems, paradoxes and efficient information. Worldwide implications and Romanian evidence

    Florin Turcaș Affiliation
    ; Florin Cornel Dumiter Affiliation
    ; Petre Brezeanu Affiliation
    ; Marius Boiță Affiliation


The purpose of this paper is to make a quantitative and qualitative critical analyse regarding the three important aspects of stock market evolution. First, the forecasting problems are presented and analyse in order to establish the main problems and the potential solutions. Second, the valuation problems are tackled in order to observe different trends and directions of solving these issues. Third, the portfolio return forecasts are mandatory in order to establish the results of the titles/market evolutions. The methods used in our research reveal the importance of adopting some important econometric tools in order to test the robustness of different main theories of the stock market and some important practices used among investors. The scope of the research was to give a quid pro quo in order to confer potential solutions regarding problems, paradoxes and efficient information of the stock market. The empirical results reveal that besides the critical side of the theories this paper sets a basis for a new eclectic approach regarding the probabilities that a title achieves certain values within a reasonable time frame. The main conclusion of this article suggests’ that the current theories register some gaps regarding the adherence into stock markets’ realities.

First published online 16 December 2019

Keyword : stock markets, market forecast, business valuation, modern portfolio theory, technical analysis, betting

How to Cite
Turcaș, F., Dumiter, F. , C., Brezeanu, P., & Boiță, M. (2020). Forecasting, valuation and portfolio returns of stock market evolution: problems, paradoxes and efficient information. Worldwide implications and Romanian evidence. Journal of Business Economics and Management, 21(1), 87-114.
Published in Issue
Jan 14, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Aladesanmi, O., Metcalf, H., & Casalin, F. (2018). Stock market integration between UK and US: An empirical analysis on 8-decade long – data. Global Finance Journal, 41(C), 32-43.

Alțăr, M. (2002). Teoria portofoliului. București: Academia de Studii Economice.

Anderson, P., Blackshaw, I., Siekmann, R., & Janwillem S. (2012). Sports betting: Law and policy. Berlin Heidelberg: Springer-Verlag Asser Press.

ANEVAR. (2018). Standardele de evaluare a bunurilor.

Anghel, A., Dumitrescu, D., & Tudor, C. (2015). Modeling portfolio returns on Bucharest Stock Exchange using the Fama-Frech multifactor model. Romanian Journal of Economic Forecasting, XVIII(1), 22-46. Retrieved from

Anghel, D. G. (2017). Intraday market efficiency for a typical Central and Eastern European stock market. Romanian Journal of Economic Forecasting, XX(3), 88-109. Retrieved from

Arneric, J., & Scrabic-Peric, B. (2018). Panel Garch model with cross-sectional dependence between CEE emerging markets in trading day effects analysis. Romanian Journal of Economic Forecasting, XXI(4), 71-84. Retrieved from

Azevedo, J. M., Almeida, R. M. P., & Almeida, D. P. (2012). Using data mining with time series in short – term stock prediction: A literature review. International Journal of Intelligence Sciences, 2(4A), 176-180.

Baker, H. K., & Filbeck, G. (2013). Portfolio theory and management. Oxford University Press.

Bako, E. D., & Sechel, I. C. (2013). Technical and fundamental anomalies. Paradoxes of stock exchange markets. Annals of Faculty of Economic, University of Oradea, 1(1), 37-43. Retrieved from

Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. NBER Working Paper No. 24.001, 1-44. Retrieved from

Betfair. (2019). Retrieved from

Bucharest Stock Exchange. (2019). Retrieved from

Cartwright, E. (2018). Behavioral economics. London: Routledge.

Chen, J. (2010). Essentials of technical analysis for financial markets. John Wiley & Sons, Inc.

Damian, V., & Cepoi, C. O. (2016). Volatility estimators with high-frequency data from Bucharest Stock Exchange. Economic Computation and Cybernetics Studies and Research, 50(3), 247-264. Retrieved from,%20Cosmin%20%20Cepoi%20(T).pdf

Degutis, A., & Novickyte, L. (2014). The efficient market hypothesis: A critical review of literature and methodology. Economika, 93(2), 7- 23.

Demirer, R., Pierdzioch, C., & Zhang, H. (2017). On short – term predictability on stock returns: A quantile boosting approach. Finance Research Letters, 22, 35-41.

De Prado, M. L. (2018). Advances in financial machine learning. New York: John Wiley & Sons, Inc.

Elton, E., Gruber, M., Brown, S., & Goetzmann, W. (2014). Modern portfolio theory and investment analysis (9th ed.). New York: John Wiley & Sons, Inc.

Fahling, E., Steurer, E., Schadler, T., & Voltz, A. (2018). Next level in risk management? Hedging and trading strategies of volatility derivatives using VIX futures. Journal of Financial Risk Management, 7, 442-459.

Francis, J. C., & Kim, D. (2013). Modern portfolio theory. Foundations, analysis, and new developments. John Wiley & Sons, Inc., Hoboken, New Jersey.

Franco, C., & Zakoian, J. M. (2010). GARCH models: structure, statistical inference, and financial applications. New York: John Wiley & Sons Ltd.

Fong, W. M. (2014). The lottery mindset: Investors, gambling and the stock market. New York: Palgrave Macmillan.

Fulga, C. (2017). Integrated decision support system for portfolio selection with enhanced behavioral content. Economic Computation and Cybernetics Studies and Research, 51(3), 127-142. Retrieved from

Gao, L., Han, Y., Zhengzi Li, S., & Zhou, G. (2018). Market intraday momentum. Journal of Financial Economics, 129(2), 394-414.

Georgescu, V. (2016). Using nature-inspired metaheuristics to train predictive machines. Economic Computation and Cybernetics Studies and Research, 50(2), 5-24. Retrieved from

Hull, J. (2018). Options, futures, and other derivatives (10th ed.). New York: Pearson Education.

ifbf Finwest. (2019). Retrieved from (2019). Retrieved from

International Valuation Standards Council. (2017). International Valuation Standards.

Jeffrey, R. (2004). Subjective probability. The real thing. Cambridge: Cambridge University Press.

Javadi, F., Ftiti, Z., & Hdia, M. (2017). Assessing efficiency and investment opportunities in commodities: A time series and portfolio simulations approach. Economic Modeling, 64, 567-588.

Joldes, C. C. (2019). Modeling the volatility of the Bucharest Stock Exchange using the GARCH models. Economic Computation and Cybernetics Studies and Research, 53(1), 281-298. Retrieved from

Jerald, E. P., Robinson, T. R., Pinto J. E., & McLeavey, D. W. (2010). Equity asset valuation (2nd ed.). New Jersey: CFA Institute.

Karlis, D., & Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models. The Statistician, 53(3), 381-393.

Lim, M. A. (2016). The handbook of technical analysis. Singapore: John Wiley & Sons Singapore Pte. Ltd.

Litov, L., Moreton, P., & Zenger, T. R. (2012). Corporate strategy, analist coverage and the uniqueness paradox. Management Sciences, 58(10), 1797-1815.

Longarela, I. R., & Mayoral, S. (2015). Quote inefficiency in options markets. Journal of Banking and Finance, 55(C), 23-36.

Lungu, I., Bâra, A., Cărutașu, G., Pîrjan, A., & Oprea, S. V. (2016). Prediction intelligent system in the field of renewable energies through neural networks. Economic Computation and Cybernetics Studies and Research, 50(1), 85-102. Retrieved from,%20final%20(T).pdf

Lupu, I. (2015). European stock markets correlations in a Markov switching framework. Romanian Journal of Economic Forecasting, XVIII(3), 103-119. Retrieved from

Lupu, I., Hurduzu, G., & Nicolae, M. (2016). Connections between sentiment indices and reduced volatilities of sustainability stock market indices. Economic Computation and Cybernetics Studies and Research, 50(1), 157-174. Retrieved from

Mago, T., Wang, X., & Modave, F. (2010). Application of fuzzy measures and interval computation to financial portfolio selection. International Journal of Intelligent Systems, 25, 621-635. Wiley Periodicals, Inc.

Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.

Marcu, N., Dobrotă, C. E., & Antoneac (Calin), R. (2017). An investigation of the day-of-the-week effect in conditional variance at the Bucharest Stock Exchange. Romanian Journal of Economic Forecasting, XX(2), 124-134. Retrieved from

Murphy, J. (1999). Technical analysis of the financial markets. New York: New York Institute of Finance. (2017–2018). Retrieved from

Pati, P. C., Barai, P., & Rajib, P. (2018). Forecasting stock market volatility and information content on implied volatility index. Applied Economics, 50(23), 2552-2568.

Pesavento, L., & Smoleny, S. (2015). A trader’s guide to financial astrology. Forecasting market cycles using planetary and lunar movements. New Jersey: John Wiley & Sons, Inc., Hoboken.

Pratt, S., & Grabowski, R. (2010). Cost of capital: application and examples (4th ed.). New York: John Wiley & Sons, Inc.

Pyun, S. (2019). Variance risk in aggregate stock returns and time-varying return predictability. Journal of Financial Economics, 132(1), 150-174.

Richard, J. F. (2005). Bourse: Ce qu’anticipent les astre jusqu’en 2010. Astrologie. Paris: Éditions du rocher.

Ruxanda, G., & Opincaru, S. (2018). Bayesian neural networks with dependent Dirichlet process priors. Application to pairs trading, Economic Computation and Cybernetics Studies and Research, 52(4), 5-18. Retrieved from,%20Sorin%20Opincariu.pdf

Sappideen, R. (2009). The paradox of securities markets efficiency: Where to next? Singapore Journal of Legal Studies, Special Issue, 1(1), 80-108. Retrieved from

Saman, C. (2015). Asymmetric interaction between stock price index and exchange rates: Empirical evidence for Romania. Romanian Journal of Economic Forecasting, XVIII(4), 90-109. Retrieved from

Schmidlin, N. (2014). The art of company valuation and financial statement analysis. New York: Verlag Franz Vahlen GmbH (John Wiley & Sons Ltd.).

Schulmerich, M., Leporcher, Y. M., & Eu, C. H. (2015). Applied asset and risk management. A guide to modern portfolio management and behavior-driven markets. Berlin Heidelberg: Springer-Verlag.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk*. The Journal of Finance, XIX(3), 425-442.

Shim, H., Kim, H., Kim, J., & Ryu, D. (2015). Weather and stock market volatility: the case of a leading emerging market. Applied Economics Letters, 22(12), 987-992.

Singht, V., Roca, E., & Li, B. (2018). Cointegration networks in stock markets. Applied Economics Letters, 25(10), 663-667.

Smales, L. A. (2017). The importance of fear: investor sentiment and stock market returns. Applied Economics, 49(34), 3395-3421.

Stadnik, B., Raudeliuniene, J., & Davidaviciene, V. (2016). Fourier analyzing for stock price forecasting: Assumption and evidence. Journal of Business Economics & Management, 17(3), 365-380.

Stooq. (2019). Retrieved from^dji

Symitsi, E., Symeonidis, L., Kourtis, A., & Markellos, R. (2018). Covariance forecasting in equity markets. Journal of Banking & Finance, 96, 153-168.

Sortino, A., & Price, L. (1994). Performance measurement in a downside risk framework. The Journal of Investing, III(3), 59-64.

Sortino, F. A., & Satchell, S. E. (2001). Managing downside risk in financial markets: Theory, practice and implementation. Reed Educational and Professional Publishing Ltd.

Taleb, N. N. (2017). The black swan: The impact of the highly improbable. New York: Random House.

Tsinaslanidis, P. E., & Zapranis, A. D. (2016). Technical analysis for algorithmic pattern recognition. Bern: Springer International Publishing Switzerland.

Thomsett, M. (2017). The mathematics of options. New York: Palgrave Macmillan.

Turcaș, F., Dumiter, F., Braica, A., Brezeanu, P., & Opreț, A. (2016). Using technical analysis for portfolio selection and post-investment analysis. Economic Computation and Cybernetics Studies and Research, 50(1), 197-214. Retrieved from,%20Demeter%20(T).pdf

Turcaș, F., Dumiter, F., Brezeanu, P., Fărcaș, P., & Coroiu, S. (2017). Practical aspects of portfolio selection and optimization on capital market. Economic Research-Ekonomska Istraživanja, 30(1), 14-30.

Turcaș, F., Dumiter, F., Braica, A., Brezeanu, P., & Neagu, O. (2018). Arbitrage on Romanian stock market. Economic Computation and Cybernetics Studies and Research, 52(1), 43-58. Retrieved from,%20P.%20%20Brezeanu%20(T).pdf

Turcaș, F. (2008). Strategia X și 0. AATROM.

UNIBET. (2019). Retrieved from

Zhang, H. (2018). The forecasting model of stock price based on PCA and BP neural network. Journal of Financial Risk Management, 7, 369-385.

Zhang, Y., Zeng, Q., MA., F., & Shi, B. (2019). Forecasting stock returns: Do less powerful predictors help? Economic Modeling, 78, 32-39.

Zivkov, D., Njegic, J., & Milenkovic, I. (2018). Interrelationship between DAX Index and Four Largest Eastern European Stock Markets. Journal for Economic Forecasting, Institute for Economic Forecasting, 0(3), 88-103.