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Abstract. Safety risk evaluations of deep foundation construction schemes are important to ensure safety. However, the 
amount of knowledge on these evaluations is large, and the historical data of deep foundation engineering is imbalanced. 
Some adverse factors influence the quality and efficiency of evaluations using traditional manual evaluation tools. Machine 
learning guarantees the quality of imbalanced data classifications. In this study, three strategies are proposed to improve 
the classification accuracy of imbalanced data sets. First, data set information redundancy is reduced using a binary parti-
cle swarm optimization algorithm. Then, a classification algorithm is modified using an Adaboost-enhanced support vec-
tor machine classifier. Finally, a new classification evaluation standard, namely, the area under the ROC curve, is adopted 
to ensure the classifier to be impartial to the minority. A transverse comparison experiment using multiple classification 
algorithms shows that the proposed integrated classification algorithm can overcome difficulties associated with correctly 
classifying minority samples in imbalanced data sets. The algorithm can also improve construction safety management 
evaluations, relieve the pressure from the lack of experienced experts accompanying rapid infrastructure construction, and 
facilitate knowledge reuse in the field of architecture, engineering, and construction.

Keywords: safety risk evaluation, construction scheme, deep foundation, imbalanced data set, ensemble learning algo-
rithm, machine learning.

Introduction 

Even though safety accidents are rare, deep foundation 
construction safety risks are generally high (Eskesen et al., 
2004). Deep foundation construction schemes include all 
key information about construction, such as construction 
methods, schedules, and safeguard measures. As such, 
most construction safety technology risks can be identi-
fied and evaluated at the construction scheme stage. Safety 
risk evaluation systems of deep foundation construction 
schemes are therefore decided on the basis of construction 
schemes before construction starts to allow for a detailed 
evaluation of safety management issues that can arise dur-
ing subsequent construction, optimize the allocation of re-
lated resources, and improve safety management quality 
and efficiency (Zhou & Zhang, 2011).

Safety risk reports of deep foundation construction 
scheme usually involve the establishment of an expert 
committee. Committee members study construction 
schemes and then offer their opinions on safety risk re-
views on the basis of their own experiences. Safety review 

reports, which list safety risks that can occur, associated 
risk levels, and corresponding countermeasures, are then 
produced on the basis of collective decisions.

An analysis on major deep foundation construction 
safety accidents revealed that a common cause of acci-
dents is an unreasonable construction design passed by 
safety risk evaluation committees (Ding et al., 2012). In 
the field of architecture, engineering, and construction 
(AEC), works, such as scheme evaluations, are based on 
related knowledge, which is enormous and barely grasped 
entirely by human brains (Zhong et al., 2012). Explicit and 
tacit knowledge are usually used in scheme evaluations. 
Code compliance checking primarily depends on explicit 
knowledge, whereas risk evaluations mainly depend on 
tacit knowledge. Finishing these works manually is time 
consuming because of the need for enormous knowledge 
and the influence of some other uncertain factors, such as 
the lack of experienced experts, the physical and mental 
state of the experts, the working arrangements, and work 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/jcem.2020.12321
https://orcid.org/0000-0003-4478-1745
https://orcid.org/0000-0001-8166-4770
https://orcid.org/0000-0001-9075-6511


Journal of Civil Engineering and Management, 2020, 26(4): 380–395 381

attitudes, on the quality (e.g. Tan et al., 2010; Zhong et al., 
2012, 2018; Luo & Gong, 2015). Computer-assisted code 
compliance checking has been researched and used in 
practice for many years to improve the quality and effi-
ciency of the work (e.g. Yang & Xu, 2004; Tan et al., 2010; 
Zhong et  al., 2012; Preidel & Borrmann, 2015; Zhong 
et al., 2018). Many researchers have focused on comput-
er-assisted construction risk identification and evaluation 
(e.g. Ding et al., 2012; Zhou et al., 2013; Wang & Chen, 
2017; Liu et  al., 2018). As mentioned earlier, safety risk 
evaluation mainly depends on tacit knowledge, which is as 
enormous as explicit knowledge and is difficult to express 
using computers. Experienced experts accompanying the 
rapid development of infrastructure construction are also 
lacking. Thus, theoretical models that express tacit knowl-
edge by using computers and that can improve the quality 
and efficiency of the safety risk evaluation of deep founda-
tion construction schemes and facilitate knowledge reuse 
in the AEC field should be developed.

Safety risk evaluations of deep foundation schemes 
require a large amount of information. If a safety risk is 
associated with m individual risk factors, then the ith risk 
factor has a ni possible value; therefore, that safety risk 
corresponds to 

m
ii

n
1=∏  combination of individual risk 

factors, with each combination of risk factors representing 
a possible working condition. If all risk factors and safety 
risk values are scientifically reasonable, then all combina-
tions of the 

m
ii

n
1=∏  risk factors include all the safety risk 

review rules. Therefore, if a safety risk is associated with 
six risk factors and each risk factor has at least 2–5 pos-
sible values (discrete values), then the combination of risk 
factor values for that safety risk can easily exceed 1000. 
Therefore, knowledge on the safety risk evaluation include 
thousands of review rules. 

The three major engineering deep excavation meth-
ods are open cut, cut and cover, and undercutting. Each 
method has many associated construction safety risks, 
and knowledge on safe risk evaluations of deep founda-
tion construction schemes is enormous. Therefore, human 
experts cannot consider all information. Furthermore, 
human experts have different knowledge backgrounds 
and work experiences. As such, they have different and 
sometimes contradicting views on the same safety risks. 
Manual reviews are also affected by uncertain factors, such 
as the physical and mental state of human experts, work-
ing arrangements, and work attitudes. All these factors 
can significantly affect the evaluation quality. Given these 
problems, current safety risk evaluations of deep founda-
tion construction schemes are generally incomplete. This 
condition compromises the construction safety manage-
ment.

Given these difficulties regarding the quality and ac-
curacy of safety risk evaluations of deep foundation con-
struction schemes, significant research on improvement 
methods is available on the theoretical level.

Safety risk evaluations based on design documents 
have always been an important part of construction safety 

management. Seo and Choi (2008) studied the factors re-
lated to safety risks in underground engineering design 
documents and proposed a safety risk evaluation method 
based on design documents. Ding et al. (2012) proposed 
a method to identify metro construction safety risks auto-
matically on the basis of engineering drawings and devel-
oped a metro construction safety risk identification system 
based on engineering drawings. Cao (2014) proposed a 
safety risk evaluation method for the design phase and 
verified the significant role of safety risk evaluations at the 
design stage for the risk control of two bridge construc-
tion projects.

Some risk evaluation methods, such as analytic hier-
archy process (AHP), fuzzy sets, Bayesian networks, and 
fault tree analysis, have achieved good results. Sun et al. 
(2008) used the Delphi method to identify the safety risks 
in the construction of Olympic venues and established an 
AHP model to complete the risk evaluation. Zhou and 
Zhang (2011) improved a Bayesian network using a fault 
tree method and established an engineering technology 
risk deep foundation evaluation model with a fuzzy com-
prehensive method for evaluating multiple risks. Gao et al. 
(2013) used a fuzzy comprehensive evaluation method to 
conduct safety risk evaluations of construction worker 
behavior, from which a preliminary construction safety 
management system study was conducted. Pinto (2014) 
developed a safety risk evaluation model based on fuzzy 
sets to evaluate the risks of personal injuries. Zheng and 
Ma (2014) used a fuzzy AHP to conduct a comprehensive 
evaluation of construction safety risks associated with the 
Changchun Metro Line 1. Zhang and Ma (2014) integrat-
ed a fuzzy AHP and CIM model to evaluate the safety 
risks of the Xi’an Metro Line 4 construction. Park et al. 
(2015) collected data on safety accidents from the past 10 
years, studied accident causes, and established an index 
system set to evaluate the safety risks for each construc-
tion process. This study achieved good results in practi-
cal project application. Sansakorn and An (2015) used 
fuzzy inference techniques to evaluate the safety risks of 
construction projects. Al-Anbari et  al. (2015) analyzed 
the safety risks of an Oman construction project by con-
sulting 40 experts in the field to identify the influencing 
factors, namely, 11 safety risks and 8 health risks. These 
factors were then evaluated using traditional risk analysis 
methods and health and safety risk analysis methods. The 
results proved that the latter gave more accurate and reli-
able evaluation results than the former. Wang et al. (2016) 
used a Bayesian belief network to conduct an evaluation 
of tunnel construction risks. Patel and Jha (2017) estab-
lished a construction safety risk evaluation index system 
and evaluated construction project safety by using a fuzzy 
AHP. Liu et  al. (2018) proposed a systematic method 
by integrating exploratory factor analysis and structural 
equation modeling. Zhang et al. (2019) proposed a real-
time safety risk identification model to ensure the metro 
construction site safety of the metro. 

Although the above-mentioned studies have achieved 
good results, none of these studies have scientifically man-
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aged or maximized knowledge on safety risk evaluations 
of previous deep foundation construction schemes suc-
cessfully. Most of these studies have used index systems 
or deep foundation construction evaluation safety risk 
models and have assessed these systems and models us-
ing comprehensive evaluation algorithms. However, sev-
eral problems are observed with these evaluation mod-
els. First, these models have poor flexibility; specifically, 
once an evaluation index system is determined, updating 
it with new evaluation requirements is difficult, and the 
cost of such changes is high. Second, some models require 
experts for each evaluation. This precondition not only 
brings difficulty in overcoming the subjective factors but 
also increases the complexity in evaluation implementa-
tion. The evaluation becomes onerous because of the mul-
tiple evaluations needed for the safety risks of different 
projects or the different stages in these projects. Third, the 
accumulated knowledge from evaluations is ineffectively 
managed and cannot be reused.

Therefore, machine learning is a feasible method to 
complete safety reviews and resolve the aforementioned 
problems because it can manage massive safety risk knowl-
edge. Machine learning can scientifically manage the large 
amount of valuable historical data and can compensate 
for the theoretical flaws in traditional safety risk evalu-
ation methods. The developments in construction tech-
nology have introduced new engineering methods, which 
in turn present new safety risks. First, machine learning 
can quickly grasp and manage all related information. As 
such, the complete safety risk evaluation knowledge is 
considered when machine learning is applied to safety risk 
evaluations. Second, machine learning is unaffected by 
uncertain factors; the evaluation quality can be guaranteed 
as long as safety risk knowledge is included completely. 
Third, machine learning is efficient because it needs less 
time and constant reviews. In general, machine learning 
not only can compensate for the theoretical defects in cur-
rent safety risk evaluation methods but also can overcome 
the practical difficulties of artificial evaluations.

Some studies have been conducted on using computers 
to manage knowledge on safety risks of deep foundation 
construction schemes. For example, Zhong and Li (2015) 
developed an ontology model to integrate construction 
knowledge and risk for deep foundation construction. 
Using a semantic reasoning method, the construction 
process safety risk knowledge was acquired quickly, and 
deep foundation construction safety risks were efficiently 
identified. This study provided a good basis for risk evalu-
ations. Zhang et  al. (2017) established a technical regu-
lation case base for deep foundation construction using 
a weighted k-nearest neighbor (KNN) algorithm, which 
was found to improve the safety risk evaluation quality 
substantially.

However, although these studies have effectively estab-
lished knowledge bases on safe risks of deep foundation 
construction, the problems associated with combining 
specific evaluation algorithms and complete actual evalua-
tions and directly using knowledge bases for the safety risk 

evaluations of specific projects have still not been resolved. 
Therefore, the current study aims to make existing knowl-
edge bases effective for practical applications. To this end, 
machine learning algorithms based on existing canonical 
data sets (imbalanced data sets) are developed to achieve 
high-quality automatic safety risk evaluations. High-risk 
construction incidents rarely occur. Thus, knowledge data 
sets on the safety risk evaluation of deep foundation con-
struction schemes are typically imbalanced. As a result, 
ensuring machine learning accuracy is difficult. Ensemble-
based classifiers, also named multiple classifier systems 
(Krawczyk & Schaefer, 2013), improve the performance 
of a single classifier by combining several base classifi-
ers that outperform every independent one (López et al., 
2013). Tao et  al. (2019a) proposed a novel self-adaptive 
cost weight-based support vector machine (SVM) cost-
sensitive ensemble for imbalanced data classification. This 
method has better generalization performance in terms of 
G-Mean and F-Measure than other existing imbalanced 
data set classification techniques. Tao et al. (2019b) pro-
posed a new over-sampling technique that uses the real-
value negative selection procedure to generate artificial 
minority data with no requirement of actual minority 
data available. The proposed hybrid approach can achieve 
better performance in terms of G-Mean and F-Measure 
evaluation metrics than other existing imbalanced data 
set classification techniques. Classifier ensembles have be-
come a popular solution method for class imbalance prob-
lems. These ensembles overcome the difficulties inherent 
in traditional evaluation methods and improve the quality 
and efficiency of safety risk reviews of deep foundation 
construction schemes.

The remainder of the paper is organized as follows. 
In Section 1, knowledge on deep foundation construction 
safety reviews is sourced and standardized, and a corre-
sponding information system is established. In Section 
2, the integrated classification algorithm for imbalanced 
data sets is introduced. In Section 3, a specific risk is used 
to compare the proposed algorithm with other popular 
algorithms for verifying the effectiveness of the proposed 
algorithm.

1. Knowledge on safety risk evaluation of deep 
foundation construction schemes

Previous deep foundation construction projects have re-
sulted in a large amount of valuable safety risk manage-
ment information. If computer science is used to manage 
this safety risk knowledge, then the quality and efficiency 
of deep foundation construction safety reviews can be sig-
nificantly improved.

1.1. Expression and source for the knowledge 
on safety risk evaluation of deep foundation 
construction schemes

The knowledge expressions of safety risk evaluation 
should be first standardized to enable their learning by 
using computers. The knowledge on safety risk evalua-
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tion of deep foundation construction schemes can be ex-
pressed as a series of IF–THEN rules; in other words, for 
any specific safety risk, the evaluation knowledge can be 
expressed as “if the… condition occurs, then the risk oc-
currence level is …”. Therefore, in theory, the safety risk 
evaluation knowledge can be expressed as an information 
system.

In the information system equation, ( )S U C D V f, , ,= ∪  , ( )nU x x x1 2, ,=   is a domain space, C is a conditional at-
tribute set, D is a decision attribute set, and a

a C D

V V
∈ ∪

=


, 

where Va is the value range for attribute a and f U A V: × →  
is an information function; if x U a C D,∀ ∈ ∈ ∪ , then 
( ) af x a V, ∈ .

Previous daily management of deep foundation engi-
neering constructions has resulted in a massive amount 
of construction management information, with the safety 
risk review knowledge embedded deep in the original in-
formation. The original information includes all kinds of 
extraneous daily construction management information, 
such as construction diaries, supervision diaries, monthly 
supervision reports, safety patrol records, safety situation 
analysis, regular meetings, and meeting minutes as well 
as related technical data, such as the Case Compilation of 
Safety Accidents in Deep Foundation Construction (here-
inafter referred to as the Compilation of Cases, which is 
compiled from past safety accidents and lessons learned).

Many construction and supervision diaries have no 
precise information about construction progress and man-
agement methods. Therefore, the original information is 
insufficient to build the safety risk evaluation knowledge, 
and the information needs to be obtained by other ways. 
Some full-time engineers must be sent to construction 
sites to record information, such as construction prog-
ress and safety management information, in detail in ac-
cordance with the consult contract. In this manner, the 
precise information of safety risk information can be ob-
tained. For instance, in accordance with the construction 
progress, engineers can record different values of the ratio 
of penetration depth to excavation depth and other key 
safety risk factors and different safety management infor-
mation that can infer safety risk occurrence probability 
levels (Table 9). The main information that engineers re-
cord in the construction sites is usually transferred into 
two forms. The day-to-day recorded information is im-
ported into the early warning construction safety system, 
and the high-risk event information and accident infor-
mation is gathered into the Case Compilation of Safety 
Accidents in Deep Foundation Construction.

The following is a brief description of the process re-
quired to identify the safety risk factors from the daily 
construction data Safety Patrol Records and the Compila-
tion of Cases.

1.1.1. Obtained from safety situation analysis
In the early warning construction safety system (an in-
formation system that works as a safety management 
platform for all the units involved in the deep foundation 

construction project), safety management engineers and 
experts use their knowledge and experience to analyze and 
evaluate site safety management and make suggestions on 
the basis of the actual construction and the construction 
schemes. Then, they submit the safety situation analysis 
(compiled from the evaluation result and suggestions) on 
the system daily. Therefore, the safety situation analysis 
in the construction safety early warning system is specific 
to the risk evaluation knowledge of the safety engineers 
and experts. However, in general, only professionals with 
relevant knowledge can read, understand, or use this 
knowledge. Therefore, given that the specific information 
needed by the machine learning is implied in the safety 
situation analyses, it needs to be manually processed be-
fore it can be used.

Safety engineers and experts gather to investigate an 
independent project. The hidden risks can be identified 
and the risk factors can be obtained by combining and 
analyzing the project construction scheme information 
from the detailed analyses of the daily safety situation over 
the entire construction process. The safety risk evaluation 
knowledge can be determined by integrating all projects 
in the construction safety early warning system. How-
ever, all this preliminary work needs to be completed by 
professionals because safety risk evaluation knowledge is 
difficult to extract from safety situation analysis texts ac-
curately. 

Figure 1 shows the logical extraction process of safety 
risk evaluation knowledge. The results of the extraction 
are expressed as a combination of safety risks and risk fac-
tors. Figure 2 shows a safety situation analysis obtained 
from the safety early warning system for a specific project 
on a certain day. From the construction scheme and proj-
ect safety situation analysis, the safety risk and its risk fac-
tors can be identified. The information in the first column 
in Table 1 is extracted from Figure 2. For example, the 
safety analysis on the first line in Table 1 requires that con-
struction units excavate the earth following the excava-
tion plan. On the basis of the professional knowledge and 
experience of the safety engineer, if the excavation plan 
is not strictly applied, then a risk of landslides exists in 
the foundation pit. The construction scheme information 
related to this risk is soil quality and excavation height.  

Figure 1. Diagram of logical extraction process of safety risk 
evaluation knowledge

Cause

Safety risk 
evaluation 
knowledge

Risk factors

Risk factors
Construciton

scheme 
information

Safety 
analysis

Associate Convert

Implication
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Therefore, the safety risk evaluation knowledge is extract-
ed following the safety situation analysis. In other words, 
the soil landslides in the foundation pit are related to two 
risk factors (construction scheme information), namely, 
the soil texture at the bottom of foundation ditch and the 
delamination excavation height. The combination of the 
two risk factors determines the risk evaluation results. The 
formal expression for the safety risk evaluation knowledge 
is shown in Table 6.

1.1.2. Obtained from the Compilation of Cases
For long deep foundation construction, builders make 
a detailed summary of high-risk events and safety acci-
dents that can occur during construction. They collate 

and summarize the process, cause, treatment, and experi-
ence of these events or accidents and then compile the 
Case Compilation of Safety Accidents in Deep foundation 
Construction. This book focuses on the clues associated 
with the safety risk factors. We can determine the infor-
mation associated with the hydrogeology, construction de-
sign, surrounding environment, and climate, analyze the 
risk events described in the case, summarize the accident 
causes, and identify the associated risk factors in each case 
depending on the general project situation.

For example, the Case Compilation of Safety analyzes 
in detail the risk of an excessive settlement of the sur-
rounding buildings during the deep foundation construc-
tion of a metro station and summarizes the main risks. 

Figure 2. Example of a safety situation analysis (source: Wuhan metro construction safety early warning system)

Recommendations for safety evaluation
According to the on-site safety risk inspection and monitoring data analysis, my project group gives the following suggestions:
1. At present, earthwork is being excavated; the construction unit is requested to carry out grading and excavation in strict accordance with the 

excavation plan, and the piles of dikes shall be cleared and transported promptly;
2. The excavations of slope protection on both sides for advice, timely supporting, and timely carry out precipitation work, ensure the water level 

in the excavation face, pay close attention to digging the soil under the stability, timely reporting of the monitoring unit monitoring data;
3. The construction unit should be urged to strengthen the inspections on the wall to the ground, especially the joints, and promptly handle any 

signs of seepage or leakage;
4. The construction unit should be asked to strengthen the monitoring of the water supply pipeline and the piers of light rail in the small mileage 

of the foundation pit;
5. The construction unit should be asked to pay attention to the stability inspection of the scaffolding to ensure the stability of the stiffness of the 

scaffold;
6. The construction unit is urged to strengthen the on-site temporary electricity, mechanical hoisting and other safety management;
7. Rain in the next few days, the construction unit should be asked to pay attention to the slope protection, drainage of water in the foundation pit 

in time, and pay attention to the construction measures of rainy days.

Table 1. Risk factors extracted form a safety situation analysis

Safety analysis Safety risk Project construction scheme 
information Risk factors

At present, the earthwork is being 
excavated, and the construction 
units are requested to be excavated 
in strict accordance with the layered 
subsections of the excavation plan

Soil landslide in 
foundation pit

Soil texture of foundation ditch 
and delamination height of 
excavation

Soil texture at the bottom of 
foundation ditch and layered height 
of earthwork excavation

The pit soil heap must be removed in 
a timely manner. Sloping soil should 
be retained on both sides of the 
excavation. Supports should be set up 
in time

Deformation 
of enclosure 
structure

The underground continuous 
wall is used as the surrounding 
support structure (e.g., wall 
thickness, depth, and depth 
ratio) using steel support

Surrounding load for the foundation 
pit, type of exterior-protected 
construction, depth ratio of the 
exterior-protected construction, 
rock entry for the exterior-protected 
construction, and support style

The construction unit should be urged 
to strengthen the inspections on the 
wall to the ground, especially the 
joints, and promptly handle any signs 
of seepage or leakage

Sand gushing 
and influx in 
the enclosure 
structure

The underground continuous 
wall is used as the surrounding 
support structure (e.g., wall 
thickness, depth, rock entry 
condition, and depth ratio)

Type of exterior-protected 
construction, rock entry condition 
of exterior-protected construction, 
depth ratio of exterior-protected 
construction, and groundwater

The construction unit should be asked 
to strengthen the monitoring of the 
water supply pipeline at the end of the 
small mileage of the foundation pit

Peripheral 
pipeline damage

Groundwater and surrounding 
pipeline situation

Groundwater situation, types of 
pipeline, pipeline material, and 
distance between pipeline and 
foundation pit

The construction unit should be asked 
to strengthen the monitoring of the 
pier of the light rail at the end of the 
foundation pit.

Destruction of 
surrounding 
buildings

Bridge pier foundation of 
light rail (e.g., type, embedded 
depth, rock entry, and distance 
from foundation pit)

Type of foundation, embedded 
depth of foundations, rock entry 
of foundations, and distance from 
foundation pit
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The direct cause for any excessive settlement of the sur-
rounding buildings is the settlement of the surrounding 
surfaces. As such, the risk factors associated with the 
surface subsidence risk directly in the text describing the 
cause of the risk can be generalized. The descriptions of 
the risk causes are listed in the Case Compilation of Safety, 
with the added risk factors behind the risk factor clues 
being given in the parentheses:

 – Stratum consolidation settlement (soil settlement 
caused by artificial dewatering of the foundation 
pit). The underground continuous wall of the station 
has not entered the rock (the rock entry condition of 
the enclosure structure), and underground confined 
water is not cut off (condition of groundwater). De-
watering in the foundation pit and groundwater level 
inside and outside the foundation pit is decreased at 
the same time. This condition leads to an increase in 
pumping time and quantities. In addition, a certain 
water-head exists between the inside and outside of 
the foundation pit (water head inside and outside the 
foundation pit). This condition causes soil destruc-
tion, especially of the fine sand layer (soil texture of 
foundation ditch) under the water flow action field. 
Dewatering causes water loss and soil erosion under 
the building foundation, a decrease in the soil water 
content around the building, an increase in the effec-
tive stress between the soil particles, and a downward 
movement of the soil mass. These phenomena cause 
buildings to sink.

 – Time-space effect (exposure of the foundation pit for 
a long period). A long time is needed for the founda-
tion pit excavation due to the influence of dewatering 
time. This condition causes a deformation in the con-
tinuous concrete wall (deformation of exterior-pro-
tected foundation pit construction) and an increased 
settlement of the surrounding soil.

 – Settlement of surrounding soil caused by the defor-
mation of in the continuous concrete wall (deforma-
tion of exterior-protected construction of the foun-
dation pit). The shape of the station foundation pit 
is irregular, and the steel supports (support type and 
erection situation) are not set in time. This situation 
results in a deformation in the continuous concrete 
wall to the inside of the foundation pit because of the 
soil and water actions. In other words, the soil sur-
rounding the foundation pit settles. This settlement 
eventually leads to further building settlement.

By analyzing the above-mentioned reasons, the main 
risk factors for the risk of surrounding ground surface 
subsidence are obtained and shown in Table 2.

The safety risk evaluation result (decision attribute set 
D) is obtained from the relevant construction norms and 
the relevant daily construction management measures.

The risk level is determined depending on the prob-
ability of risk occurrence and the associated risk losses. 
The method for determining the risk level is stipulated in 
the Code for Risk Management of Underground Works in 
Urban Rail Transit (GB50652-2011). The evaluation of the 
risk level in this specification is shown in Table 3.

The risk occurrence probability is divided into five 
evaluation grades: frequent, possible, occasional, rare, 
and impossible. The risk level is then determined from 
the possibility of the risk occurrence and the extent of 
the possible losses. Different principles and measures are 
available to cope with the risks depending on the risk 
evaluation level, as shown in Table 4.

In safety risk evaluation knowledge information sys-
tems, the class label is the risk possibility level (decision 
attribute set D). However, the definitions for the risk pos-
sibility grade are inoperable because the risk probability 
cannot be measured accurately; however, it can be indi-
rectly determined using the daily construction manage-
ment data.

In practical situations, depending on the risk level, 
construction site managers apply different management 
measures, which are given in daily construction docu-
ments, such as construction or supervision diaries. These 
risk management measures can be used as a clue to in-
directly determine the probability levels for the various 

Table 2. List of risk factors obtained from the Compilation of 
Cases

Safety risk Risk factors
Surrounding 
ground surface 
settlement

Artificial precipitation
Foundation ditch soil texture
Rock entry condition of the enclosure 
structure
Groundwater
Water-head inside and outside the 
foundation pit
Deformation of envelop enclosure
Support type and erection situation

Table 3. Risk level determination table  
(source: Code for Risk Management of Underground Works in Urban Rail Transit (GB50652-2011))

Degree of possibility
Degree of damage

A: Calamitous B: Very serious C: Serious D: To be considered E: Negligible 
> 0.1 Frequent I I I II III
0.01–0.1 Possible I I II III III
0.001–0.01 Occasionally I II III III IV
0.0001–0.001 Rare II III III IV IV
< 0.001 Impossible III III IV IV IV
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risk occurrences indirectly. Referring to the provisions 
for the early warning level management measures in the 
Standard for Construction Safety Evaluation of Metro En-
gineering (GB50715-2011, 2011) that correspond to the 
five risk probability grades in Introduction of Code for 
Risk Management of Underground Works in Urban Rail 
Transit (GB50652-2011, 2011), the management measure 
characteristics that correspond to the probability grades 
for each risk can be defined, as shown in Table 5.

From the evaluation terms in Table 5, the risk prob-
ability grade at the time of each risk factor combination 
can be determined on the basis of actual past situations 
and the management measures taken at that time.

1.2. Characteristics of safety risk evaluation 
knowledge of deep foundation construction

By sorting and analyzing the deep foundation construc-
tion management data with a specific deep foundation 
construction safety risk as the object, rich safety risk eval-
uation knowledge can be extracted and expressed as an 
information system, as shown in Table 6.

A typical drawback in information systems, such as in 
Table 6, is the small sample size for the high-risk decision-
making attributes. High-risk construction incidents rarely 
occur, and safety accidents occur even less frequently. As 
such, the majority of recorded incidents is low-risk or 
general risk incidents (impossible, rare, or occasional). 
Therefore, the maximum data imbalance ratio is generally 

above 30 (maximum imbalance ratio = maximum sample 
number/least sample number). Therefore, the specific 
safety risk evaluation information system has significant 
data imbalance characteristics. However, the purpose of 
construction safety risk evaluations is to focus on the ac-
curacy of the high-risk grade evaluations with a small 
sample size.

Therefore, the information system of safety risk evalu-
ation knowledge of deep foundation construction is a 
typical imbalanced data set because the lack of high-risk 
samples creates difficulties in ensuring machine learning 
accuracy. Consequently, traditional classification algo-
rithms cannot guarantee classification accuracy. The rela-
tionships between imbalanced proportions and classifica-
tion performance have been previously studied; further-
more, although the relationships between the imbalanced 
proportion and the classification performance have not 

Table 4. Risk management principle table  
(source: Code for Risk Management of Underground Works in Urban Rail Transit (GB50652-2011))

Rank Acceptance 
criteria Principles of disposal Control scheme Response Department

I Unacceptable

Risk control measures must be taken 
to reduce risk, and the risk level must 
be reduced to acceptable or unwilling 
levels

Risk early warning and emergency 
treatment plan should be prepared, 
or the scheme should be revised and 
adjusted Government departments 

and the parties to the 
construction of the 
project

II Unwilling to 
accept

Risk management should be 
implemented to reduce the risk, and 
the cost required to reduce the risk 
should not be higher than the loss 
after the risk

Risk prevention and monitoring 
should be implemented, and the 
risk management measures to be 
supported should be specified

III Acceptable
Risk management should be 
implemented, and risk treatment 
measures should be taken

Daily management and monitoring 
should be strengthened All parties to the project 

construction 
IV Negligible Risk management can be implemented Routine examination and 

examination can be performed

Table 5. Risk occurrence probability level judgment standard

Rank Possibility Management measure characteristics
1 Frequent All units should reduce the possibility of common measures to handle the risk.

2 Possible Reinspection and improvement of the construction scheme, focus on the daily work, and close 
monitoring of all accident symptoms.

3 Occasional Field investigation is strengthened to focus on the risk.
4 Rare Not a major concern; management limited to routine general inspections.
5 Impossible Not listed in the risk list; little possibility of the occurrence and completely negligible.

Table 6. Information system of safety risk evaluation  
of deep foundation construction

CA1 CA 2 …… CA n DA
 caV 1

1 
 caV 2

1 ……  canV 1 Frequent
 caV 1

2 
 caV 2

1 ……  canV 3 Possible

…… …… …… …… ……

Note: CA is a conditional attribute, DA is a decision attribute, 
and caV 1

1  is the first attribute value for the conditional attribute 
CA 1.
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been accurately given, 1:35 or even 1:10 has been found 
to cause classifier failure in some cases (Weiss & Provost, 
2003). A typical KNN algorithm selects the K samples 
closest to the classification object and votes in accordance 
with the class labels on the K samples to decide on the 
category for the objects to be classified. Therefore, the clas-
sification results from the KNN algorithm are significantly 
biased toward the majority. The current study focuses on 
a machine learning method for safety risk evaluation of 
deep foundation construction schemes based on an imbal-
anced data set.

2. Risk evaluation based on improved ensemble 
classification algorithm

The essence of the theory for the evaluation of safety risks 
based on historical data is classification. For specific clas-
sifications, available mature classification methods include 
decision tree, Bayesian, artificial neural networks, KNN, 
and SVM. Unfortunately, these traditional classification 
methods show poor performance on imbalanced data sets 
(Li et al., 2016a).

However, the minority of imbalanced data sets has had 
significant focused research attention. For safety concerns, 
classification errors of minority often will pay high cost. 
The minority data in the deep foundation construction 
safety risk evaluation knowledge information system are 
related to high risk grades. As such, any classification er-
rors can cause significant safety management risks and 
profound consequences for the construction.

Fruitful research has been conducted on the classifica-
tion of imbalanced data sets. In general, three strategies 
have been used to improve the classification of imbalanced 
data sets (Li et al., 2016b). The first strategy requires that 
the data set condition attributes be decreased to reduce 
data redundancy and improve classification accuracy. 
The second strategy requires a transformation of the data 
set and the algorithm, for which a sampling method is 
used to transform the data sets and balance the number 
of samples to improve the data set (Chawla et al., 2002; 
C. Y. Lee & Z. J. Lee, 2012). Common methods for the 
algorithmic transformation are ensemble learning, cost-
sensitive learning (Chawla et al., 2003; Lesser et al., 2006), 
and one-class classifier (Zheng et al., 2006); among which, 
ensemble learning methods have been the most widely 
used. Typical integrated learning methods include the 
boosting algorithm (Schapire, 1990) and the bagging al-
gorithm (Breiman, 1996). Ensemble learning algorithms 
have been significantly improved on the basis of the two 
algorithms in recent years (Galar et al., 2012; Yang et al., 
2008). The third strategy is the adoption of a new classifi-
cation evaluation criterion to prevent the classifier being 
biased toward the majority.

Although the aforementioned strategies can improve 
the classification of the imbalanced data set, using a sin-
gle strategy effect has a relatively poor performance than 
combination strategy effect. Therefore, the present study 

attempts to integrate several strategies for proposing an 
integrated learning method based on the safety risk evalu-
ation knowledge of deep foundation construction imbal-
anced data set. This algorithm uses the feature selection 
in the first strategy to reduce the condition attributes of 
the data set. Thereafter, the second strategy based on an 
integrated AdaBoost and SVM algorithm is adopted to 
improve the classifications. Then, the third strategy is used 
to evaluate the effect of a classifier based on the classifier 
evaluation criteria tailored for multi classification objec-
tively. Finally, the complete integrated algorithm proposed 
in Section 2.4 is an integrated binary particle swarm op-
timization (BPSO), AdaBoost, and SVM algorithm. The 
evaluation index from the third strategy is then used to 
evaluate the effect of the integrated algorithm. 

2.1. Feature selection

Treating minority samples in imbalanced data sets as noise 
is easy. As such, the classification results are unsatisfactory. 
Therefore, feature selection is necessary before the formal 
evaluation to reduce the redundant features and noise in 
the data set and thus prevent the risk of the minority sam-
ples being regarded as noise for improving the classifica-
tion effect of minority groups (Chuang et al., 2008). 

As genetic algorithm (GA) is widely used in feature se-
lection, other methods are also used frequently because of 
their own advantages. Filter and wrapper feature selection 
methods are most regularly used in feature selection (Li 
et al., 2016b). BPSO is a wrapper feature selection method. 
Particle swarm optimization (PSO), which was devised by 
Kennedy and Eberhart (1995), is a widely used stochastic 
evolutionary algorithm for solving optimization problems. 
Unlike other evolutionary algorithms (e.g., GA and DE), 
PSO does not contain crossover and mutation operations. 
Thus, the complexity of the model is decreased.

PSO has been a common method for feature selection. 
In 1995, Kennedy and Eberhart proposed a swarm-based 
intelligent evolutionary algorithm PSO algorithm (Hassan 
et al., 2010), which can solve feature selection problem in 
a continuous real number space, on the basis of the be-
havioral characteristics of bird predation. However, given 
that many problems are associated with the binary discrete 
space in practice, Kennedy and Eberhart further proposed 
the BPSO algorithm in 1997 (Kennedy & Eberhart, 1997).

The idea is specified as follows. Each particle is re-
garded as an n-dimensional (n characteristic number) 01 
vector, with each character in the vector representing a 
feature. A value of “1” indicates that the feature is an im-
portant feature and should be selected, and a value of “0” 
indicates that a feature is not an important feature and 
should be abandoned. A number of 01 vectors are ran-
domly generated. The standard PSO algorithm is used for 
the iterative calculation to determine the optimal 01 vec-
tor. The result of the attribute selection is obtained. The fit-
ness value of the particle is AUCarea as the standard, which 
is further described in Section 2.4.
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2.2. AdaBoost+SVM classification algorithm 

2.2.1. AdaBoost series classifiers 

The Boosting algorithm uses a combined learning method 
to train a weak classifier to be a strong classifier (Khan 
et al., 2014). The most widely used algorithm of this type is 
the AdaBoost algorithm proposed by Schapire and Freund 
in 1996 (Sun et al., 2007). The basic idea of the AdaBoost 
algorithm is specified as follows. AdaBoost selects a weak 
classifier and sets the initial weight 1/m for each sample of 
the training set (m is the number of training set samples). 
Then, the classifier is used several times, and the sample 
weight is updated in accordance with the training result. 
The updating principle increases the weight of the samples 
that fail in the training to ensure that the classifier focuses 
on learning the failed samples for the subsequent classifi-
cation calculation. After the completion of each classifica-
tion computation, a classification prediction function is 
generated, and each prediction function is given a corre-
sponding weight depending on its classification accuracy. 
Notably, a high precision indicates a great weight. In this 
manner, a prediction function sequence can be obtained 
after a number of classification calculations. A weighted 
voting method is applied to the prediction function se-
quence to obtain the final prediction result, which is the 
classification calculation result. Therefore, the AdaBoost 
algorithm can transform a weak classifier into a strong 
classifier by multiple iterations.

The basic AdaBoost algorithm can only handle binary 
classification problems. On this basis, Schapire (1990) 

proposed a series of derivative algorithms in which the 
AdaBoost.M1 algorithm can handle multiple classification 
problems (Cao et al., 2013). The process for the AdaBoost.
M1 algorithm is shown in Table 7.

2.2.2. SVM
SVM was formally proposed in 1995 (Cortes & Vapnik, 
1995) and demonstrated superior text categorization per-
formance (Joachims, 1998). However, the support vector 
concept emerged as early as the 1960s. It provided a solid 
theoretical basis for SVM. SVM is an excellent small sam-
ple learning method with good classification performance 
because its core is maximizing the classification margin. 
The final SVM decision function is only determined by 
a few support vectors. The complexity of the calculation 
depends on the number of support vectors rather than the 
sample space dimensions. Thus, this method effectively 
avoids the curse of dimensionality. SVM has good robust-
ness because it determines the final result using only a few 
support vectors.

Nonetheless, the SVM calculation is complex be-
cause it has a high time complexity that reaches 
( )sv sv svO N N N D N N3 2+ × + × ×

 
(N: sample dimension; Nsv:  

number of support vectors) when calculating large sam-
ples. In addition, the basic SVM algorithm can only sup-
port binary classification problems.

However, given the data set sample space in this study 
is not large (only 432 samples in all), the calculation is 
not complicated. Although the data set in this study is a 
multi-classification problem, the SVM can be transformed 

Table 7. AdaBoost.M1 algorithm process (Weiss & Provost, 2003)

AdaBoost.M1

Input: Training set ( ) ( ) ( ){ }i m kD y y y1 1 2, , , ,= x x x , i m1,2, ,=  , iy Y∈ , { }kY C C C1 2, , ,=   as the classification label;
Base learning algorithm  ;
Number of iterations T.

Process: 
1. Initial weighting of samples.: ( )i m1 1/= .

2. for t T1,2, ,=   do

3.  ( )t th D,=   Training classifier ht from training set D based on distributed t , estimate the error of ht.

4.  ( ) ( )m
t t i t ii

i y h x
1=

 = ≠ ∑  ; Calculate the error for the classification results t .

5.  if t  > 0.5  then if t  > 0.5 then stop the iteration calculation.
6.  T t 1← −
7. continue
8. end if
9.  t

t
t1

b =
−



 Set the parameter bt.

10. for i m1,2, ,= 

11.  ( ) ( ) ( )i t iy h x
t t ti i

1
1

 − ≠ 
+ = b   Update the weight of the sample.

12. end for i
13. end for T

Output: Final classification results: ( ) ( )T
p t pty Y t

H x y h s
1

1arg max ln
=∈

    =  ≠       b  
∑
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into multi-classifier using one vs one (OVO) or one vs all 
(OVA) strategies (Fernández et al., 2013). This procedure 
increases the computing complexity. However, consider-
ing that the sample space of the data set is not large, the 
computing time is completely acceptable; therefore, this 
study chooses SVM as the base classifier for the integrated 
classification algorithm.

2.3. Evaluation index for the classification results

In ensemble learning, a certain classification evaluation 
standard must be used to control the calculation process. 
However, for imbalanced data sets, common evaluation 
indexes often cannot reflect the classifier performance of 
risk evaluation data sets in which low risk and general risk 
samples account for the majority. If all feature combina-
tions are judged as low or general risk by the classifier, 
even if the classification accuracy exceeds more than 90%, 
then no actual application value exists for the classifier.

The receiver operating characteristic (ROC) curve is 
a comprehensive classifier evaluation index (S. Zhang & 
H. X. Zhang, 2011). The ROC curve is based on the basic 
evaluation index for the machine learning–obfuscation 
matrix. The ROC curve takes FPR ( )( )FP TN FP/ +  as the 
transverse axis and TPR ( )( )TP TP FN/ +  as the vertical 
axis. By adjusting the classifier threshold, a set of (FPR, 
TPR) in the coordinate system can be derived, and these 
points can be connected to determine the ROC curve. The 
classifier threshold is the probability output of the clas-
sifier; a sample of the test set belongs to the probability 
of a certain category. In general, the area under the ROC 
curve (AUC) is used as the criterion to evaluate the clas-
sifier performance. Notably, a great AUC value indicates 
improved performance. However, basic ROC curves can 
only evaluate binary classification problems.

For a multi-classification problem, all data set cat-
egories can be combined into two groups ( cC2  groups) 
to obtain cC2  ROC curves and the same number of AUC 
values; this way draws all AUC values into a polar coor-
dinate system to evaluate the classifier performance from 
the graphic area of each AUC point (Everson & Fieldsend, 
2006).

For example, if a data set has three categories with the 
category labels 1, 2, and 3, then any combination of two 
categories can generate a ROC curve and derive an AUC 
value. Therefore, from the three categories, three values 
are derived, namely, “AUC1,2”, “AUC1,3”, and “AUC2,3”.

After the AUC value for any two categories is deter-
mined, a traditional practice is to find the average value 
for evaluating the performance of the classifier. However, 
if the two AUC values have an opposite difference and 
the amplitude is roughly equal, then the mean value is 
stable. This condition is not conducive to comparing the 
advantages and disadvantages of multiple classifiers. In 
other words, even if the two classifiers have quite differ-
ent specific classification performance, the average index 
is the same. Therefore, all AUC values are plotted in this 
study into polar coordinates. Thereafter, each AUC point 

is connected to form a closed area. Then, the classifier per-
formance is evaluated in accordance with the size of the 
area to avoid any shortcomings in the traditional methods. 
The area is named AUCarea. Figure 3 shows the location of 
the AUC points obtained for the polar coordinates from a 
data set that has three categories. The angle of each point 
is evenly allocated in accordance with the number of AUC 
points across 360°.

Equation (1) is used to calculate the area of each point. 
For convenience, the original AUCarea value is treated as 
normalized to restrict the value of the evaluation index 
to a [0,1] interval. If all ri in Eqn (1) are 1, then the AU-
Careamax is obtained. Accordingly, the normalized AUCarea 
value is obtained from AUCarea /AUCareamax (Eqn (2)). The 
normalized AUCarea values are used later in this article.

    ( )q
area i i qi

AUC r r r r
q

1
1 11

1 2sin
2

−
+=

 π   = × + ×    
   
∑ ,  (1)

where cq C2=  is the number of AUC points and C is the 
number of categories.
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AdaBoost and SVM are used as classifiers. The cor-
responding probability output matrix from the AdaBoost 
and the SVM is set to ensure that the probability of the 
test sample belongs to each category for obtaining the  
AUCarea value for the evaluation classification. As men-
tioned earlier, given the basic SVM can only handle a two-
classification problem, an OVO policy is used to enable 
the SVM to handle the multiple classification problem. 

Figure 3. AUC polar diagram for three categories
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We suppose that a data set has C classes. Using the 
OVO strategy, cC2  two-classification results. For a sam-
ple Si and a category Cj, sample Si belongs to class Cj 
with a probability of j cC C2/ 

 . Therefore, the SVM 
classification calculation can generate a probabilistic 
output matrix ( )score i jsvm ,  every time . Therefore, the 
probability of element matrix sample Si belonging to 
the Cj class is ( ) ij csvm score i j C C2_ , / =   . If the num-
ber of AdaBoost.M1 iterations is T, then t   is the clas-
sification SVM error rate when each iteration is calcu-
lated. ( )Ada score i j_ ,  corresponding to ( )score i jsvm ,
is preferred to the weighted ( )svm score i j_ ,  obtained 

T times. ( ) ( ) ( ) ( )T T
score t tt t

Ada i j svm score i j
1 1

, 1 / 1 _ ,
= =

 = − − × 
 ∑ ∑ 

 
( ) ( ) ( ) ( )T T

score t tt t
Ada i j svm score i j

1 1
, 1 / 1 _ ,

= =

 = − − × 
 ∑ ∑  . ( ) ( )T

t tt 1
1 / 1

=
− −∑   is the weight of the 

SVM classifier for the t iteration. After the output prob-
ability of all the samples in each category is obtained, the 
ROC curve and the AUC value for any two categories are 
obtained. After all the cC2  AUC values are obtained, the 
standard AUCarea value can be determined using Eqn (2).

2.4. Improved ensemble classification algorithm  
for the BPSO+AdaBoost+SVM

The BPSO+AdaBoost+SVM ensemble learning algorithm 
uses the BPSO to extract the features and selects a subset 
of samples for the AdaBoost+SVM, after which they are 
classified and calculated. After the classification results are 
obtained, the AUCarea values are calculated as the fitness. 
The specific process for the entire algorithm is shown in 
Table 8.

Table 8. BPSO+AdaBoost+SVM algorithmic process

Integrated classification algorithm BPSO+AdaBoost+SVM

Input: Training set ( ) ( ) ( ){ }m mD y y y1 1 2 1, , , ,= x x x , y Y1∈  as the classification label;
Base learning algorithm ;
Number of iterations T.

Process: 
1. Randomly generate the initialized particles
2. while (Failure to reach the maximum number of iterations or failure to meet the stop criteria)
3. for i = 1 to N, N: Number of population
4. Extract sample subset data based on the feature subset extracted by particle i.
5. for t1 = 1 to T1, T1: number of iterations for the particle swarm
6. ( )i m1 1/= // start AdaBoost.M1 Initialize the weight of the sample
7. for t = 1 to T
8. { }t i kh data C C C1 2: , , ,→  , Probability output matrix isvm score _  requires the SVM to obtain the classifier generated by the 
    iteration calculation and the corresponding probability output matrix.

9. ( ) ( )m
t t i t ii

i y h x
1=

 = ≠ ∑  ; Calculate the error for the classification results t .

10. ( )t t t/ 1b = −   Set the parameter bt.

11. ( ) ( ) ( )i t iy h x
t t ti i

1
1

 − ≠ 
+ = b   Update the weight of the sample

12. end for t

13. ( ) ( ) ( )T
t p t pty Y

H x y h s
1

arg max ln 1/
=∈

  = b ≠    ∑  Calculate the sequence of classifiers

14. ( ) ( )T T
score t tt t

Ada svm score
1 1

1 / 1 _
= =

  = − − ×  
  

∑ ∑   Calculate the probability output matrix for AdaBoost

15. Calculate all the AUC values, draw the polar diagram, and calculate the AUCarea, ( )i areafitness x AUC=
16. if ( ) ( )i ifitness x fitness pbest>  // update the individual optimal solutions in the particle swarm
17. then i ipbest x=
18. if ( ) ( )ifitness x fitness gbest>
19. then igbest x=
20. Update the speed and displacement of particle i
21. end for t1
22. end for i
23. end while

Output: the optimal attribute subset Sbest and classification results, the corresponding optimal polar diagrams, Each AUC value 
and the optimal AUCarea.
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3. Empirical analyses

In this section, the safety risk “water and sand gushing in 
the foundation pit bottom” is taken as an example, and 
the proposed integrated classification algorithm is used to 
classify and calculate the knowledge information system 
risk.

3.1. Basic data

The knowledge information system for the risk evalua-
tion of water and sand gushing in foundation pit bottom 
is taken from previous deep foundation construction pro-

ject management data, as shown in Table 9. Table 9 has 
432 records (only part is listed). The attribute values in 
Table 9 are preconditioned to ensure that the analysis and 
calculation are accurate. The comparisons between the 
preconditioned attribute values and the original attribute 
values are shown in Table 10. In Table 10, all insecure at-
tribute values are large and all secure attribute values are 
small. The attribute range is controlled within [0,1], and 
the equivalent value for the ratio of the penetration depth 
to the excavation depth for the supporting structure of a 
sample in an information system is Ki, with the original 
value being iK ′. minK ′  and with maxK ′  are the minimum and 

Table 9. Knowledge Information system for the risk evaluation of water and sand gushing in the foundation pit bottom

Number
Soil texture at 

the bottom of the 
foundation ditch

Groundwater
Ratio of penetration 
depth to excavation 

depth
Water-head Foundation 

reinforcement Entering-rock Risk occurrence 
probability level

1 1 1 0.85 0.50 1 1 1
2 1 1 0.98 0.85 1 0 0.75
3 1 1 0.73 0.72 0 1 0.75
4 1 1 0.98 0.58 0 0 0.5
5 1 1 0.86 0.43 1 1 1

… … … … … … … …
107 1 0 0.28 0.22 0 1 0
108 1 0 0.09 0.19 0 0 0
109 0.66 1 0.76 0.94 1 1 1
110 0.66 1 0.79 0.86 1 0 0.75
111 0.66 1 0.86 0.92 0 1 0.75
… … … … … … … …

324 0.33 0 0.05 0.05 0 0 0
325 0 1 0.91 0.50 1 1 0.75
326 0 1 0.99 0.57 1 0 0.5
327 0 1 0.84 1.00 0 1 0.5
328 0 1 0.89 0.52 0 0 0.5
… … … … … … … …

Table 10. Attribute value preprocessing control table

Attribute Domain value
Soil texture at the bottom of 
foundation ditch

Silt soil Arenosol Cohesive soil Stratum
1 0.66 0.33 0

Groundwater Confined water Unconfined water Without water
1 0.5 0

Ratio of penetration depth to 
excavation depth i i min maxK K K K1 ( ) /′ ′ ′= − −

Water head inside and outside the 
foundation pit i i min maxW W W W( ) /′ ′ ′= −

Foundation pit bottom reinforcement nil exist
1 0

Rock entry condition of the enclosure 
structure

not entering-
rock

entering-rock

1 0
Risk occurrence probability level Frequent Possible Occasionally Rare Impossible

1 0.75 0.5 0.25 0
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maximum values for the penetration depth to excavation 
depth ratio of the supporting structure in this informa-
tion system. The definitions for the relative parameters for 
the water head inside and outside the foundation pit are 
similar.

The statistical information for the samples shown in 
Table 9 is shown in Table 11. Therefore, the knowledge 
information system for the risk evaluation of “water and 
sand gushing in the foundation pit bottom” is a multi-class 
(5 classification) imbalanced data set (the imbalance ratio 
is 36.8).

3.2. Analysis of the experimental results

The data set shown in Table 9 has 432 samples. The train-
ing set and test set composition is shown in Table 12. Four 
experiments are performed. The first experiment used 
the algorithm proposed in this study, and the others re-
spectively used the AdaBoost+SVM algorithm, the KNN 
algorithm, and the AdaBoost+KNN algorithm. Further-
more, the relevant parameters in BPSO are the same as the 
corresponding parameters set in Kennedy and Eberhart 

(1997), where inertia weight is set to 0.729 and learning 
factors c1 and c2 are both set to 1.49445. We set k of KNN 
equals to 5 for those data sets that the rarest class contains 
at least 5 samples; otherwise, K is set to be equal with the 
number of samples of the rarest class. The number of sam-
ples of the rarest class is 5 shown in Table 11. Therefore, 
the K of KNN equals to 5. In addition, MATLAB libsvm is 
used to realize SVM as base classifier. Other unexplained 
Numbers are default values.

In this study, four evaluation indexes are used to calcu-
late the effectiveness and superiority of the integrated clas-
sification algorithm proposed in Section 2. The accuracy 
rates for every classification are given, and the results of 
the classification calculations are shown in Table 13.

 – Experiment one used the integrated classification al-
gorithm proposed in this study. The overall accuracy 
was found to be very high; in particular, the correct 
classification rate for the minority class (1 grade cat-
egory) reached 100%.

 – Considering that the characteristic data set dimen-
sions shown in Table 9 were low, experiment two 

Table 11. Sample statistics

Risk probability 
level 

Sample 
number Maximum imbalance ratio

Impossible (0) 148
Maximum imbalance ratio = 
(Maximum sample number) / 
(Minimum sample number) = 
184/5=36.8

Rare (0.25) 184
Occasionally (0.5) 65
Possible (0.75) 30
Frequent (1) 5

Table 12. Training set and test set sample distribution

Risk level Training set Test set Total
0 111 37 148

0.25 142 42 184
0.5 49 16 65

0.75 21 9 30
1 3 2 5

326 106 432

Table 13. Analysis of the results for the classification calculation

Experiment 1
BPSO+AdaBoost+SVM

Experiment 2 
AdaBoost +SVM

Experiment 3 KNN Experiment 4 
AdaBoost +KNN

Acc 0.8962 0.9680 0.81132 0.9057
AUCarea 0.7971 0.8079 0.3085 0.7616

GM 0.9052 0.7891 0.4945 0.8221
FV 0.8892 0.7881 0.3269 0.7888

Classification accuracy for the various categories
Overall classification accuracy 96/106 99/106 86/106 86/106
Accuracy rate for the 0 grade 
classification

36/37 37/37 36/37 37/37

Accuracy rate for the 0.25 grade 
classification

39/42 41/42 42/42 42/42

Accuracy rate for the 0.5 grade 
classification

11/16 12/16 7/16 13/16

Accuracy rate for the 0.75 grade 
classification

8/9 8/9 1/9 3/9

Accuracy rate for the 1 grade 
classification

2/2 1/2 0/2 1/2

Note: ( ) ( )CCA TP TN TN FP FN TP/= + + + + , GM sensitivity specificity = ⋅ , ( ) ( )FM sensitivity precision sensitivity precision2 /= ⋅ ⋅ +
 
, 

( )sensitivity TP TP FN /= + , ( )specitivity TN FP TN/= + , ( )precision TP FP TP/= + , FN False Negative = , FP False Positive = , 
TN True Negative = ,  TP True Positive = .
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attempted to remove the feature selection process 
and adopted the AdaBoost+SVM algorithm directly. 
The overall accuracy of this method was higher than 
that of the experiment one; however, the accuracy 
of the most critical minority classification (1 grade 
category) was lower. A comparison of experiment 
one with experiment two showed that the learning 
of the minority samples was improved given that 
experiment one used the feature selection method 
to process the data set in Table 9. However, as some 
valuable information was lost for most other samples, 
the classification accuracy of the majority was lower 
in experiment one than in experiment two, which did 
not use feature selection. From an application per-
spective, the loss of classification errors in the low 
risk categories was considerably smaller than in the 
high risk categories. Therefore, the algorithm used in 
experiment one had more practical value than the 
algorithm used in experiment two.

 – In experiment three, a traditional KNN single clas-
sifier was used. The calculation results showed that 
overall the classification accuracy was lower; how-
ever, the classification accuracy for the 0.25 and 0 
grades, which had the largest number of samples, 
was the highest. As the number of samples decreased, 
the classification accuracy in the other categories fell 
sharply, which was in line with the traditional bias 
toward larger samples associated with the KNN clas-
sifier. This result proved that the KNN classifier was 
unsuitable for imbalanced data sets.

 – In experiment four, the AdaBoost+KNN algorithm 
was used. As the performance of the KNN classi-
fier was enhanced with AdaBoost ensemble algo-
rithm, the classification accuracy of KNN classifier 
was significantly improved. Therefore, the AdaBoost 
ensemble algorithm was very powerful in improving 
weak classifiers. However, the classification effect on 
the minority groups was still unable to meet the ap-
plication requirements due to the weaknesses in the 
KNN classifier. 

This study conducted an integrated algorithmic experi-
ment that used SVM as the base classifier, AdaBoost as the 
integrated framework, and BPSO for feature selection to 
ensure that the machine learning effect of the imbalanced 
data set was suitable for practical applications.

Conclusions

This study analyzed the practical difficulties of safety risk 
evaluations of deep foundation construction schemes to 
improve the safety of deep foundation construction and 
proposed that machine learning could be effective for 
manual analyses of safety risk evaluations of comprehen-
sive construction schemes. Compared with previous stud-
ies that ignored historical data, the safety risk evaluation 
knowledge information system was developed from his-
torical data, and a machine learning method was applied 
to extract the relevant knowledge.

Furthermore, accurate minority class classifications 
were needed for practical applications because the safe-
ty risk evaluation knowledge information system was a 
typical imbalanced data set. As such, traditional classifiers 
could not be used. Focusing on the characteristics of the 
deep foundation safety risk construction knowledge in-
formation system, an integrated classification algorithm, 
the BPSO+AdaBoost+SVM, was proposed to improve the 
minority classification accuracy. Compared with other re-
lated algorithms, the developed algorithm is suitable for 
the machine learning of the developed information system 
because it can effectively classify the minority samples.

The ensemble classification algorithm proposed in 
this study can assist in promoting the use of intelligent 
evaluations of safety risk evaluations of deep foundation 
construction schemes. The developed algorithm does not 
involve subjective factors. However, it emphasizes the full 
utilization and management of historical data. It also is 
completely dependent on previous safety management 
knowledge and experience. Therefore, the quality of safety 
risk evaluations is high when the historical data are com-
plete. On this basis, the collection and consolidation of 
relevant daily safety management data is very important. 
This research improves the quality and efficiency of safety 
risk evaluations of deep foundation construction schemes. 
This enhancement in turn improves safety risk manage-
ment of deep foundation construction.

Further research can be focused on the collection and 
sorting process for deep foundation construction safety 
risk management information. A high quality database 
can also be established for knowledge on safety risk evalu-
ations of deep foundation construction schemes. Further-
more, with the developed algorithm at the core, a com-
puter program can be developed to automate the safety 
risk evaluations of deep foundation construction schemes. 
This way can improve accuracy and save time and money 
associated with manual evaluations.
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