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Introduction 

The engineering optimization problems are commonly 
non-linear. They have different design variables under 
complex constraints. These constraints can be consid-
ered as simple bounds or as non-linear relationships. 
The non-linearity of such optimization problems often 
leads to a multimodal response landscape (Yang 2010; 
Gandomi et al. 2013a). Consequently, only global opti-
mization algorithms can be used to obtain optimal solu-
tions. Metaheuristic algorithms can be defined as upper 
level general methodologies. They can be used as guid-
ing strategies in designing underlying heuristics to 
handle engineering optimization problems (Gandomi 
et al. 2013a; Talbi 2009). The main characteristics of 
metaheuristics are: (1) intensification and (2) diversifi-
cation (Yang 2009). Intensification searches around the 
current best solutions and selects the best candidates or 
solutions. Diversification guarantees that the algorithm 
can explore the search space more efficiently. 

The main goals of developing modern metaheuris-
tic methods are to solve problems faster, to solve large 
problems, and to obtain robust algorithms (Talbi 2009). 
The most typical types of metaheuristics are genetic al-
gorithms (GA) and particle swarm optimization (PSO). 
The efficiency of metaheuristic algorithms is related to 
the fact that they imitate the best features in nature. 

Krill Herd (KH) algorithm is a new metaheuris-
tic search algorithm. This algorithm is based on simu-
lating the herding behaviour of krill individuals using a 

Lagrangian model and crossover. This algorithm is de-
veloped by Gandomi and Alavi (2012) and the prelim-
inary studies show that it is very promising and could 
outperform existing algorithms (Gandomi et al. 2013c, 
2013d). In this paper, the KH algorithm is further vali-
dated against various engineering optimization problems. 
The introduced search strategy is compared with other 
popular optimization algorithms. Finally, the unique fea-
tures of KH are discussed and topics for further studies 
are proposed.

1. Krill Herd algorithm
1.1. Lagrangian model of the krill herding
Predators remove individuals, reduce of the average krill 
density, and distance the krill swarm from the food loca-
tion. Therefore, predation can be considered as the ini-
tialization of the optimization algorithm. The fitness of 
each individual in the natural system, is supposed to be 
the distances from the food centre and the highest density 
of the krill swarm (Gandomi, Alavi 2012). 

Hofmann et al. (2004) proposed three effective fac-
tors of individual krill position as: 

 i. movement induced by other krill individuals; 
  ii. foraging activity; and 
iii. random diffusion, 

which can be formulated during the time and for n dimen-
sional space, using the following Lagrangian model:

   (1)
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where Ni, Fi and Di are respectively the motions i, ii 
and iii. 

1.1.1. Motion induced by other krill individuals
For the ith krill individual, the induced motion is formu-
lated as:

   (2)

and

 , (3)

where N max is the maximum induced speed, αi is the 
direction of motion, ωn is the inertia weight, Ni

old is the 
last induced motion, αi

local is the local effect provided by 
the neighbors and αi

target is the target direction effect pro-
vided by the best krill individual. According to Hofmann 
et al. (2004), N max considered to be equal to 0.01 (ms–1).

The effect of the neighboursin a krill movement in-
dividual can be formulated as (Gandomi, Alavi 2012):

  (4)

 
 (5)

  (6)

where Kworst and Kbest are, respectively, the worst and 
the best fitness values of the krill individuals; Ki repre-
sents the fitness value of the ith krill individual; Kj is the 
fitness of jth neighbour and j ∈ {1, 2, …, NN} and X is 
the positions in the search domain. ε is suggested to be a 
small number (Gandomi, Alavi 2012). In this study, this 
parameter is equal to 10–6.

For choosing a neighbour krill for the ith krill indi-
vidual, a sensing distance (ds,i) is defined using:

 , (7)

where N is the number of the krill individuals and  
i ∈ {1, 2, …, N}. Based on this equation, if the dis-
tance of two krill individuals is less than sensing dis-
tance, they are neighbors (Gandomi, Alavi 2012). The 
effect of the best fitness krill into the ith individual krill 
is formulated as:

 , (8)

where, Cbest is an empirical effective coefficient as:

 
 (9)

where rand is a uniform random value between 0 and 
1, I and Imax are, respectively, the actual and maximum 
number of iterations (Gandomi, Alavi 2012).

1.1.2. Foraging motion
There are two main terms in the foraging motion, the 
food attraction and the previous krill experience, which 
can be formulated as follows (Gandomi, Alavi 2012):   

  (10)

and

  (11)

where Vf is the foraging speed, ωf is the inertia weight, 
Fi

old is the last foraging motion, βi
food is the food attrac-

tion and βi
best is the effect of the best fitness of the ith krill 

during its history. Foraging speed is taken 0.02 (ms–1)  
based on (Price 1989).

In each iteration, the centre of food of can be de-
fined like centre of mass as follows:

  
(12)

and, the food attraction for the can be formulated as:

 , (13)

where C food is empirically defined as:  

 
 (14)

The effect of the best fitness of the ith krill individual 
during the history is defined as:

 , (15)

where Kibest is the best previously visited position by the 
ith krill individual.

1.1.3. Physical diffusion
The physical diffusion is a random process which can be 
formulated as follows (Gandomi, Alavi 2012):

  (16)

where Dmax is the maximum diffusion speed, and δ is 
the uniform random directional vector between –1 and 
1. Based on the suggested values in Morin et al. (1988),  
Dmax ∈ [0.002, 0.010](ms–1).
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1.1.4. Motion process of the KH algorithm
Using the three explained motions, the position vector of 
a krill individual during the time interval from t to t+Δt 
is formulated as (Gandomi, Alavi 2012):  

 , (17)

where Δt can be obtained from:

  (18)

where NV is the number of variables, LBj and UBj are 
lower and upper bounds of the jth variables, respectively, 
and Ct is a constant number which is considered as 0.5 
in this study. 

1.2. Crossover
As it is evaluated in the original paper, crossover is an 
effective process in the KH algorithm. By generating a 
uniformly distributed random vector values between 0 
and 1, the mth component of Xi, Xi,m is manipulated as 
(Gandomi, Alavi 2012):

 
 (19)

 , (20)

where Cri is crossover probability of the ith kril individual.

1.3. Constraint handling
In order to solve the problem simpler, nonlinear con-
straints in the penalty function approach might be col-
lapsed with the cost function into a response functional. 
This results in transformation of the constrained optimi-
zation problem into an unconstrained optimization one. 
The following example clarifies the issue. Assuming that 
there are some nonlinear equality constraints фi and some 
inequality constraints ψj, the response functional ∏ can 
be defined as follows (Gandomi et al. 2012):

 
    (21)

where: 1 ≤ µi and 0 ≤ vi. The coefficients of penalty terms 
should be large enough; their values may depend on the 
specific optimization problem. The contribution of any 
equality constraints function to the response functional ∏ 
is null but increases notably as soon as the constraint is 
violated. The same applies to inequality constraints when 
they become critical (Gandomi et al. 2011).

If integer/discrete design variables are involved in 
an optimization problem, the variable is rounded to the 
nearest integer/discrete value. 

2. Implementation and numerical experiments 

Engineering optimization problems are complex, some-
times even the optimal solutions of interest do not exist. 
In order to see how the KH algorithm performs, four 
standard engineering test problems are solved. It should 
be noted that because of the random nature of the KH 
algorithm, 50 trials with independent population initiali-
zations have been made to obtain a better conclusion of 
the performance.

2.1. Case I. Tubular column design 
Figure 1 presents an example for designing a uniform 
column of tubular section to carry a compressive load  
P = 2500 kgf at minimum cost (Rao 1996). The column is 
made of a material with a yield stress (σy) of 500 kgf/cm2,  
a modulus of elasticity (E) of 0.85 × 106 kgf/cm2, and 
a density (ρ) equal to 0.0025 kgf/cm3. The length (L) of 
the column is 250 cm. The stress included in the column 
should be less than the buckling stress (constraint g1) 
and the yield stress (constraint g2). The mean diameter 
of the column is restricted between 2 and 14 cm (con-
straint g3 and g4), and columns with thickness outside the 
range 0.2–0.8 cm are not commercially available (con-
straint g5 and g6). The cost of the column includes mate-
rial and construction costs (Hsu, Liu 2007). It is taken 
as the objective function. The optimization model of this 
problem is given as follows:

Minimize:  .

 

(22)

Subject to:

 
 

(23)

 
 (24)

where: 2 ≤ d ≤ 14 and 0.2 ≤ t ≤ 0.8. 

Fig. 1. The tubular column
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Table 1 illustrates the statistical results for the best 
objective value by KH when 10,000 searches havebeen 
done in each run. The statistical values presented in this 
table clearly show the proposed algorithm is successful 
in this case.

Table 2 compares the results obtained by KH with 
those reported in the literature (Rao 1996; Hsu, Liu 2007; 
Gandomi et al. 2013b; Rocha, Fernandes 2009). It can be 
observed from Table 2 that the best objective values by 
Rao (1996) and Hsu and Liu (2007) and are not feasible 
because the second constraint (g2) is violated. The Re-
sult of KH algorithm is also better than results obtained 
in Gandomi et al. (2013a), Rocha and Fernandes (2009). 
Therefore, KH algorithm provides better results than other 
algorithms.

2.2. Case II. Three-bar truss design 
This case considers a 3-bar planar truss structure shown 
in Figure 2. This problem was first presented by Nowcki 
(1974) and it is one of the benchmark structural engi-
neering problems (Gandomi, Yang 2011). The volume of 
a statically loaded 3-bar truss is to be minimized subject 
to stress (σ) constraints on each of the truss members. 
The objective is to evaluate the optimal cross sectional 
areas (A1, A2). The mathematical formulation is given 
as below:

Minimize:   (25)

where H is shown in Figure 2 and it is equal to 100 cm. 

Subject to:

  
(26)

  
(27)

  
(28)

where:
2

1 2
2

0 1 and 0 1; 100 cm, 2 N/cm , and

2 / cm .

A A l P K

KN

≤ ≤ ≤ ≤ = =

σ =
This design problem is a nonlinear fractional program-
ming problem. The statistical values of the best solution 
obtained by the KH algorithm are given in Table 3. From 
this table, the optimized costs corresponding to worst and 
best designs are very close to each other.

The solution by KH is (A1, A2) = (0.78867, 0.40902) 
with the objective value equal to 263.97156 after 5,000 
function evaluation in each run. Table 4 presents the 
solutions obtained by KH and those reported by other 
methods reported in the literature. As it is seen, the best 
objective value reported by Tsai (2005) is not feasible be-
cause the first constraint (g1) is violated. Hence, it can be 
concluded that the results obtained by KH are better than 
those of previous studies for this benchmark problem.

2.3. Case III. Speed reducer design
KH is applied to the design of a speed reducer which is 
a benchmark structural optimization problem (Gandomi, 
Yang 2011) (Fig. 3), with the face width (b), module of 
teeth (m), number of teeth on pinion (z), length of shaft 
1 between bearings (l1), length of shaft 2 between bear-
ings (l2), diameter of shaft 1 (d1), and diameter of shaft 2 
(d2). The objective is to minimize the total weight of the 
speed reducer. The constraints involve limitations on the 
bending stress of the gear teeth, surface stress, transverse 
deflections of shafts 1 and 2 due to transmitted force, and 
stresses in shafts 1 and 2.

The mathematical formulation can be summarized 
as minimizing the following function:

 

( )
( ) ( )

2 2
1 2 1 2

2 2
1 2

3 3 2 2
1 2 1 1 2 2

( , , , , , , ) 0.7854 (3.3333

14.9334 43.0934) 1.508

7.477 0.7854 .

f b m z l l d d bm z

z b d d

d d l d l d

= +

− − + +

+ + +  (29)

Table 1. Statistical results of the best model for tubular 
column design example

Best Average Median Worst S.D.
26.5314 26.5430 26.5378 26.6475 0.01798

Table 2. Best solutions for the tubular column example

Rao
(1996)

Hsu, Liu 
(2007)

Gandomi 
et al. 

(2013b)

Rocha, 
Fernandes 

(2009)

Present 
Study

d 5.44 5.4507 5.45139 5.451083 5.451278

T 0.293 0.292 0.29196 0.29199 0.291957

g1 –0.8579 –0.00008 –0.0241 –0.00007 0.00000

g2 0.0026 a 0.1317a –0.1095 –0.00004 –0.00004

Fmin 26.5323 25.5316 26.53217 26.53227 26.5314

Note: aBold sets are violeted sets.

Fig. 2. Three bar truss

Table 3. Statistical results of the best three bar truss model

Best Average Median Worst S.D.
263.8932982 263.9465 263.8993 264.9561 0.16576
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Subject to:

  
(30)

  
(31)

  
(32)

  
(33)

  
(34)

  
(35)

  
(36)

 
 (37)

 
 (38)

where: 2.6 ≤ b ≤ 3.6, 0.7 ≤ m ≤ 0.8, 17 ≤ z  ≤ 28, 7.3 ≤ 
l1 ≤ 8.3, 7.8 ≤ l2 ≤ 8.3, 2.9 ≤ d1 ≤ 3.9, and 5.0 ≤ d1 ≤ 5.5.

The corresponding statistical values of the Best KH 
model are presented in Table 5. From this table, the ratio 
between the optimized costs corresponding to worst and 
best designs is 1.00 and it shows KH algorithm has suc-
cessfully found the optimum design in all runs.  

Table 6 presents a comparison of the results obtained 
by KH and other methods. As it is seen, the KH results 
are better than those reported by Hsu and Liu (2007), 
Gandomi et al. (2013b), Akhtar et al. (2002), Montes 
et al. (2007), Efren et al. (2003), Michalewicz and At-
tia (1994), Hadj-Alouaneand Bean (1997), and Montes 
and Ocana (2008). Although the best objective values de-
rived by Kuang et al. (1998), Li and Papalambros (1985), 
and Azarm and Li (1989) are better than those of KH, 
the reported values are not feasible. The result provided 
by Yang and Gandomi (2012) is best one and the results 
obtained in this study are the third best fitness value. It 
should be noted that some previous studies consider the 
simple bound of l2 like l1 so they are not considered in 
the comparison study.

2.4. Case IV. Helical compression spring design 
Figure 4 shows a schematic representation of the heli-
cal compression spring design problem (Gandomi, 
Yang 2011). The spring is subject to an axially guided  
constant compression load. It must be designed for mini-

Table 4. Best solutions for the three bar truss example

Ref.
Gandomi 

et al. 
(2013b)

Ray, 
Saini 

(2001)

Zhang 
et al. 

(2008)

Yang, 
Gandomi 

(2012)

Zhao 
et al. 

(2012)

Ray, 
Liew 

(2003)

Wang 
et al. 

(2009)

Wang, 
Li 

(2010)

Tsai 
(2005)

Park 
et al. 

(2007)

Rocha, 
Fernandes 

(2009)

Present 
Study

Method CS PSO DEa BAb GA SCc EAd DE NLPe NLP HEMf KH

A1 0.7887 0.795 0.78868 0.78863 0.78868 0.78862 0.35673 0.78868 0.788 0.78879 0.78876 0.78846

A2 0.4090 0.395 0.40825 0.40838 0.40825 0.40840 0.05169 0.40825 0.408 0.40794 0.40800 0.40882

g1 –0.0003 –0.0017 0.00000 0.00000 –0.0000 –0.0000 –0.0000 0.00000 0.0008g –0.0000 –0.0000 0.00000

g2 –0.2685 –0.2612 –0.2680 –0.2680 –0.2680 –0.2680 –1.4641 –1.4641 –0.2674 –0.2678 –0.2678 –0.2683

g3 –0.7318 –0.7404 –0.7320 –0.7320 –0.7320 –0.7320 –0.5359 –0.5359 –0.7318 –0.7322 –0.7322 –0.7317

fmin 263.97 264.3 263.896 263.896 263.896 263.896 263.896 263.896 263.68 263.897 263.896 263.893
Notes: aDE is differential evolution; bBA is bat algorithm; cSC is society and civilization; dEA is evolutionary algorithm;  
          eNP is non-linear programming; fHybrid electromagnetism like algorithm; gViolated set.

Table 5. Statistical results of the speed reducer design 
example using KH

Best Average Median Worst S.D.
2997.44677 3005.844 3006.244 3010.569 2.6337

Fig. 3. Speed reducer
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mum volume. Spring ends are ground and squared. The 
parameters included are:

D: winding coil diameter;
d: wire diameter;
n: number of spring coils.
D is continuous, n is an integer, and d can take one 

of the 42 discrete values listed in Table 7 (Gandomi et al. 
2011).

The design shear stress caused by the compres-
sion load should be lower than the allowable maximum 
shear stress (S) of the material (g1). The free length of 
the spring should be shorter than the maximum specified 
value Lfree (g2). The wire diameter must not be less than 
the  specified  minimum  diameter  dmin  (g3). The outer-
diameter of the coil should be smaller than the specified 
maximum diameter Dmax (g4). The inner coil diameter 
must be at least three times less than the wire diameter to 
avoid a lightly wound spring (g5).  The deflection under 
the given load δ must be less than the specified maximum 
deflection under preload δpm (g6). The combined deflec-
tion must be consistent with the coil free length Lfree (g7). 
The deflection from preload to maximum load must be 
greater than the specified working deflection δw (g8). The 
cost function and constrained of the problem to be mini-
mized are the spring volume, expressed as:

Minimize: .
 

(39)

Subjected to:

  
(40)

  
(41)

  (42)

  (43)

  
(44)

  
(45)

  
(46)

  
(47)

where:

  
(48)

  
(49)

  
(50)

  
(51)

The values assigned to constant terms involved in the 
spring design problem statement are listed in Table 8. 

The optimization results obtained by KH are 
presented in Table 9. The optimization process was  
completed within 30,000 function evaluations. The ratio 
between the optimized costs corresponding to worst and 
best designs is 1.14. 

Table 10 compares the optimization results found by 
KH with similar data reported in literature. Whilst KH 

Table 7. Discrete values of the spring wire diameters

d : Wire diameters (in.)
0.009 0.0095 0.0104 0.0118 0.0128 0.0132 0.014
0.015 0.0162 0.0173 0.018 0.020 0.023 0.025
0.028 0.032 0.035 0.041 0.047 0.054 0.063
0.072 0.080 0.092 0.105 0.120 0.135 0.148
0.162 0.177 0.192 0.207 0.225 0.244 0.263
0.283 0.307 0.331 0.362 0.394 0.4375 0.500

Table 8. Values of parameters involved in the formulation of 
the helical spring problem

Item Description Values

Pmax Maximum work load 1000.0 (lb) 
S Maximum shear stress 189×103 (psi)
E Elastic modulus of the material 30×106 (psi)
G Shear modulus of the material 11.5×106 (psi)
Lfree Maximum coil free length 14 (in)
dmin Minimum wire diameter 0.2 (in)
Dmax Maximum diameter of the spring 3.0 (in)
Pload Preload compression force 300.0 (lb)

δpm
Maximum deflection under 
preload 6.0 (in)

δw Deflection 1.25 (in)

Table 9. Statistical results of the KH optimization runs 
executed for the helical spring problem

Best Mean Median Worst S.D.
2.658553 2.745934 2.699644 3.040423 0.095919

Fig. 4. Helical compression spring
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converged to the best design overall of 2.65855, some of 
the studies taken as reference found infeasible designs. It 
can be seen the KH solution is the best one in compare 
with the other methods.

Conclusions

The new KH algorithm is utilized to solve engineering 
optimization problems. The results indicate that the KH 
algorithm is very efficient for solving engineering prob-
lems. More, it performs superior to different existing 
algorithms. It can be because of this fact that there are 
fewer parameters to be fine-tuned in KH than in other 
algorithms. As agents generally contribute to the mov-
ing of each other based on their fitnesses, therefore the 
violated agents cannotaffect a lot on the others. In addi-
tion, a neighbour agent has an attractive/repulsive effect 
on the movement of the agent, therefore the neighbours 
with the better fitness, violated or not violated, attract 
the agent and other neighboursrepulse it. As an instance, 
if the agent isslightly violating the constraints, the agents 
with more violations repulse it and the feasible agents or 
agents with less violation attract the agent. These effects 
can act as an effective local search for each krill indi-
vidual and the results generally prove it.

KH can be viewed as a system with multiple inter-
acting Markov chains selected and biased towards global 
optimality. This powerful optimization method can be ex-
tended to study multi-objective optimization applications 
with various constraints, including NP-hard problems 
(Gandomi, Alavi 2012).
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