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Abstract. Strong wind during extreme weather conditions (e.g., strong winds during typhoons) is one of the natural fac-
tors that cause the collapse of frame-type scaffolds used in façade work. This study developed an alert system for use in 
determining whether the scaffold structure could withstand the stress of the wind force. Conceptually, the scaffolds col-
lapsed by the warning system developed in the study contains three modules. The first module involves the establishment 
of wind velocity prediction models. This study employed various deep learning and machine learning techniques, namely 
deep neural networks, long short-term memory neural networks, support vector regressions, random forest, and k-nearest 
neighbors. Then, the second module contains the analysis of wind force on the scaffolds. The third module involves the 
development of the scaffold collapse evaluation approach. The study area was Taichung City, Taiwan. This study collected 
meteorological data from the ground stations from 2012 to 2019. Results revealed that the system successfully predicted 
the possible collapse time for scaffolds within 1 to 6 h, and effectively issued a warning time. Overall, the warning system 
can provide practical warning information related to the destruction of scaffolds to construction teams in need of the in-
formation to reduce the damage risk.
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Introduction

Taiwan experience typhoons frequently, because it is situ-
ated near the Asian continent and on the main paths of 
western North Pacific typhoons (Cheng et  al., 2008). In 
Taiwan, scaffold collapse has serious consequences. For 
example, on September 27, 2016, Typhoon Megi made 
landfall in Taiwan and caused the scaffolds on the external 
walls of Le Méridien Taichung to collapse (Figure 1). The 
collapse of the scaffolds resulted in disruption of traffic in 
the surrounding area, the crushing of numerous vehicles, 
and the injury of various victims (Lin & Yen, 2016). The 
purpose of this study is to develop a warning system for 
determining whether a scaffold would be damaged by ex-
treme wind velocity (e.g., typhoons) and how to effectively 
reduce occupational accidents caused by the collapse of 
scaffolds.

In Taiwan, frame-type scaffolding is the most common 
scaffolding method used at construction sites. The exist-
ing Taiwan’s laws related to the assembly requirements 
for frame-type scaffolds can refer to Ministry of Labor 

[MOL] (2014) and Ministry of the Interior [MOI] (2014). 
As noted in Lin and Yen (2016), frame-type scaffolds are 
temporary structures for construction projects that are 
immediately dismantled after use. The risk of collapse is 
often underestimated. MOL (2014) stated that when fa-
çade frame type scaffolds are assembled at the outer area 
of the buildings, they often collapse under two conditions. 
First, they could collapse during the construction. Second, 
they could collapse when the construction is shut down 
due to the typhoon invasion.

Strong wind during extreme weather conditions is one 
of the natural factors that causes the collapse of frame-
type scaffolds. Therefore, an alert system is needed; such 
a system should be able to evaluate if scaffolding can 
withstand the effect of the wind force and to predict the 
possible future destruction time points on a real-time 
basis; this would provide construction teams with more 
advanced alert. The purpose of this study was to develop 
a typhoon-wind-induced scaffold-collapse early warn-
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ing system (TISCEWS) for determining whether scaffold 
structures can withstand the stress of the wind force. For 
real-time operation, extreme wind force prediction is re-
quired for the TISCEWS system to simulate the possible 
destruction time point for frame-type scaffolds. Because 
accurate wind velocity prediction is necessary for operat-
ing real-time warning systems, this study established wind 
velocity prediction models by using various deep learning 
(DL) and machine learning (ML) techniques.

This study reviewed the relevant literature on wind 
velocity prediction models using DL-based and ML-
based approaches, because they exhibit high calculation 
efficiency and accurate prediction ability (Dongmei et al., 
2017; Mallick et al., 2020; Panapakidis et al., 2019; Sheela 
& Deepa, 2013; Wei, 2014, 2015). In addition, several 
popular approaches are investigated such as autoregres-
sive integrated moving average (Cadenas & Rivera, 2010; 
Cadenas et al., 2016), support vector machine (Chou et al., 
2020; Wei, 2017), random forest (Kim et al., 2019), radial 
basis function (Noorollahi et  al., 2016), and neural net-
works (Chen et al., 2018; Huang et al., 2018a; Hu et al., 
2016; Wei, 2019). A recurrent neural network (RNN) is an 
extension of a conventional feedforward neural network 
that can handle a variable-length sequence input (Chung 
et al., 2014; Graves, 2013). RNNs are connectionist mod-
els with the ability to selectively pass information across 
sequence steps while processing sequential data at a time 
(Lipton et al., 2015). The RNN handles the variable-length 
sequence by having a recurrent hidden state whose activa-
tion at each time is dependent on that of the previous time 
(Chung et al., 2014; Graves, 2012).

RNNs have already exhibited fair performance in re-
solving time-series-related problems (Glüge et al., 2014; 
Zhang et  al., 2019). RNNs, however, have difficulty 
capturing long-term memories; the gradient-vanishing 
problem generated in the calculation process of RNNs 
causes the long-term memories to be hidden by the short-
term memories. To solve the problem of vanishing gra-
dient in traditional RNNs, Hochreiter and Schmidhuber 
(1997) proposed the long short-term memory (LSTM), 
which introduces a structure called a memory cell to de-
velop persistent long-term dependencies. The overall effect 
of the gate units is that the LSTM memory cells can store 

and access information over long periods of time and thus 
avoid the vanishing gradient problem (Chung et al., 2014; 
Wollmer et al., 2010). Therefore, much attention has been 
given to the LSTM in the processing of time-series prob-
lems (Byeon et al., 2015; Lu et al., 2019; Weninger et al., 
2014). In the development of wind velocity predictions, 
results of relevant studies such as Huang et  al. (2018b), 
Huang and Kuo (2018), Liu et  al. (2018), and Shi et  al. 
(2018) have indicated that the LSTM could generate 
excellent prediction results for wind velocity prediction. 
To model the time series of wind speed data, this study 
used the LSTM neural networks for the prediction of ty-
phoon wind speeds because of their appropriate long- and 
short-term time dependency management. Consequently, 
this study applied DL-based approaches, namely deep 
neural network (DNN) and LSTM, to construct the wind 
velocity prediction model. Moreover, conventional ML ap-
proaches such as support vector regression (SVR), random 
forest (RF), and k-nearest neighbors (kNNs) were used as 
benchmark models. These approaches were compared to 
ensure the timeliness and accuracy of real-time velocity 
predictions.

1. Study area and data

The study area is Taichung City (Figure 2) located in the 
core zone between southern and northern Taiwan. It has 
an area of 2215 km2 and a population of over 2.8 million. 
Taichung City is currently the second largest city in Tai-
wan. Due to the rapid growth of its population, 48 build-
ings with heights above 120 m have already been built in 
the city.

This study collected data about the typhoon events for 
which typhoon alerts were issued by the Central Weather 
Bureau (CWB) and further selected typhoon events that 
affected the city. From 2012 to 2019, a total of 18 typhoon 
events (Table 1) affected Taichung City. Figure 3 illustrates 
the paths of these typhoons. Additionally, the wind ve-
locity data from ground stations in Taichung City and its 
surrounding areas.

Figure 4 plots the maximum wind values of all ty-
phoons recorded at the 21 ground stations at Taichung 
City. The wind velocity data were collected consisted of 

a) b)

Figure 1. Scaffold collapse in Le Méridien Taichung
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the 10-minute average wind velocity values measured at 
10 m above ground. In the figure, the station with code 
467770 (Wuqi station) recorded the highest wind veloc-
ity values (as high as 33.5 m/s) of all stations; the average 
wind velocity values of Wuqi station (as high as 5.4 m/s) 

were also the highest of all stations. The Wuqi station is 
close to Taichung Harbor in a developing area of Taichung 
City, and it contains numerous buildings under construc-
tion. Therefore, Wuqi station was selected as the experi-
mental location.

Figure 2. Flowchart of the methodology of SCTWWS

Figure 3. Visualized wind prediction results and scaffold collapse evaluation approach

a) b)

Table 1. Typhoons affecting Taichung and surroundings from 2008 to 2019

Typhoon Period Typhoon Period
Fung-Wong 27–28 Jul 2008 Matmo 21–24 Jul 2014
Morakot 7–8 Aug 2009 Fung-Wong 19–23 Sep 2014
Fanapi 18–19 Sep 2010 Soudelor 6–10 Aug 2015
Nanmadol 28–29 Aug 2011 Dujuan 27–30 Sep 2015
Talim 19–22 Jun 2012 Nepartak 6–10 Jul 2016
Saola 30 Jul–3 Aug 2012 Meranti 12–16 Sep 2016
Tembin 21–29 Aug 2012 Megi 25–29 Sep 2016
Soulik 11–14 Jul 2013 Nesat 28–29 Jul 2017
Trami 20–23 Aug 2013 Haitang 30 Jul–1 Aug 2017
Kong-Rey 27–30 Aug 2013 Bailu 23–26 Aug 2019
Fitow 4–8 Oct 2013 Mitag 29 Sep–2 Oct 2019
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2. Methodology

The TISCEWS warning system developed in the study 
contains three modules for use in determining whether 
the scaffold structure could withstand the stress of the 
wind force. Figure 5 illustrates the flowchart of the system. 

Each module is as follows.
Module 1: Typhoon wind prediction model. Various 

algorithms (including DL-based and ML-based approach-
es) were used to construct the typhoon wind velocity pre-
diction model. The procedures for building the prediction 
model entailed the collection and analysis of typhoon 
data, preprocessing of data, development of the DL-based 
and ML-based models, output generation, and compari-
son of the prediction results (as described in Section 2.1).

Module 2: Scaffold wind force analysis model. This 
module (known as the SCAFFOLDS model) presented 
a method for calculating the wind force capable of be-
ing sustained by temporary buildings, i.e., scaffolds. The 
SCAFFOLDS model consisted of the derivation of a wind 
force formula (including the design wind force, wind pres-

sure, and basic design wind velocity of the buildings) and 
the estimation of scaffold wind-resistance strength during 
the construction periods (see Section 2.2). Finally, this 
module entailed plotting a relationship diagram of wind 
velocity (V) - wind pressure (q) - wind force (F).

Module 3: Scaffold collapse evaluation model. The 
evaluation results were presented in a visualized manner 
to enable construction teams to rapidly and effectively 
comprehend whether the wind force may likely result in 
substantial damage. There are four steps:

 – Step 1 is the visualization of wind prediction results. 
The wind velocity time-series diagram can be plotted 
(as illustrated in Figure 6a) on the basis of the pre-
dicted wind velocity data (V′) generated by Module 1.

 – Step 2 to determine the corresponding scaffold wind 
pressure (q′) and corresponding wind force (F ′) un-
der the predicted wind velocity. Take Figure 6 as an 
example: assume the aim is to evaluate whether de-
struction would occur at the 36th hour at the current 

Figure 4. Geographical location of Taichung City

Figure 5. Historical typhoon tracks

Figure 6. Wind speed records of typhoons

a)

b)
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time (i.e., the 35th hour); the predicted wind velocity, 
V′ = 27 m/s, could be determined using Figure 6a.  
Based on the predicted velocity determined using 
Figure 6b, it is inferred that the corresponding wind 
pressure is equal to q′  = 74 kgf/m2 and the corre-
sponding wind force is equal to F ′ = 625 kN.

 – Step 3 is to estimate the scaffold’s safe bearing stress 
(lmax) and safe bearing capacity (Fmax). In Taiwan, 
it is possible to extrapolate the theoretical safe bear-
ing capacity that a scaffold should possess based on 
the design wind force calculation stipulated by MOI 
(2015).

 – Step 4 is to evaluate whether the scaffolds are in the 
danger of collapsing. The scaffolds are safe if the pre-
dicted wind force F ′ is smaller than the scaffold’s safe 
bearing capacity, Fmax. If it is not, the scaffolds are 
not safe and are at risk of collapsing under the effect 
of wind force. Therefore, the system would issue a 
destruction warning.

In the following sections, the processes of construct-
ing the DL-based and ML-based models and SCAFFOLDS 
model for the TISCEWS system are described.

2.1. Development of wind prediction model

2.1.1. Theorem of algorithms
The applied DL-based and ML-based approaches were 
briefly reviewed in this section. A DNN is a typical rep-
resentative of feedforward artificial neural networks, and 
uses the backpropagation algorithm for training (Hu et al., 
2016). It consists of three parts: an input layer, multiple 
hidden layers, and an output layer (Huang et al., 2019). A 
DNN can extract features that are representative of data 
characteristics through linear or nonlinear transformation 
in multiple processing layers (Du & Xu, 2017). The update 
of weight can be resolved using the stochastic gradient de-
scent method represented by the following equation:

( ) ( )1ij ij
ij

cw t w t
w
∂

D + = D + h
∂

,  (1)

where h is the learning rate, and c is the cost function.
For the LSTM model, an LSTM layer is composed of 

multiple recurrently connected subnets, which are referred 
to herein as memory blocks (Wollmer et  al., 2013). An 
LSTM network is the same as that of a standard RNN, ex-
cept that the summation units in the hidden layer are re-
placed by memory blocks (Graves & Schmidhuber, 2005). 
Figure 7 illustrates a single memory cell in an LSTM layer. 
Every memory block consists of self-connected memory 
cells ct and three multiplicative gate units (input gate it, 
output gate ot, forget gate ft). The input gate controls the 
flow of input activations to the memory cell. The output 
gate controls the output flow of cell activations to the rest 
of the network. The forget gate scales the internal state of 
the cell before adding it as the input to the cell through 
the self-recurrent connection of the cell, thereby adap-
tively forgetting the cell’s memory (Sak et al., 2014). Eqns 

(2) to (6) are used to compute the output of these units 
(Graves, 2012).

( )1 ;t f t f t ff W x U h b-= + +   (2)

( )1 ;t i t i t ii W x U h b-= + +   (3)

( )1 ;t o t o t oo W x U h b-= + +   (4)

( )1 1 ;t t t t c t c t cc f c i W x U h b- -= + + +   (5)

( ),t t th o c=   (6)

where xt is the input vector; s is the activation function; 
Wf, Wi, Wo, Wc, Uf, Ui, Uo, and Uc are the weight vector 
terms; bf, bi, bo, and bc are the corresponding bias terms; 
and ht and ht–1 are the current and previous hidden vec-
tors, respectively.

SVR, which was developed by Vapnik (1995), is an al-
gorithm based on statistical learning theory and is gaining 
popularity due to its many attractive features and prom-
ising generalization performance (Üstün et  al., 2005). 
Support vector machines (SVMs) are developed for risk 
minimization, which reveals that the generalization error 
is bounded by the sum of training errors. This induction 
principle is based on the bounding of the generalization 
error by the sum of the training error and a confidence 
interval term depending on the Vapnik–Chervonenkis 
(VC) dimension. Thus, SVM achieves an optimum net-
work structure by striking an appropriate balance between 
the empirical error and the VC-confidence interval (Chen 
& Wang, 2007). SVMs have been extended to solve non-
linear regression estimation problems through techniques 
such as SVR, which exhibit excellent performance (Cris-
tianini & Shawe-Taylor, 2000; Wei, 2012).

RF is a bagging-based algorithm proposed by Breiman 
(2001). In the RF algorithm, classification trees are used. 
Each tree makes a class prediction based on various pre-
dictor variables. The trees are created using bootstrapping, 
a technique which holds back parts of the available objects 
and uses random subsets to grow various decision trees for 
each class (Brandt et al., 2014). Thus, the large number of 
trees reduces the generalization error (Baudron et al., 2013;  

Figure 7. Architecture of a memory cell in an LSTM
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Pal, 2005). Because the out-of-bag observations are not 
used in the fitting of the trees, the out-of-bag estimates 
can be used to perform cross-validation accuracy estima-
tion (Cutler et al., 2007).

kNN is an unsupervised algorithm. Fix and Hodges 
(1951) proposed a classification method that is easy to im-
plement and provided high accuracy. kNN is a nonpara-
metric method for pattern classification based on deter-
mining the “nearest” training set (Masetic & Subasi, 2016). 
Selecting the optimal number of neighbors k first depends 
on the inspection of the specific data set. Therefore, the 
k value is estimated using the available training sample 
observations (Beli & Guo, 2017). Generally, k is crucial to 
the kNN algorithm, and the accuracy of kNN classifica-
tion is subject to the volume of the classified training data.

2.1.2. Modeling process
Figure 8 plots the maximum wind velocity values recorded 
of Wuqi station during typhoons. As shown, the highest 
values were recorded during Megi (33.5 m/s), followed by 
Soudelor (30.8 m/s) and Dujuan (26.6 m/s). This study 
selected the top three wind velocity values as the testing 
set. Wind velocity data of the remaining 15 typhoons were 
used as the training and validation sets. Model training 
and validation were performed through 10-fold cross-
validation.

The DL-based and ML-based models were used to build 
the rainfall prediction model. Before constructing these 
prediction models, this study identified the optimal weath-
er data from adjacent stations that could effectively rep-
resent wind velocity prediction at Wuqi station. Figure 9a  
presents the root mean squared error (RMSE) results 
for different distance settings using 10 km-interval. The 
RMSE indicator was defined as:

( )2pre obs

1

1RMSE
n

i i
i

V V
n

=

= -∑ ,  (7)

where n is the number of data entries, pre
iV  is the ith pre-

dicted value, and obs
iV  is the ith observed value.

A total of 3, 12, 24, 33, 44, 49, 52, and 55 weather sta-
tions can be found within the distance range from 10 to 
80 km. As illustrated, the smallest RMSE values for the 
prediction models could be obtained when the distance 

was 50 km. Therefore, this study employed meteorological 
data from adjacent 44 stations for the following various 
model constructions.

In the construction of the DL-based and ML-based 
models, the hyperparameters were calibrated through 
trial and error; that is, a single parameter was fixed, and 
another parameter was adjusted to verify the parameter 
combination with a low error. For the DL-based DNN and 
LSTM models, the adaptive moment estimation optimiza-
tion algorithm (Adam optimizer) was used to optimize 
the momentum and learning rate when training the both 
models. The Adam optimizer proposed by Kingma and 
Ba (2015) can be used instead of the classical stochastic 
gradient descent procedure, because it can dynamically 
adjust the learning rate and update the weight of neu-
ral networks, ultimately improving calculation efficiency 
(Yao et al., 2017). Furthermore, this study adopted ReLU 
(Rectified linear unit) activation function, developed by 
Nair and Hinton (2010), in the middle layers (i.e., hidden 
layer and LSTM layer in both models), because it con-
verges quickly and can conquers the problem of vanishing 
gradient. ReLU is defined as the positive part of its argu-
ment: f(x) = max(0, x), where x is the input to a neuron. 
To avoid the presented model from being overfitted, a 
method called dropout can be used (Huang et al., 2019). A 
dropout rate of 0.2 is applied to the output of LSTM layer 
in the study. During the training of both model structures 
for lead time  = 1 h (future 1 h), the parameters of the 
number of hidden layers (Nhl) and the number of neurons 
in a hidden layer (Nneu) were calibrated. First, the Nhl was 
calibrated using the default Nneu = 30. Figure 9b illustrates 
the RMSE results for the DNN and LSTM models for vari-
ous Nhl values. Both models yielded the smallest RMSE 
values when the Nhl was equal to 1. Then, the Nneu was 
calibrated. Figure 9c illustrates the RMSE results for the 
DNN and LSTM models showing that the smallest Nneu 
values are at 50 and 40, respectively.

For ML-based models, the SVR, RF, and kNN model 
parameters for 1-h lead prediction were calibrated. For 
SVR, this study used the radial basis function (RBF) as 
the kernel function because it is a popular kernel func-
tion used in various kernelized learning algorithms. Here, 
parameters cost (C), epsilon (e), and gamma (g) were cali-
brated. Here, C parameter denotes the trades off correct 

Figure 8. Maximum wind velocity in each typhoon
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were calibrated. First, the bsize was calibrated using the 
default dmax  = 30. After obtaining the optimal bsize, the 
parameter e was validated. Figures 10d, 10e reveal that 
the optimal bsize is 80 and dmax is 20. In addition, when 
the kNN model was constructed, the number of neighbors 
(Nnb) were calibrated. Figure 10f reveals that the optimal 
Nnb was 40. Using the same processing, this study per-
formed parameter calibrations for a lead time of 2–6 h 
(a forecast horizon of 2-6 h). Table 2 lists the results of 
parameter calibrations for DL-based and ML-based mod-
els in lead time = 1–6 h. Moreover, Figure 11 displays the 
RMSE values of the DL-based and ML-based models us-
ing parameter calibrations for lead times of 1-6 h.

Figure 9. Calibration of the suitable distance and parameter calibrations

Figure 10. ML-based SVR, RF, kNN

a)

d)

b)

e)

c)

f)

classification of training examples against the maximiza-
tion margin of the decision function, e denotes the maxi-
mum absolute error to a specified margin, and g denotes 
the parameter of the RBF kernel. Figures 10a-10c display 
the process of the trial-and-error approach. First, the C val-
ue was calibrated using the default e = 0.001 and g = 0.01. 

After obtaining the optimal C value (=100), the sub-
sequent parameter e was validated (fixed the optimal C 
value and g  = 0.01). When the optimal e was validated 
to be 0.03, the g was validated. Finally, the optimal values 
were determined to be C = 100, e = 0.03, and g = 0.02. 
When the RF model was constructed, the major param-
eters, size of each bag (bsize) and maximal depth (dmax) 

a) b) c)

Table 2. Parameter calibrations for DL-based and ML-based models in lead time = 1–6 h

Lead time (h)
Models and their parameters

DNN LSTM SVR RF kNN
(Nhl, Nneu) (Nhl, Nneu) (C, e, g) (bsize, dmax) Nnb

1 (1, 50) (1, 40) (100, 0.03, 0.02) (80, 20) 40
2 (1, 53) (1, 41) (90, 0.01, 0.01) (70, 25) 45
3 (1, 56) (1, 41) (80, 0.03, 0.03) (60, 23) 50
4 (1, 59) (1, 44) (80, 0.02, 0.02) (60, 27) 50
5 (1, 70) (1, 46) (90, 0.03, 0.04) (50, 28) 55
6 (1, 68) (1, 43) (90, 0.04, 0.03) (50, 30) 60
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2.2. Development of SCAFFOLDS model

In this section, SCAFFOLDS is explained using the scaf-
fold construction condition of Le Méridien Taichung as a 
case study.

2.2.1. Design wind force of the building, F

The Le Méridien Hotel Taichung has a total height of 145 
m. According to MOI (2015), the closed buildings refer 
to buildings that are enclosed by external walls, and open 
buildings refer to buildings that possess beam columns 
but not walls. Scaffolds of concern in the study belong to 
the open building category. According to the MOI (2015), 
the formula for calculating wind force for open buildings 
(F) is:

F = q(zAc)⋅G⋅Cf ⋅Ac ,  (8)

where G refers to the gustiness response factor of the 
building and its function is to convert the average wind 
velocity into the gust wind velocity; Cf is the wind force 
coefficient of wind effects; AC is the characteristic area of 
an open building subjected to the effect of wind; zAc is 
the centroid elevation of characteristic area Ac; and q(zAc) 
refers to the wind velocity pressure of the height zAc.

The zAc of the collapsed scaffolds of said building is 
139 m, and the characteristic area of the scaffolds (Ac) is 
approximately 600 m2. The value of parameters G and Cf 
in Eqn (8) were obtained from MOI (2015), and the values 
of G and Cf were 1.711 and 1.2, respectively. After sub-
stituting these parameters into Eqn (8), the design wind 
force F can be obtained:

F(z =139 m) = 1232⋅q(zAc).  (9)

In Eqn (9), the unit of wind pressure q(z) is kgf/m2. 
Therefore, the unit of the design wind force (F) would 
be kgf. Because the commonly used unit for force is kN  
(1 kN = 1000 N; 1 kgf = 9.8 N), our formula for converting 
unit F into unit kN is as follows:

F(z =139 m) = 12.07⋅q(zAc).  (10)

2.2.2. Design wind pressure, q(z)

The calculation of q(z) in Eqn (10) is as follows (Lin & 
Yen, 2017; MOI, 2015):

q(z) = 0.06⋅K(z)⋅Kzt ⋅[I⋅V10(C)]2,  (11)

where K(z) refers to the ground condition coefficient of 
height z under the wind pressure; Kzt is the ground condi-
tion coefficient (represents the partial acceleration effect 
of wind velocity that occurs on the top half of a hill or 
mountain ridge as well as the peak near the cliff (generally, 
Kzt can be set to 1); I refers to the occupancy coefficient 
(scaffolds are temporary facilities, and therefore, I could 
be set to 0.9); and V10(C) is the basic design wind velocity.

In Eqn (11), K(z) is the function of the height from 
ground, as follows:

( )
2

2.774 .
g

z
K z z

α
 

= ⋅  
   

 (12)

In Eqn (12), α refers to the value of various ground 
conditions; and zg refers to the gradient elevation. Value 
of α and zg can be obtained from MOI (2015); their values 
are 0.15 and 300 m, respectively. Therefore, K(z = 139 m) 
is equal to 2.202. In Eqn (11), V10(C) is defined as the 
“the 10 minute average wind velocity (return period of 50 
years), measured 10 m above ground (reference height) 
when the ground condition is C” according to MOI (2015); 
ground condition C refers to open and wide land, coast, or 
shore area; ground condition A refers to the city center of 
a metropolis, and ground condition B refers to a suburban 
area of a metropolis or a small town). After substituting 
these parameters into Eqn (11), the wind pressure formula 
can be converted into the following:

q(z=139 m) = 0.107⋅[V10(C)]2.  (13)

Wuqi station is located near the coastal area, and thus, 
the ground condition of the station to be of the type C 
ground condition was determined. According to MOI 
(2015), the corresponding V10(C) of Taichung City is 
32.5 m/s. Therefore, when V10(C) = 32.5 m/s, the corre-
sponding design wind pressure is equal to q(z = 139 m) = 
113 kgf/m2, and the design wind force is equal to F(z = 
139 m) = 1364 kN.

2.2.3. The design wind resistance strength of scaffolds
Frame-type scaffolds belong to the temporary structures. 
Therefore, the scaffolds often cannot achieve the wind 
resistance standards stipulated for permanent buildings. 
In Taiwan, scaffolds can be assembled based on the fol-
lowing laws stipulated by MOI (2014, 2015): “during the 
construction period, sufficient temporary support needs 
to be provided to resist the effect of wind force on the 
structural materials or parts”; “given that the temporary 
structures erected during construction period is used for 
a shorter period of time, basic design wind velocity V10(C) 
with a shorter return period could be used. However, the 
return period of V10(C) cannot be shorter than 10 years”.

In the derivation of the formula for basic design wind 
velocity V10(C) shown previously, V10(C), with a return 
period of 50 years, was used. In accordance with the rel-
evant laws, this study adopted a basic design wind velocity 
return period of 10 years for the scaffolds. According to 
MOI (2015), the wind velocity of a return period of 10 

Figure 11. Performance levels of lead times 1–6 h
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years is 0.782 times the wind velocity of a return period 
of 50 years. Therefore, V10(C)return = 10 = 25.42 m/s. There-
fore, the design wind pressure with a return period of 10 
years could be set to q(z = 139 m)return = 10 = 69.11 kgf/m2,  
whereas the wind resistance strength of the scaffolds 
(i.e., the design wind force of the scaffolds) is F(z  =  
139 m)return=10 = 834 kN.

3. Simulation and collapse evaluation

The simulation enabled the establishment of a complete 
set of evaluation procedures suitable in the study site.

3.1. Procedures for real-time operation of system

Figure 12 illustrates the procedure for real-time operation 
of TISCEWS system. The simulation interval was set to 1 
h, and the forecasting horizon was 1 to 6 h. The proce-
dural steps are as follows:

Step1: Receive typhoon path information from the 
CWB.

Step2: Does the CWB issue a land warning for a ty-
phoon? If yes, make time = t and execute step 3; 
if not, return to step 1.

Step3: Activate the TISCEWS system.
Step4: Collect real-time climate information, including 

meteorological data from the ground stations and 
typhoon events.

Step5: Collect information about the buildings under 
construction (e.g., the condition of the scaffold at 
the construction project site).

Step6: Execute the DL-based model (Module 1) and 
generate the wind velocity prediction values, 
{V  ′t+Dt}Dt=1,6.

Step7: Execute the SCAFFOLDS model (Module 2) and 
generate the V-q-F relationship curve diagram.

Step8: Execute the scaffold collapse evaluation approach 
(Module 3); this step involves plotting of wind 
velocity graph based on the wind velocity values 
predicted in step 6. Additionally, the V-q-F rela-
tionship diagram from step 7 is used to determine 
the corresponding wind pressure {q′t+Dt}Dt=1,6 and 
wind force {F ′t+Dt}Dt=1,6.

Step9: Estimate the safe bearing stress (lmax) and the 
safe bearing capacity (Fmax) of the scaffold struc-
ture.

Step10: Evaluate whether the scaffolding would be de-
stroyed by the typhoon and whether a warning 
is needed within the next 6 h. Use the destruc-
tion evaluation methods of Module 3 to evaluate 
whether the scaffolding would be destroyed and 
at what time. If yes, execute step 11. If not, ex-
ecute step 12 instead.

Step11: Output information regarding the time of pos-
sible scaffold collapse (tcollapse) and the warning 

Figure 12. Concept flowchart of real-time operation
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time (tcr) under the wind velocity alert value 
(warning time, tcr). The issued information in-
cludes the possible destruction time point for the 
scaffold structures collapse )(t , the corresponding 
wind velocity (

collapsetV ) and wind force (
collapsetF

 
), 

the warning time ( crt ), and the corresponding 
wind velocity 

crtV  and wind force 
crtF .

Step12: Update the calculation time, t = t + 1 (h).
Step13: Does the CWB lift the typhoon warning? If yes, 

end the analysis procedure. If not, return to step 
1 and perform the prediction analysis for the next 
time period.

To test the usability of the TISCEWS, simulations were 
performed at the experimental site; these are described in 
the subsequent section.

3.2. Wind velocity simulation results

As mentioned earlier, three typhoon events (Soudelor in 
2015, Dujuan in 2015, and Megi in 2016) were used as a 
test set. The prediction results for the upcoming 1 to 6 h 
for all test typhoon cases are presented in Figure 13. In 
each subfigure, the data for three typhoons are presented; 
on the time series of the x-axis, the first time point for 
Typhoon Soudelor is 01:00 on 2015/08/06 (simulated for 
a total of 114 h), the first time point for Typhoon Dujuan 
is 01:00 on 2015/09/27 (90 h), and the first time point for 
Typhoon Megi is 01:00 on 2016/09/25 (114 h).

As illustrated in Figure 13, LSTM model generated 
data that were closer to the observed data than the DNN, 
SVR, RF and kNN generated data. Additionally, as the 
forecasting horizon increased, peak wind velocity predic-
tion ability decreased gradually. Figure 14 plots the results 
for RMSE indicator; LSTM model exhibited a smaller pre-
diction error than that of the DNN, SVR, RF and kNN 
models. Because LSTM model exhibited significantly bet-
ter performance than other models in generating predic-
tions, the wind velocity prediction results generated using 
LSTM model were used as the input variables for Modules 
2 and 3 in the subsequent scaffold destruction analysis.

3.3. V-q-F diagram

The V-q-F relationship diagram was generated on the ba-
sis of the construction context conditions of the scaffolds 
of the Le Méridien Hotel Taichung case. For the sake of 
plotting the V-q-F diagram (i.e., step 7 of the procedures 
shown in Figure 12), Eqns (13) and (10) can be used to 
obtain the V-q curve and V-F curve:

q′(z =139 m) = 0.107⋅V′ 2;  (14)

F′(z =139 m) = 12.07⋅q′(z =139 m),  (15)

where V ′ = predicted wind velocity (unit: m/s), q′ is the 
corresponding wind pressure (kgf/m2) under the predict-
ed wind velocity, and F ′ is the corresponding wind force 
(kN) under the predicted wind velocity.

The V-q-V relationship curve diagram (Figure 15) can 
be obtained using Eqns (14) and (15). Regarding the safe 
bearing stress of scaffolds (lmax) and the safe bearing ca-

pacity of scaffolds (Fmax) in step 9 of Figure 12, a design 
wind pressure value q(z = 139 m)return=10 was calculated 
according to the laws stipulated by MOI (2015) as the safe 
bearing stress (lmax) value; thus, lmax  = 69.11 kgf/m2.  
For the safe bearing capacity, the design wind force value 
F(z = 139 m)return=10 was selected as the safe bearing ca-
pacity (Fmax) value; thus, Fmax = 834 kN.

3.4. Destruction and warning results

In steps 10 and 11 of the procedures shown in Figure 12, 
the simulation results were evaluated regarding whether 
the scaffolds would be destructed and whether a warn-
ing would be needed within the next 6 h. As shown in 
Table 3 the observed records were firstly analyzed to ob-
tain the theoretical destruction information, including 
the destruction time point tcollapse and the corresponding 
observed wind velocity (

collapsetV ) and wind force (
collapsetF ). 

Additionally, this study simulated the possible destruction 
analysis using the LSTM wind velocity prediction values, 
including the possible destruction time point ( collapset ) 
and its corresponding predicted wind velocity (

collapsetV ) 
and wind force (

collapsetF ). The observed values of the three 
typhoon events indicated that the theoretical destruction 
caused by Typhoon Soudelor occurred at the 52th hour.

Results of the simulation conducted using the predic-
tion values indicated that when the lead time was 1 or 
2 h, the destruction would occur at the 52th and 53th 
hours; no destruction was detected when the lead time 
is larger than 3 h. Similar conditions were also detected 
in the simulations of Typhoons Dujuan and Megi; thus, 
for both typhoons, destruction could be detected when 
the lead time was equal to 1 and 2 h, respectively. The 
longer the lead time in the prediction model was, the less 
accurate peak wind velocity predictions were. Therefore, 
the longer the forecasting horizon was, the more difficult 
it was to detect destruction.

An advanced warning mechanism was established to 
provide the construction contractors with more informa-
tion about the wind velocity enhancement trends; the 
wind velocity alert value was defined as:

Valert = m⋅V10(C)return=10,  (16)

where m is the reduction factor. It was assumed that when 
m = 0.8, Valert would be approximately 20 m/s.

As shown in Table 4, simulations were performed on 
the basis of data from the three typhoons: the warning 
time (tcr), the corresponding wind velocity (

crtV ), and the 
corresponding wind force (

crtF ). Additionally, this study 
also calculated how far in advance the system can issue 
a warning; this was calculated by subtracting the warn-
ing time (tcr) from the theoretical destruction time point 
(tcollapse).

The simulation results for the three typhoons indicated 
that for Typhoon Soudelor, the system could issue a warn-
ing when the lead time was equal to 1 to 6 h, and an early 
warning could be issued 1 to 2 h in advance. For Typhoons 
Dujuan and Megi, the system could issue a warning, and 
the advanced warning of the system varied from 0 to 4 h. 
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Figure 13. Predicted wind velocity graph for the three typhoons

a)

b)

c)

d)

e)

f)
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Figure 14. Performance levels of lead times 1–6 h  
using a testing set Figure 15. The building V-q-F

Table 3. Simulation results for observation and prediction of potential collapse

Typhoon Lead 
time

Observation Prediction

tcollapse (h) collapsetV  (m/s)
collapse

 tF (kN) collapse  t (h)
collapse

 tV (m/s)
collapse

 tF (kN)

Soudelor

1 h 52 27.1 948.5 53 25.7 851.5
2 h 52 27.1 948.5 54 25.5 841.1
3 h 52 27.1 948.5 N/A N/A N/A
4 h 52 27.1 948.5 N/A N/A N/A
5 h 52 27.1 948.5 N/A N/A N/A
6 h 52 27.1 948.5 N/A N/A N/A

Dujuan

1 h 43 26.4 900.1 43 26.6 915.1
2 h 43 26.4 900.1 43 25.4 833.2
3 h 43 26.4 900.1 N/A N/A N/A
4 h 43 26.4 900.1 N/A N/A N/A
5 h 43 26.4 900.1 N/A N/A N/A
6 h 43 26.4 900.1 N/A N/A N/A

Megi

1 h 62 26.5 906.9 63 27.7 992.1
2 h 62 26.5 906.9 63 26.5 908.9
3 h 62 26.5 906.9 N/A N/A N/A
4 h 62 26.5 906.9 N/A N/A N/A
5 h 62 26.5 906.9 N/A N/A N/A
6 h 62 26.5 906.9 N/A N/A N/A

Table 4. Simulation results for a warning when the wind alert value is at 20 m/s

Typhoon Lead  
time

Observation Prediction Length of time for 
early warning (h)tcollapse (h)

collapse
 tV (m/s) cr  t (h)

cr
 tV (m/s)

cr
 tF (kN)

Soudelor

1 h 52 27.1 50 20.4 536.6 2
2 h 52 27.1 50 20.9 564.5 2
3 h 52 27.1 51 20.5 544.2 1
4 h 52 27.1 51 20.1 519.5 1
5 h 52 27.1 51 20.4 535.8 1
6 h 52 27.1 51 20.6 550.1 1

Dujuan

1 h 43 26.4 39 20.0 516.6 4
2 h 43 26.4 41 22.1 630.0 2
3 h 43 26.4 41 20.2 524.5 2
4 h 43 26.4 42 20.0 514.3 1
5 h 43 26.4 42 20.1 521.8 1
6 h 43 26.4 43 20.0 517.0 0

Megi

1 h 62 26.5 59 21.0 567.2 3
2 h 62 26.5 59 20.1 519.7 3
3 h 62 26.5 60 20.3 530.4 2
4 h 62 26.5 60 20.0 516.6 2
5 h 62 26.5 61 20.2 527.3 1
6 h 62 26.5 62 20.0 516.6 0
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Of course, when the warning time length was equal to 0 
h, the warning was issued simultaneously to destruction. 
The m value could be adjusted accordingly to make the 
warning time longer.

4. Discussion

This study demonstrated a methodology for developing 
a usable TISCEWS system for evaluating structural stress 
on scaffolds from the wind force and determining the de-
struction time point in the future. The TISCEWS system 
developed in the study contains three modules. The first 
module involves the establishment of wind velocity pre-
diction models, the second module contains the analysis 
of the wind force on the scaffolds, and the third module 
involves the development of the scaffold collapse evalua-
tion approach.

For the first module, to provide an accurate wind 
velocity prediction for operating the TISCEWS warning 
system, this study established the wind velocity predic-
tion models using DL and ML techniques. The application 
of the LSTM model enhanced the forecasting ability of 
the wind velocity. Because the LSTM is a neural network 
containing memory cell blocks, each memory cell block 
comprises memory cell units that retain states across time-
steps as well as three gate units (input gate, output gate, 
and forget gate). A set of gates is used to control the input, 
output, and storage of information. This architecture al-
lows learning of long-term dependencies (Monner & Reg-
gia, 2012; Schmidhuber, 2015). Therefore, the length of 
time window is determined based on the special units of 
memory blocks (i.e., adaptively forgetting or resetting cell 
memory). LSTM recurrent neural networks are capable of 
learning and remembering long time sequences of inputs 
(Sak et al., 2014; Wei, 2020). The wind prediction results 
revealed that the LSTM model could yield higher accuracy 
than the DNN, SVR, RF, and kNN models. To compare 
the prediction accuracy of DL-based and ML-based mod-
els, first we compute the average RMSE measures for 1–6 h  
predictions using three testing typhoons (i.e., Soudelor, 
Dujuan, and Megi). After calculation, the average RMSE 
values of DNN, LSTM, SVR, RF, and kNN were 2.886, 
2.444, 3.051, 3.113, and 3.432 m/s, respectively. Then, we 
define the improvement rate to compare these models. 
The improvement rate of RMSE, IRRMSE, is given as

( ) ( )RMSE max maxIR  % RMSE RMSE / RMSE 100,i= - ×  (17)

where RMSEmax is the maximal average RMSE value of all 
models, and RMSEi is the average RMSE value at model 
i. The higher the IRRMSE value is, the more accurate the 
performance of the predicted outcomes is.

Here, the RMSEmax can be the average RMSE of kNN 
model. Then, the DNN, LSTM, SVR, and RF models 
revealed respective improvements of 15.90%, 28.79%, 
11.11%, and 9.28% compared with the kNN model. By ex-
amining the IRRMSE results of all models, we determined 
that the improvement metric resulting from the use of 

LSTM was higher than that from the use of DNN, SVR, 
RF and kNN.

It is noted that this study used the trial-and-error 
method to calibrate the model hyperparameters. Future 
studies should conduct an optimization algorithm, such as 
the evolutionary optimization (Liang et al. 2001; Tan et al., 
2003), to increase the ability to determine global optimal 
parameter values, although this is generally at the expense 
of computational efficiency.

Le Méridien Taichung, Taiwan, was used as the experi-
mental site for the second module. In practice, the pro-
posed methodology can be used for determining whether 
the scaffold structure can withstand the stress of the wind 
force. However, various construction projects may not 
have the same scaffold construction conditions as the 
experimental site. Therefore, when using the proposed 
methodology in such construction projects, some param-
eters used in the SCAFFOLDS model should be tuned to 
suit the local construction conditions. For instance, the 
characteristic area of the scaffolds, wind force coefficient 
of wind effects, and centroid elevation of characteristic 
area should be reset.

For the third module, to investigate the effect of the 
reduction factor on the length of time for early warning, 
m values ranging from 0.6 to 0.8 were tested. Figure 16 
illustrates the average lengths of time for early warning 
by using three testing typhoons. As the reduction factor 
decreases, the length of time for early warning increases, 
because the lower the wind velocity alert values are, the 
easier the wind velocity predictions are. However, the re-
quirements of the construction units should be considered 
when determining a suitable m value, and the set m value 
cannot be overly small. An overly small m value could re-
sult in frequent warnings, which would defeat the purpose 
of the warning system.

Conclusions

The frame-type scaffolds used during construction of 
buildings in Taiwan have occasionally been found prone 
to collapse during typhoons. For the construction indus-
try, timely and reliable information on recent, current, and 
future wind speeds are thus vital to enable forecasters to 
make accurate and timely forecasts and for construction 
sites to be managed appropriately. Because construction 

Figure 16. Different reduction rate
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often fails during the construction stage under the influ-
ence of wind, a useful scheme for wind speed forecast-
ing during typhoon periods is highly desired. Hence, the 
study on wind speeds during typhoons is of great signifi-
cance for the construction industry and operations man-
agement.

This study proposed an early warning system for scaf-
fold collapse caused by typhoon winds. The TISCEWS was 
proposed to evaluate the structural stress on scaffolds from 
wind force and determine the destruction time point in 
the future for the construction unit. Three modules were 
involved in establishing the early warning system. The 
study area was Taichung City, Taiwan. The wind velocity 
prediction was performed using the DL-based and ML-
based models. The results indicated that the LSTM model 
outperformed the DNN, SVR, RF and kNN models across 
all lead times (i.e., 1-6 h). Therefore, this study adopted 
the LSTM prediction values when simulating the destruc-
tion analysis for scaffolds. Three typhoons (Soudelor in 
2015, Dujuan in 2015, and Megi in 2016) were selected 
as the test cases. In terms of the wind force destruction 
analysis for scaffolds, the results revealed that the system 
successfully output the possible collapse time for scaf-
folds within 1 to 6 h; the setting of wind velocity alert 
values also effectively advanced the warning time. Finally, 
the achievements of this study can enhance the ability of 
engineers to assess the wind resistance of scaffolds. By 
finishing the warning system for scaffold collapse caused 
by typhoon winds, engineers can reinforce the structure, 
preventing the collapse of scaffolding and reducing wind 
accidents.

Acknowledgements

The author is grateful for the data provided by the Central 
Weather Bureau of Taiwan.

Funding 

The work was supported by the Ministry of Science and 
Technology, Taiwan [number MOST108-2622-M-019-
001-CC3].

Author contributions 

Chih-Chiang WEI conceived the study and was respon-
sible for the design and development of the methodology 
and data analysis, and writing-original draft.

Disclosure statement 

Article does not have any competing financial, profes-
sional, or personal interests from other parties.

References

Baudron, P., Alonso-Sarría, F., García-Aróstegui, J. L., Cáno-
vas-García, F., Martínez-Vicente, D., & Moreno-Brotóns, J. 
(2013). Identifying the origin of groundwater samples in a 

multi-layer aquifer system with Random Forest classification. 
Journal of Hydrology, 499, 303–315. 
https://doi.org/10.1016/j.jhydrol.2013.07.009 

Beli, I. L. K., & Guo, C. (2017). Enhancing face identification 
using local binary patterns and k-nearest neighbors. Journal 
of Imaging, 3, 37. https://doi.org/10.3390/jimaging3030037 

Brandt, M., Grau, T., Mbow, C., & Samimi, C. (2014). Modeling 
soil and woody vegetation in the Senegalese Sahel in the con-
text of environmental change. Land, 3, 770–792. 
https://doi.org/10.3390/land3030770 

Breiman, L. (2001). Random Forests. Machine Learning, 45, 
5–32. https://doi.org/10.1023/A:1010933404324 

Byeon, W., Liwicki, M., & Breuel, T. M. (2015). Scene analysis by 
mid-level attribute learning using 2D LSTM networks and an 
application to web-image tagging. Pattern Recognition Letters, 
63, 23–29. https://doi.org/10.1016/j.patrec.2015.06.003 

Cadenas, E., & Rivera, W. (2010). Wind speed forecasting in 
three different regions of Mexico, using a hybrid ARIMA-
ANN model. Renewable Energy, 35, 2732–2738. 
https://doi.org/10.1016/j.renene.2010.04.022 

Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. 
(2016). Wind speed prediction using a univariate ARIMA 
model and a multivariate NARX model. Energies, 9, 109. 
https://doi.org/10.3390/en9020109 

Chen, J., Zeng, G., Zhou, W., Du, W., & Lu, K. (2018). Wind 
speed forecasting using nonlinear-learning ensemble of deep 
learning time series prediction and extremal optimization. 
Energy Conversion and Management, 165, 681–695. 
https://doi.org/10.1016/j.enconman.2018.03.098 

Chen, K. Y., & Wang, C. H. (2007). Support vector regression 
with genetic algorithms in forecasting tourism demand. Tour-
ism Management, 28, 215–226. 
https://doi.org/10.1016/j.tourman.2005.12.018 

Cheng, C. C., Hsu, N. S., & Wei, C. C. (2008). Decision-tree anal-
ysis on optimal release of reservoir storage under typhoon 
warnings. Natural Hazards, 44, 65–84. 
https://doi.org/10.1007/s11069-007-9142-1 

Chou, J. S., Truong, D. N., & Che, Y. (2020). Optimized multi-
output machine learning system for engineering informatics 
in assessing natural hazards. Natural Hazards, 101, 727–754. 
https://doi.org/10.1007/s11069-020-03892-2 

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical 
evaluation of gated recurrent Neural networks on sequence 
modeling. In NIPS 2014 Deep Learning and Representation 
Learning Workshop. https://arxiv.org/abs/1412.3555v1

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to sup-
port vector machines and other Kernel-based learning methods. 
Cambridge: Cambridge University Press. 
https://doi.org/10.1017/CBO9780511801389 

Cutler, D., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., 
Gibson, J., & Lawler, J. J. (2007). Random forest for classifica-
tion in ecology. Ecology, 88, 2783–2792. 
https://doi.org/10.1890/07-0539.1 

Dongmei, H., Shiqing, H., Xuhui, H., & Xue, Z. (2017). Predic-
tion of wind loads on high-rise building using a BP neural 
network combined with POD. Journal of Wind Engineering 
& Industrial Aerodynamics, 170, 1–17. 
https://doi.org/10.1016/j.jweia.2017.07.021 

Du, J., & Xu, Y. (2017). Hierarchical deep neural network for 
multivariate regression. Pattern Recognition, 63, 149–157. 
https://doi.org/10.1016/j.patcog.2016.10.003 

Fix, E., & Hodges, J. L. (1951). Discriminatory analysis, nona-
parametric discrimination: Consistency properties (Technical 
Report 4). USAF School of Aviation Medicine, Randolph 
Field. https://doi.org/10.1037/e471672008-001 

https://doi.org/10.1016/j.jhydrol.2013.07.009
https://doi.org/10.3390/land3030770
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.patrec.2015.06.003
https://doi.org/10.1016/j.renene.2010.04.022
https://doi.org/10.3390/en9020109
https://doi.org/10.1016/j.enconman.2018.03.098
https://doi.org/10.1016/j.tourman.2005.12.018
https://doi.org/10.1007/s11069-007-9142-1
https://doi.org/10.1007/s11069-020-03892-2
https://arxiv.org/abs/1412.3555v1
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1016/j.jweia.2017.07.021
https://doi.org/10.1016/j.patcog.2016.10.003
https://doi.org/10.1037/e471672008-001


244 C.-C. Wei. Collapse warning system using LSTM neural networks for construction disaster prevention ...

Glüge, S., Böck, R., Palm, G., & Wendemuth, A. (2014). Learn-
ing long-term dependencies in segmented-memory recurrent 
neural networks with backpropagation of error. Neurocomput-
ing, 141, 54–64. https://doi.org/10.1016/j.neucom.2013.11.043 

Graves, A. (2012). Supervised sequence labelling with recurrent 
neural networks (vol. 385). Springer. 
https://doi.org/10.1007/978-3-642-24797-2 

Graves, A. (2013). Generating sequences with recurrent neural 
networks. https://arxiv.org/abs/1308.0850v5 

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme clas-
sification with bidirectional LSTM and other neural network 
architectures. Neural Networks, 18, 602–610. 
https://doi.org/10.1016/j.neunet.2005.06.042 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term mem-
ory. Neural Computation, 9, 1735–1780. 
https://doi.org/10.1162/neco.1997.9.8.1735 

Hu, Q., Zhang, R., & Zhou, Y. (2016). Transfer learning for short-
term wind speed prediction with deep neural networks. Re-
newable Energy, 85, 83–95. 
https://doi.org/10.1016/j.renene.2015.06.034 

Huang, C. J., & Kuo, P. H. (2018). A short-term wind speed fore-
casting model by using artificial neural networks with sto-
chastic optimization for renewable energy systems. Energies, 
11, 2777. https://doi.org/10.3390/en11102777 

Huang, X., Gao, L., Crosbie, R. S., Zhang, N., Fu, G., & Doble, R.  
(2019). Groundwater recharge prediction using linear regres-
sion, multi-layer perception network, and deep learning. Wa-
ter, 11, 1879. https://doi.org/10.3390/w11091879 

Huang, Y., Jin, L., Zhao, H., & Huang, X. (2018a). Fuzzy neural 
network and LLE Algorithm for forecasting precipitation in 
tropical cyclones: comparisons with interpolation method by 
ECMWF and stepwise regression method. Natural Hazards, 
91, 201–220. https://doi.org/10.1007/s11069-017-3122-x 

Huang, Y., Liu, S., & Yang, L. (2018b). Wind speed forecasting 
method using EEMD and the combination forecasting meth-
od based on GPR and LSTM. Sustainability, 10, 3693. 
https://doi.org/10.3390/su10103693 

Kim, M., Park, M., Im, J., Park, S., & Lee, M. I. (2019). Machine 
learning approaches for detecting tropical cyclone formation 
using satellite data. Remote Sensing, 11, 1195. 
https://doi.org/10.3390/rs11101195 

Kingma, D. P., & Ba, J. L. (2015). ADAM: A method for stochastic 
optimization. In International Conference on Learning Repre-
sentations (ICLR 2015).

Liang, K. H., Yao, X., & Newton, C. S. (2001). Adapting self-adap-
tive parameters in evolutionary algorithms. Applied Intelli-
gence, 15, 171–180. https://doi.org/10.1023/A:1011286929823 

Lin, C. C., & Yen, C. (2016). Research on the safety performance 
influence factors and safety design key points of scaffolding (Re-
port No. ILOSH104-S310). Institute of Labor, Occupational 
Safety and Health, Ministry of Labor, Taiwan (in Chinese).

Lin, C. C., & Yen, C. (2017). Study on wind accidents and wind 
loads of facade frame type scaffolds (Report No. ILOSH105-
S307). Institute of Labor, Occupational Safety and Health, 
Ministry of Labor, Taiwan (in Chinese). 

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review 
of recurrent neural networks for sequence learning. 
https://arxiv.org/abs/1506.00019v4

Liu, H., Mi, X. W., & Li, Y. F. (2018). Wind speed forecasting 
method based on deep learning strategy using empirical 
wavelet transform, long short term memory neural network 
and Elman neural network. Energy Conversion and Manage-
ment, 156, 498–514. 
https://doi.org/10.1016/j.enconman.2017.11.053 

Lu, W., Zhang, Y., Xu, C., Lin, C., & Huo, Y. (2019). A deep 
learning-based satellite target recognition method using radar 
data. Sensors, 19, 2008. https://doi.org/10.3390/s19092008 

Mallick, M., Mohanta, A., Kumar, A., & Patra, K. C. (2020). 
Prediction of wind-induced mean pressure coefficients using 
GMDH neural network. Journal of Aerospace Engineering, 33, 
04019104. 
https://doi.org/10.1061/(ASCE)AS.1943-5525.0001101 

Masetic, Z., & Subasi, A. (2016). Congestive heart failure detec-
tion using random forest classifier. Computer Methods and 
Programs in Biomedicine, 130, 54–64. 
https://doi.org/10.1016/j.cmpb.2016.03.020 

Ministry of the Interior. (2014). Building technical regulations 
(Act No. 1020812044). Taiwan (in Chinese).

Ministry of the Interior. (2015). Wind resistance design specifi-
cations and commentary of buildings (Act No. 1030805400). 
Taiwan (in Chinese).

Ministry of Labor. (2014). Establish safety and health facilities 
standards (Act No. 10302006411). Taiwan (in Chinese).

Monner, D., & Reggia, J. A. (2012). A generalized LSTM-like 
training algorithm for second-order recurrent. Neural Net-
works, 25, 70–83. https://doi.org/10.1016/j.neunet.2011.07.003 

Nair, V., & Hinton, G. (2010). Rectified linear units improve re-
stricted Boltzmann machines. In Proceedings of the 27th In-
ternational Conference on Machine Learning (pp. 807–814), 
Haifa, Israel.

Noorollahi, Y., Jokar, M., & Kalhor, A. (2016). Using artificial 
neural networks for temporal and spatial wind speed fore-
casting in Iran. Energy Conversion and Management, 115, 
17–25. https://doi.org/10.1016/j.enconman.2016.02.041 

Pal, M. (2005). Random forest classifier for remote sensing clas-
sification. International Journal of Remote Sensing, 26, 217–
222. https://doi.org/10.1080/01431160412331269698 

Panapakidis, I. P., Michailides, C., & Angelides, D. C. (2019). A 
data-driven short-term forecasting model for offshore wind 
speed prediction based on computational intelligence. Elec-
tronics, 8, 420. https://doi.org/10.3390/electronics8040420 

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term mem-
ory recurrent neural network architectures for large scale 
acoustic modeling. In Proceedings of the Annual Conference 
of International Speech Communication Association (INTER-
SPEECH).

Schmidhuber, J. (2015). Deep learning in neural networks: An 
overview. Neural Networks, 61, 85–117. 
https://doi.org/10.1016/j.neunet.2014.09.003 

Sheela, K. G., & Deepa, S. N. (2013). Neural network based hy-
brid computing model for wind speed prediction. Neurocom-
puting, 122, 425–429. 
https://doi.org/10.1016/j.neucom.2013.06.008 

Shi, X., Lei, X., Huang, Q., Huang, S., Ren, K., & Hu, Y. (2018). 
Hourly day-ahead wind power prediction using the hybrid 
model of variational model decomposition and long short-
term memory. Energies, 11, 3227. 
https://doi.org/10.3390/en11113227 

Tan, K. C., Khor, E. F., Lee, T. H., & Sathikannan, R. (2003). 
An evolutionary algorithm with advanced goal and priority 
specification for multi-objective optimization. Journal of Ar-
tificial Intelligence Research, 18, 183–215. 
https://doi.org/10.1613/jair.842 

Üstün, B., Melssen, W. J., Oudenhuijzen, M., & Buydens, L. M. C. 
(2005). Determination of optimal support vector regression 
parameters by genetic algorithms and simplex optimization. 
Analytica Chimica Acta, 544, 292–305. 
https://doi.org/10.1016/j.aca.2004.12.024 

https://doi.org/10.1016/j.neucom.2013.11.043
https://doi.org/10.1007/978-3-642-24797-2
https://arxiv.org/abs/1308.0850v5
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/en11102777
https://doi.org/10.3390/w11091879
https://doi.org/10.1007/s11069-017-3122-x
https://doi.org/10.3390/su10103693
https://doi.org/10.3390/rs11101195
https://doi.org/10.1023/A:1011286929823
https://arxiv.org/abs/1506.00019v4
https://doi.org/10.1016/j.enconman.2017.11.053
https://doi.org/10.3390/s19092008
https://doi.org/10.1061/(ASCE)AS.1943-5525.0001101
https://doi.org/10.1016/j.cmpb.2016.03.020
https://doi.org/10.1016/j.neunet.2011.07.003
https://doi.org/10.1016/j.enconman.2016.02.041
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.3390/electronics8040420
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neucom.2013.06.008
https://doi.org/10.3390/en11113227
https://doi.org/10.1613/jair.842
https://doi.org/10.1016/j.aca.2004.12.024


Journal of Civil Engineering and Management, 2021, 27(4): 230–245 245

Vapnik, V. (1995). The nature of statistical learning theory. Sprin-
ger-Verlag. 
https://doi.org/10.1007/978-1-4757-2440-0 

Wei, C. C. (2012). Wavelet kernel support vector machines 
forecasting techniques: case study on water-level predictions 
during typhoons. Expert Systems with Applications, 39, 5189–
5199. https://doi.org/10.1016/j.eswa.2011.11.020 

Wei, C. C. (2014). Surface wind nowcasting in the Penghu Is-
lands based on classified typhoon tracks and the effects of the 
Central Mountain Range of Taiwan. Weather and Forecasting, 
29, 1425–1450. https://doi.org/10.1175/WAF-D-14-00027.1 

Wei, C. C. (2015). Forecasting surface wind speeds over offshore 
islands near Taiwan during tropical cyclones: comparisons of 
data-driven algorithms and parametric wind representations. 
Journal of Geophysical Research: Atmospheres, 120, 1826–1847. 
https://doi.org/10.1002/2014JD022568 

Wei, C. C. (2017). Conceptual weather environmental forecast-
ing system for identifying potential failure of under-construc-
tion structures during typhoons. Journal of Wind Engineering 
and Industrial Aerodynamics, 168, 48–59. 
https://doi.org/10.1016/j.jweia.2017.05.010 

Wei, C. C. (2019). Study on wind simulations using deep learn-
ing techniques during typhoons: a case study of Northern 
Taiwan. Atmosphere, 10, 684. 
https://doi.org/10.3390/atmos10110684 

Wei, C. C. (2020). Comparison of river basin water level forecast-
ing methods: sequential neural networks and multiple-input 
functional neural networks. Remote Sensing, 12, 4172. 
https://doi.org/10.3390/rs12244172 

Weninger, F., Geiger, J., Wöllmer, M., Schuller, B., & Rigoll, G. 
(2014). Feature enhancement by deep LSTM networks for 
ASR in reverberant multisource environments. Computer 
Speech and Language, 28, 888–902. 
https://doi.org/10.1016/j.csl.2014.01.001 

Wollmer, M., Eyben, F., Graves, A., Schuller, B., & Rigoll, G. 
(2010). Bidirectional LSTM networks for context-sensitive 
keyword detection in a cognitive virtual agent framework. 
Cognitive Computation, 2, 180–190. 
https://doi.org/10.1007/s12559-010-9041-8 

Wollmer, M., Schuller, B., & Rigoll, G. (2013). Keyword spotting 
exploiting long short-term memory. Speech Communication, 
55, 252–265. https://doi.org/10.1016/j.specom.2012.08.006 

Yao, C., Cai, D., Bu, J., & Chen, G. (2017). Pre-training the deep 
generative models with adaptive hyperparameter optimiza-
tion. Neurocomputing, 247, 144–155. 
https://doi.org/10.1016/j.neucom.2017.03.058 

Zhang, Y., Wang, X., & Tang, H. (2019). An improved Elman 
neural network with piecewise weighted gradient for time 
series prediction. Neurocomputing, 359, 99–208. 
https://doi.org/10.1016/j.neucom.2019.06.001

https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1016/j.eswa.2011.11.020
https://doi.org/10.1175/WAF-D-14-00027.1
https://doi.org/10.1002/2014JD022568
https://doi.org/10.1016/j.jweia.2017.05.010
https://doi.org/10.3390/rs12244172
https://doi.org/10.1016/j.csl.2014.01.001
https://doi.org/10.1007/s12559-010-9041-8
https://doi.org/10.1016/j.specom.2012.08.006
https://doi.org/10.1016/j.neucom.2017.03.058
https://doi.org/10.1016/j.neucom.2019.06.001

