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Abstract. Water seepage (WS) is a paramount defect during tunnel operation and directly affects the operational safety 
of tunnels. Effectively predicting and diagnosing WS are problems that urgently need to be solved. This paper presents 
a standard and an evaluation index system for WS grades and constructs a sample dataset from monitoring recoreds 
for demonstration purposes. First, we use bootstrap resampling to build a random forest (RF) seepage risk prediction 
model. Second, the optimal branch and parameters are selected by the 5-fold cross-validation method to establish the RF 
prediction training model. Additionally, to illustrate the effectiveness of the method, the operational stage of Wuhan Metro 
Line 3 in China is taken as a case study. The results conclude that the segment spalling area, crack width, and loss rate of 
the rebar cross-section have a strong influence on WS. Finally, the test data are predicted, and the prediction result error 
index is calculated. Compared with the predictions of some traditional machine learning methods, such as support vector 
machines and artificial neural networks, RF prediction has the highest accuracy and is the closest to the true value, which 
demonstrates the accuracy of the model and its application potential.
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Introduction

With the increase in urbanization and population influx 
around the world, urban problems such as insufficient 
urban space capacity and frequent traffic jams are con-
stantly emerging (Zho et al., 2019; He et al., 2019; Zhang 
et  al., 2020a, 2020b). Urban metro systems are popular 
due to their energy savings, high passenger flow, safety, 
green transportation characteristics, and so on (Rahim 
et  al., 2015; Qian et  al., 2019; Pan et  al., 2019c). By the 
end of 2019, metros had been built and had begun oper-
ating in 40 areas in mainland China, with a total length 
of approximately 6700 km. Furthermore, during the rapid 
development of urban rail transit, we should not neglect 
the importance and attention given to the safety manage-
ment of metro operation (Li et  al., 2017a). Due to the 
special structure of the shield tunnel, in the process of 
tunnel operation, under the influence of the tunnel itself 
and external use, various defects appear in its structure, 
which leads to a risk of function reduction and threatens 
operational safety (Wang et al., 2020). 

Among the common defects that occur during the op-
eration of shield tunnels are water seepage (WS), cracks, 

uneven settlement, concrete cracking, dislocation, and 
bolt failure. Under the interaction of these defects, other 
defects continue to develop, which have a significant im-
pact on the operational safety and service life of the tunnel 
(Pan et al., 2020). WS has one of the highest occurrence 
probabilities and some of the more severe consequences. 
According to the statistics, the cases of damage caused 
by WS account for 70% of all types of hazards, and the 
loss of the use of tunnels due to WS occurs in 30% of 
all cases of WS. Cheng and Huang (2014) found a total 
of approximately 20,000 WS occurrences by investigating 
all operational metro routes in Shanghai, and WS is an 
important risk factor for other defects. Dong et al. (2017) 
investigated shield tunnels in Beijing and found that ap-
proximately 77% of the defects were related to WS. This 
is due to the special structure of the shield tunnel, such 
as the use of segment splicing and grouting holes on each 
segment, which increases the possibility of metro tunnel 
leakage (Li et al., 2019). Furthermore, WS causes cracks 
in the tunnel structure, increased cracks, rust inside the 
rails, and corrosion in the interior structure. If the leakage 
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continues to worsen, the tunnel structure itself is endan-
gered, and the stability of the tunnel structure is elimi-
nated, directly affecting the safety of metro operation. In 
severe cases, these defects cause extensive casualties and 
great property loss (Hu et al., 2019).

The above security risks have led to growing public 
concerns about the safety of tunnel operations. Therefore, 
the analysis, prediction, and diagnosis of WS risk in the 
tunnel operation period is not only of engineering sig-
nificance for the safe operation and management of met-
ro tunnels but also significant in the development of the 
economy and society. Risk prediction plays an important 
role in safe metro operation to illustrate the potential safe-
ty risks and the risk factors’ contribution to the occurrence 
of an accident. Critical potential risks and risk factors can 
then be diagnosed to assist operators and maintainers in 
determining critical safety checkpoints in the operation 
stage (Zhang et al., 2016). However, the shield method is 
a new construction method, and the development of sub-
ways in China is relatively new, so there are few studies on 
the shield method in tunnel construction. Moreover, at the 
present stage, tunnels constructed by the shield method 
are mostly in the early stage of their operational cycle. 
Compared with the risks in the shield construction stage, 
there are fewer risks in the operation stage. Therefore, the 
existing studies on the risks of shield tunnels are mostly 
focused on the construction stage (Ding et al., 2014).

The aim of our study is to establish a prediction and 
diagnosis method for WS in operational shield tunnels 
based on a random forest (RF) algorithm that includes the 
impact of the combined effects of uncertain and complex 
multisource environmental factors (Zhou et  al., 2017). 
Hence, we explore a combination of quantitative and 
qualitative methods to manage the leakage risk of shield 
tunnels during the operation period by considering the 
coupling relationship of various risk indicators. To deter-
mine the security status of operating tunnels in a timely 
manner and study areas where WS has already appeared 
in an operating tunnel, we rationally design correspond-
ing defect treatment measures based on the symptoms of 
water seepage to ensure the safe operation of metro tun-
nels and ensure that they reach their expected service life.

The remainder of our paper is organized as follows: 
Section 1 reviews the literature related to this study. In Sec-
tion 2, the RF method is presented. Section 3 constructs 
the WS risk prediction model for operational shield tun-
nels. In Section 4, a case study based on RF verifies the 
effectiveness and applicability of our approach. Section 5 
presents the results of a case study in Wuhan Metro Line 
3 and a discussion. Last Section provides the research con-
clusions and future work.

1. Literature review

Generally, numerical simulation methods and qualitative 
analysis tools have been the major approaches in tun-
nel safety regarding WS issues. For example, Wang et al. 
(2013) developed a prediction method for WS based on 
real-time monitoring data during tunnel construction. 

Mao et al. (2020) applied 3D numerical simulations to de-
termine the distribution of the total water head and water 
pressure in cracks for all combinations of water leakage 
positions during the operation periods of multi-arch tun-
nels in loess areas. Shi et  al. (2013) introduced the im-
proved analytic hierarchy process (AHP) into leakage risk 
assessment for a highway tunnel. Based on the analysis of 
the risk system, the degree of influence of the risk indica-
tors on the leakage risk was determined, and the related 
rankings were obtained. Huang and Li (2017) used a fully 
convolutional network to study tunnel leakage through 
image recognition algorithms. Gao et al. (2019) used nu-
merical simulations and 3D physical model tests to study 
the occurrence mechanisms and evolution laws of WS in 
the operation of the Kaiyuansi Tunnel. 

The application of the current main methods at dif-
ferent stages of different types of tunnels is discussed in 
the literature. Currently, shield metro tunnels in China are 
mostly in the initial stage of their operation, so the exist-
ing research on shield tunnel risk is focused mostly on the 
construction stage. Related studies on WS during tunnel 
operation are generally performed for other types of tun-
nels, such as railway and highway tunnels. The risk factors 
for WS in tunnels have a certain degree of interdepen-
dence rather than being purely independent of each other. 
Existing studies focus mostly on the unilateral impact of a 
single risk indicator on leakage without considering each 
indicator. The correlation between the indicators also can-
not enable the real-time updating of the risk assessment 
results based on the measured data (Liu et al., 2018b).

Based on the above observations, we used the RF algo-
rithm, which creates mathematical expressions to fit a set 
of datasets (Zhou et al., 2020a, 2020b). Multiple classifica-
tion and regression tree models are generated and used as 
base models. The RF algorithm has excellent prediction 
and diagnosis performance because the predicted results 
are derived from the integrated predictions of many deci-
sion trees (Zhang et al., 2020a). Compared with machine 
learning algorithms such as backpropagation (BP) neural 
networks, support vector machines (SVMs), and decision 
trees, the RF algorithm has higher prediction accuracy (Yu 
et al., 2019; Zhang et al., 2020d). At present, it is mainly 
used in the fields of medicine (Pan et al., 2017), econom-
ics (Behrens, 2020), and management (Grushka-Cockayne 
et  al., 2017; Mueller, 2020). In the field of engineering, 
the RF algorithm has been studied for crack prediction 
(Bhattacharya & Mishra, 2018), energy evaluation, and 
construction management (Pan & Zhang, 2020, 2021). 
The results of the above studies have demonstrated the 
appealing performance of RF in solving both regression 
and classification problems.

2. Methodology

2.1. RF regression algorithm

RF is a combination algorithm based on classification 
trees proposed by Breiman (2001), which integrates two 
powerful machine learning techniques, bootstrap aggre-
gating and random subspaces (Ho, 1998).
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2.1.1. Basic principles of RFs
Similar to the traditional regression model, RF regression 
can explain the influence of some independent variables 
on dependent variables (Zhou et al., 2019). Suppose that 
there are n observations  – that is, n cases  – for the de-
pendent variable Y, and there are k independent variables 
that have an influence on it. In the process of constructing 
the regression tree, RF randomly extracts some observed 
values of the dependent variable Y by the bootstrap resa-
mpling method and randomly selects a specified number 
of variables from among the k independent variables to 
determine the node of the classification tree. In this way, 
each constructed regression tree may be different due to 
randomness. Based on this, RF can usually randomly gen-
erate several hundred or even thousands of classification 
trees, from which the tree with the highest degree of repe-
tition is selected as the final result. The combined model is 
constituted from the regression tree ( ){ }, , 1,2, ,jh X j bθ = 

, and the predicted value of the RF regression model is 
determined by averaging the average values of the j re-
gression trees ( ), jh X θ . The model satisfies the condition 
that the multiple training sets forming the RFs are inde-
pendent, so the mean-square generalization error of the 
prediction vector ( )h X  is ( )( ),X YE Y h X− .

2.1.2. RF algorithm steps
The steps of the RF algorithm are shown diagrammatically 
in Figure 1.
(1) From the n cases of the original dataset, the bootstrap 

method is used to extract b training sample sets re-
peatedly, and b regression trees are constructed. Each 
time the training samples are selected, b samples of 
the cases not selected are extra-bag (out-of-bag, OOB) 
samples, and these form the test sample set.

(2) When constructing a regression tree, at the branch 
nodes of each tree, ( )try trym m k<  variables are ran-
domly selected from the k independent variables as 
the candidate branch variables, and then the optimal 
branch is selected from them according to the branch 
goodness criterion. When the R software application is 
used to establish the RF regression model, the default 
parameter / 3trym k= .

(3) Each regression tree branches recursively from top to 
bottom and grows continuously. Reaching n trees is 
the termination condition for regression tree growth.

(4) The b generated regression trees constitute an RF re-
gression model, and the model estimation effect is 
evaluated by the accuracy of the OOB data predic-

tion – that is, measured by the mean-square error of 
the test set. Assuming the number of data samples 
outside the bag is m, we have
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where yi represents the true value of the dependent vari-
able in the OOB samples, iy

∧
 represents the predicted value 

obtained using an RF regression model, and 2
y

∧
σ  represents 

the variance in the OOB predicted value. 

2.2. Analysis on evolution mechanism  
of seepage water

Various defects appear in the structure of the tunnel under 
the influence of the specific structure of the shield tun-
nel itself and external use during operation, which cause 
a risk of reduced functionality and threats to operational 
safety (Li et al., 2020). Most defects, such as material de-
terioration and uneven settlement, cause deformation and 
destruction in the tunnel structure, eventually resulting in 
WS and severe water inrush. Therefore, to determine the 
occurrence, development mechanism, and mutual influ-
ence of various defects, the risk mechanism of water leak-
age during the operation period should be understood to 
establish the WS risk index system in the following section 
and control the risk to ensure the safe operation of the 
metro (Jeyisanker & Gunaratne, 2009). The main defects 
and their mechanisms in shield tunnels are as follows:
(1) Segment cracks. Because a shield tunnel is constructed 

of segments supporting the soil and surrounding rock 
around the tunnel, the segments are important parts 
of the shield tunnel. Without considering the quality 
of segment delivery and construction, the main causes 
of cracks in segments of shield tunnels during the op-
eration period can be divided into internal causes and 
external causes. The main internal causes are as fol-
lows: in long-term contact with the surrounding soil, 
the reinforcing materials in the segment react with 
water and other substances in the environment, re-
sulting in corrosion, which makes the concrete of the 

Figure 1. The steps of the RF algorithm
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segment expand and gradually fall off, and cracks ap-
pear. The main external causes are as follows: due to 
the distribution of soil and surrounding rock around 
the tunnel, uneven settlement or a sharp increase in 
the external load, a stress concentration area may ap-
pear in the segment, and then microcracks gradually 
develop into cracks under the action of water in the 
soil; under long-term pressure from the surrounding 
soil and rock, there may be large internal forces in the 
segment, which cause the segment to warp. If the bolts 
used to connect and fix the segment fall off or fail, a 
local stress concentration will develop in the segment, 
leading to segment cracks (Liu et al., 2018a).

(2) Excessive opening of segment joints. There is a gap 
between the segments supporting the tunnel rock and 
soil, and bolts between the segments are intended to 
prevent the gap from being too large; failure leads 
to defects such as leakage and bolt failure (Liu et al., 
2020). In addition to the problems of bolt quality 
and the initial opening of joints caused by errors in 
segment assembly during construction, the bolt con-
nection is usually a stress concentration area under 
external forces during the tunnel operation period. 
In the contact between the segment and the bolt, the 
concrete can easily crack because of the large tensile 
stress, which leads to problems with the connection 
between the bolt and the segment. The pretightening 
force of the bolt is released continuously during this 
process, and the bolt is unable to effectively connect 
the adjacent segments. The distance between the seg-
ments then gradually increases under external forces; 
that is, the joint opening becomes increasingly large. 
The increase in the joint opening leads to the gradual 
failure of bolts, cracks in segments, and aggravated 
leakage problems.

(3) Differential settlement of segments. This refers to 
the uneven settlement of tunnel segments caused by 
uneven external loads or differing structures of the 
rock and soil of the tunnel during the operation pe-
riod (Pan et al., 2019c). The geological factors around 
the tunnel, such as the interface between different 
geological environments and uneven soil, cause dif-
fering settlement of the segments in different parts of 
the tunnel during the operation period; tunnel seg-
ments are also easily affected by external forces, such 
as the water around the tunnel (Hu et  al., 2018). In 
the case of uneven or sudden changes in pressure and 
earth pressure, the difference in force between differ-
ent parts can be large, resulting in the uneven settle-
ment of the segments. Other tunnel defects, such as 
bolt failure, excessive joint opening, misalignment of 
segments, and WS leakage, aggravate the differential 
settlement of the tunnel segments, and the differential 
settlement of the segments also causes the dislocation 
of the segments to increase along with the opening of 
the joints and the failure rate of bolts.

(4) Segment dislocation. This refers to large and small 
dislocations between different segments relative to the 
rock and soil surface of a tunnel. The main reason for 

the misalignment of segments during the operation 
of the tunnel is that an uneven load causes uneven 
settlement of the rock and soil in the tunnel, which 
causes different forces on different areas. Compared 
with the rock and soil mass, the segment of the tube 
produces different displacements; the deformation of 
the tunnel structure caused by the shield construction 
or surrounding construction also causes segments in 
different positions to become misaligned. A staggered 
tube segment also provides leakage channels for the 
moisture in the soil and then causes WS; a staggered 
tube segment also causes the loss of the pretighten-
ing force of the bolts connecting the tube segments, 
leading to bolt failure and cracking in the tube seg-
ments. In addition, the number of joints between the 
segments is increased (Wang et al., 2019).

(5) Bolt failure. Bolts are important components that con-
nect longitudinal segments and circumferential seg-
ments to ensure the structural rigidity of the tunnel, 
and the water stop between the segments is closely 
connected with the bolts to ensure good sealing per-
formance between the tunnel segments. In addition 
to the quality of bolts and irregular construction, the 
reasons for bolt failure during the tunnel operation 
period are as follows: the water stop and bolts are cor-
roded under the action of the tunnel rock and soil, 
and their performance is gradually degraded; that is, 
there is no water stop functionality. Regarding the ef-
fect of connecting the segments properly, if the exter-
nal force is too large or uneven, a large internal force 
or stress concentration area is formed at the bolt con-
nection, which leads to bolt failure (Wang et al., 2014). 
The failure of the bolts causes the joints to open and 
the tube segments to crack in addition to causing dis-
location, WS, and other types of defects.

(6) Seepage water. There are three kinds of seepage wa-
ter during the operation period of a shield tunnel: 
joint leakage, crack leakage, and grouting hole leak-
age. Leakage in a joint is mainly due to poor sealing 
and water resistance at the joint; the leakage channel 
is formed by the water supply, producing leakage wa-
ter. Therefore, a possible cause of joint leakage is that 
the waterproof material becomes corroded through 
long-term contact with rock and soil and gradual ag-
ing, and it loses the functions of water stopping and 
waterproofing (Qiu et al., 2020). Another possibility is 
that the waterproof sealing material cannot protect the 
joint by preventing deformation, which makes gaps 
appear in the joint, resulting in leakage; in addition to 
hole position errors caused by construction, grouting 
hole leakage is mainly due to the failure of the water-
proof plug at the grouting hole; crack leakage mainly 
refers to the leakage of water. Segment stagger and 
bolt failure indirectly lead to the excessive opening of 
joints and cracks in segments, which leads to water 
leakage, which in turn aggravates the development of 
segment cracks, increases the amount of segment stag-
ger, increases the joint openings, etc.
As one of the most common defects in tunnel opera-

tion, leakage not only aggravates other defects in tunnels 
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but also threatens the safety of tunnel operation to a great 
extent, such as by affecting the stability of tunnels and in-
creasing the risk of train instability, as described below:

 – WS leads to adverse consequences, such as weather-
ing of the tunnel structure and a certain degree of 
corrosion, to a large extent. If the situation becomes 
more severe, it may cause the overall loss of the 
structure and increase the safety risks for operating 
subway tunnels. In addition to water leakage itself, 
weathering, corrosion, and other chemical substances 
are likely to cause severe structural damage.

 – The corrosion of the tunnel structure by WS also 
causes substantial damage to other necessary equip-
ment. The combination of the two types of damage 
aggravates the damage caused by water leakage. Seri-
ous cases of mud in tunnels and other severe dis-
asters increase the risk of personal safety accidents.

 – The hazard of WS is a continuously developing pro-
cess. When leakage water remains in a tunnel for a 
long time, it leads to a vicious cycle in the tunnel, 
and internal corrosion hazards may often spread to 
the outside of the tunnel. Such a vicious cycle leads 
to a decrease in tunnel durability during tunnel op-
eration.

3. Risk prediction model for WS  
in operating tunnels

The technical roadmap of the risk prediction model for 
WS in operating tunnels based on the RF algorithm is 
shown in Figure 2.

3.1. Construction of the seepage  
water risk assessment system 

(1) Evaluation system construction. Relevant influenc-
ing factors are obtained by analyzing the formation 
mechanism of WS. Based on a large amount of prac-
tical experience and related references, a WS risk as-
sessment index system is constructed, and risk levels 
are delineated.

(2) Establishment of the original training set samples. 
With the indexes of the index system as the variables 
of the RF, the index-related data are taken as the origi-
nal training set.

(3) Random sampling of bootstrapping samples. The 
original training set is denoted as ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nT x y x y x y=  

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nT x y x y x y=  , and the bootstrap sampling 
method is used to extract k samples from T, with 
sample size n, to form an independent training set of 
size K.

3.2. Optimal parameter determination  
and training model establishment

(1) K-fold cross-validation. First, the K-fold cross-valida-
tion method is used to divide the initial sample into K 
subsamples. A single subsample is retained as the data 
for the verification model, and the other K-1 samples 
are used for training. Finally, the average value of the 
prediction accuracy of the K models is used as the final 
estimated value of the model prediction accuracy, and 
the split mode with the highest prediction accuracy is 
selected as the optimal branch  (Zhou et  al., 2021a).

Figure 2. Technical roadmap
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(2) Optimal parameter selection. M features are randomly 
selected from all feature sets during tree generation, 
and then an optimal eigenvalue mtry is selected as the 
split variable value according to the criterion of the 
maximum information gain ratio. Through the estab-
lishment of the RF model, the trend of ntree and the 
mean-square error is observed, and the decision tree 
corresponding to the minimum root-mean-square er-
ror (RMSE) is chosen as the best ntree value – that is, 
the number of regression trees  (Zhou et  al., 2021b).

(3) Training model establishment. The optimal branch is 
used as the RF input, and the node is divided into 
two branches according to its characteristics. The best 
features are found from the remaining features to con-
struct the branches of the classification tree recursively 
so that the regression tree can grow to the maximum ex-
tent without clipping and generate a decision tree. The 
process is repeated to establish an RF training model.

3.3. Variable importance evaluation  
and model fitting prediction

(1) Variable importance evaluation. The corresponding 
OOB data for each RF tree are used to calculate its OOB 
data error, which is recorded as errOOB1. The charac-
teristics of all samples of OOB data are multiplied with 
random noise interference, and the error of the bag 
data is calculated again, which is recorded as errOOB2. 
Hence, the importance of feature X is as follows:

Importance ( )2 1 /errOOB errOOB Ntree= −∑ .  (4)

(2) Model fitting prediction. First, the test set is input into 
the training model, and the test set data are predicted 
by the RF to establish the prediction model. The aver-
age of the output value of all decision trees is taken 
as the prediction value of the RF, and the RF training 
model fitted by the training set and the RF predic-
tion model predicted by the test set are visualized. 
Finally, the model fitting map and prediction map are 
obtained. The prediction results of the RF regression 
model are as follows:

( ) ( )
1

1 k

r i
i

f x h x
k =

= ∑ ,  (5)

where ( )rf x  represents the predicted value of the stochas-
tic forest regression model and ( )ih x  is the predicted val-
ue of the single regression tree model.

3.4. Prediction result analysis

(1) Error analysis. An SVM without feature selection and 
an artificial neural network (ANN) are selected for 
modeling and comparative analysis, and the RMSE 
and goodness of fit (R2) are selected to evaluate the 
prediction accuracy of the model (Zhou et al., 2020a), 
as shown in Eqns (6) and (7):
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(2) Sensitivity analysis. To analyze the interaction be-
tween the safety indexes, the global sensitivity evalua-
tion of the input index is carried out by using Sobol’s 
index method. The change in variance caused by the 
change in the input parameters reflects the importance 
of the research parameters and the contribution to the 
change in the model results. The first-order sensitivity 
reflects only the direct contribution of the uncertainty 
of a certain parameter to the output variance in the 
model. The total sensitivity of a parameter reflects the 
sum of the indirect contributions to the uncertainty of 
the parameter and the interaction between the param-
eter and other parameters in the output variance in the 
model. According to the first-order sensitivity and total 
sensitivity of Sobol’s method, the equation is as follows:
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where Si is the first-order sensitivity value of the param-
eter; Vi is the variance in the parameter; V is the total 
variance in the system; STi is the total sensitivity value of 
the parameter; Ns is the number of parameter samples.

4. Case study

4.1. Engineering background

This paper reports a case study on shield tunnel lining 
damage induced by WS occurring in Wuhan Metro Line 3,  
China, through both field monitoring and numerical sim-
ulation. The starting point is Zhuanyang Avenue Station, 
the terminal station is Hongtu Avenue Station, the mileage 
range is DK0 000~DK28 000, and the length of the whole 
line is 28.0 km; in DK9 600~DK9 920, the tunnel passes 
through the Hanjiang River (Pan et al., 2019b). Because 
of the high probability of leakage in the river section, the 
research scope of this paper is selected from the right 
line Wangzong interval design starting point at mileage 
696.728 and extending in the Zongguan direction at ap-
proximately 315 m, as shown in Figure 3.

4.2. Construction of the seepage water risk 
assessment system and establishment  
of the RF training set

4.2.1. Seepage water risk indicator system
In operational shield tunnels, several degradation modes 
are usually active at the same time and mutually interact. 
Under normal circumstances, the deterioration of mate-
rials and the action of external loads cause deformation 
and destruction of the tunnel structure and ultimately 
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produce leakage and water inrush, the latter of which 
is severe. According to Section 2.2 of this paper, the oc-
currence mechanism of shield tunnel degradation issues 
and the relationship between the various issues are ana-
lyzed. In addition, the selection criteria of risk indicators 
are combined with the principles of representativeness, 
monitoring, and objective integrity. On the basis of a large 
amount of practical experience and related references (Li 
et  al., 2018; Pan et  al., 2019a), 4 secondary risk indexes 
and 11 tertiary risk indexes are selected to determine the 
WS risk. The constructed WS risk evaluation index system 
is shown in Figure 4.

4.2.2. Risk classification of seepage water
Based on the domestic experience of water leakage engi-
neering, data monitoring and acquisition, and the experi-
ence of the classification of leakage risk in railway tun-
nels, this paper divides the leakage risk status of operat-
ing subways into five grades according to the severity of 
leakage: wetting, infiltration, dripping water, water leakage 
and water gushing (Li et al., 2017b). The five grades cor-
respond to five states – namely, A (very safe), B (safe), C 
(minimally safe), D (dangerous), and E (very dangerous) – 
and the corresponding relationships are shown in Table 1.

 

Monitoring sections

30015
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Control 
points

Figure 3. Monitoring plan for the studied tunnel section

Figure 4. WS risk evaluation index system

Table 1. Classification of WS in operational shield tunnels

Grade WS
condition Description of water seepage Safety  

state
A Wetting A small amount of wetting (surface) Very safe
B Dripping water The average WS ≤ 0.05 L/(m2. d), and the WS on any 100 m2 surface > 0.15 L/(m2. d) Safe
C

Infiltration
A small amount of leakage, no muddy sand leakage or line flow; the number of wet stains 
on any 100 m2 surface ≤ 7 points, the leakage value of a single leakage point ≤ 2.5 L/d,  
and the surface area of a single wet spot ≤ 0.3 m2

Minimally
safe

D Water leakage Water leakage point, no muddy sand; average leakage ≤ 2 L/(m2. d), and the leakage value  
of any 100 m2 surface ≤ 4 L/(m2. d)

Dangerous

E Water gushing Leakage of muddy sand and line flow; leakage value of any 100 m2 surface ≤ 4 L/(m2. d) Very 
dangerous
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4.2.3. Establishment of the original  
training set of sample data
In this paper, the WS risk grade is taken as the output 
variable to obtain the monitoring data of 100 groups in 
the monitoring interval, as shown in Table 2.

4.3. Optimal parameter determination  
and training model establishment

4.3.1. K-fold cross-validation method  
for selecting the optimal branch
For small amounts of sample data, the test results of this 
method are more reliable than the results of dividing 
the original samples into training sets and test sets. The 
method is as follows: first, the original data are randomly 
divided into K groups, and then each subset is used as a 
test set to test the model; the remaining K-1 sets are used 
as training sets to train the model, and K models are ob-
tained. K = 5 is taken in this paper. Considering the ran-
domness of the data partition, to obtain more consistent 
calculation results, the model is constructed and verified 
by a 5-fold cross-validation method.

4.3.2. Selection of parameters mtry and ntree
To determine the value of mtry (a small part of the total 
number of predictors), RF modeling uses regression in-
stead of classification trees. The default value should be 
approximately one-third of the total number of variables 
to minimize the correlation between the generalization er-
rors and decision trees. In our study, the optimal tuning 
parameters are selected using 5-fold cross-validation, and 
the commonly used R language software program is used 
to construct the RF model, to improve the performance of 
the RF model and handle overfitting.

When optimizing the parameters mtry and ntree, 80 of 
the 100 sets of data in Table 2 are randomly selected as the 
training set and used to establish the model. The remain-
ing 20 sets of data are used as the test sets to test the effect 
of the model. The specific method is as follows: (1) Set 
ntree = 300, 400, 500, and 600; use 5-fold cross-validation 

to establish the model. The mtry value corresponding to 
the minimum value of the mean-square error on the vali-
dation set is the optimal parameter mtry of the model. (2) 
Set mtry to 5, 6, and 7, and set ntree to increase gradu-
ally. Use the 5-fold cross-validation method to verify the 
model. According to the verification set, the correspond-
ing ntree value is the optimal parameter ntree when the 
mean-square error stabilizes.

The above method is used to construct the model and 
visualize the output of the model, as shown in Figures 5 
and 6.

Table 2. Wangzong district tunnel monitoring data

Number 1 2 3 … 99 100
Joint width/mm (V1) 1.92 2.48 2.70 … 3.73 1.2
Segment misalignment/mm (V2) 3.98 4.61 3.28 … 7.24 6.2
Seal damage and aging rate/% (V3) 0.057 0.058 0.034 0.084 0.091
Bolt failure rate/% (V4) 0.029 0.052 0.031 … 0.392 0.431
Crack length/mm (V51) 3 2.5 0.94 … 2.12 4.23
Crack width/mm (V52) 0.045 0.018 0.15 … 0.075 0.2
Spalling area of segment/m2 (V6) 5.2 4.4 8.9 … 10.5 21.4
Reduction ratio of lining strength (V7) 0.071 0.12 0.11 … 0.31 0.34
Loss rate of steel section (V8) 2.81 1.41 1.77 … 3.34 2.04
Soil moisture content (V9) 0.337 0.315 0.394 … 0.35 0.369
Differential settlement of segment/mm (V10) 18.3 20.01 21.2 … 13.5 10.24
Coefficient of earth pressure increase in vault (V11) 1.05 0.61 0.5 … 0.35 0.55

Figure 5. Trend of the mean-square error  
when mtry takes different values

Figure 6. Relationship between ntree  
and the mean-square error
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In Figure 5, one trend is represented as the mean-
square error change graph with the change in mtry when 
ntree is a fixed value. The four trends are the mean-square 
error line graphs when ntree  = 300, 400, 500, and 600. 
Figure 5 shows that as the value of the parameter mtry 
increases, the overall RMSE shows a trend of an initial 
decline and then an increase. When the value of mtry in 
the model is 6, the RMSE evaluation index reaches the 
optimal value. This study ultimately determines the value 
of mtry as 6.

When a curve in Figure 6 has a fixed value of mtry, as 
the value of ntree changes, the curve of the mean-square 
error changes; the three curves are the mean-square devia-
tions when mtry = 5, 6, and 7. The error of the ntree value 
below 400 fluctuates greatly, and above 400, the fluctua-
tion trend gradually decreases. When the number of deci-
sion trees is greater than 500, the error of the model tends 
to stabilize. Therefore, this paper ultimately takes the value 
of the number of decision trees as 500.

4.4. Model fitting prediction

The RF package is first loaded into the R language soft-
ware, and the 100 sets of monitoring data are input as 
the original training set. Second, 80 groups of data are 
randomly selected as the training set, and the remaining 
20 groups of data are used as the test set. The related pa-
rameters are mtry = 6 and ntree = 500. Finally, the leakage 
risk in the training set is fitted to establish an RF training 
model, the test set is input into the training model, and the 
WS risk in the test set is predicted. The results are shown 
in Figures 7 and 8.

Figure 7 shows that the simulation value is very close 
to the actual value, and the simulation effect is good. Fig-
ure 8 shows that the predicted value curve on the test set 
of the RF model is close to the real value by using the 
trained RF model to predict the test set.

5. Results and discussion

During the operation of metro tunnels, the imperme-
ability performance may degrade due to the combined 
effects of uncertain multisource factors and the complex 

environment. Thus, developing a method for diagnosing 
and predicting WS in operating tunnels is quite challeng-
ing because WS is related to many intrinsic and extrinsic 
factors. The intrinsic factors include the deterioration of 
the lining materials, the corrosion of reinforcing rods, and 
segment assembly error, while the extrinsic environmental 
factors include unexpected earth pressure from geological 
conditions and nearby geotechnical activity. Two methods 
contribute to handling the overfitting issue arising from 
the small amount of training data in our manuscript. First, 
the selection of key factors by RF helps reduce informa-
tion dimensionality. Second, a 5-fold cross-validation suc-
cessfully eliminates the overfitting problem.

5.1. Algorithm error analysis

SVMs are based on statistical theory, so they have a 
strict theoretical and mathematical basis, which is dif-
ferent from ANNs, whose structural design depends on 
the designer’s empirical knowledge and prior knowledge. 
However, SVMs are difficult to implement for large-scale 
training samples and cannot readily solve the problem of 
multiple classifications. To test the superiority of the RF 
model, this study chooses two excellent machine learning 
models, an SVM and ANN, for modeling and compara-
tive analysis (Zhou et al., 2015). The physical mechanism 
of machine learning algorithms such as the RF, ANN, and 
SVM algorithms is a “black box”. As the number of vari-
ables increases, the degree of black-box modeling becomes 
more complicated. Therefore, this section is based on the 
11 risk indicator variables scientifically analyzed in Sec-
tion 4.2.1 as the input parameters of the simulation. By 
taking Python 2.7 and MATLAB 2014 as the calculation 
platform, the measured values of level 3 risk indicators 
and risk category labels of level 2 risk indicators of 30 
monitoring points in the Wangzong section of Wuhan 
Metro Line 3 are taken as the training data of the model. 
Second, the three models are trained separately, and the 
optimal number of parameters and the indicator of mode 
error for each model input are shown in Table 3 (Yu et al., 
2021). Finally, RMSE as given by Eqn (6) and R2 as given 
by Eqn (7) in Section 3.4 are used to measure the predic-
tion accuracy of the model.

Figure 7. Comparison of the actual risk level  
and the fitted value of the RF model

Figure 8. Comparison of the actual risk level  
and the RF model prediction
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Table 3. Error comparison of different machine  
learning methods

Prediction model  RMSE  R2

RF 0.047 0.991
SVM 0.244 0.969
ANN 0.289 0.955

From the prediction results for the three prediction 
models, RF, SVM, and ANN, we find that the RMSE val-
ues are 0.047, 0.244, and 0.219 and that the R2 values are 
0.991, 0.969, and 0.955. The RMSE of the RF model pre-
diction results is the smallest, and its R2 is closest to 1, in-
dicating that the prediction results of the RF model are the 
closest to the actual value, the accuracy is highest, and the 
effect is best. Moreover, the comparison results show that 
RF outperforms those competitors in solving the research 
problems, indicating its potential as a promising tool for 
solving the risk prediction problem of WS in operational 
shield tunnels.

5.2. Sensitivity analysis

Sobol’s index method was used to analyze the first-order 
and global sensitivity of the indicators of the 100 sets of 
monitored data. The sensitivity of each indicator is shown 
in Figure 9.

Taking the water leakage risk level as the objective 
function and based on the actual data distribution law, 
each indicator is made to obey a Gaussian distribution, 
and the first-order sensitivity and the global total sen-
sitivity of the objective function are obtained, as shown 

in Figure 9. The safety index with the highest first-order 
sensitivity and global total sensitivity – which are 0.533 
and 0.547, respectively  – is the chip peeling area. The 
sensitivity of the chip peeling area is significantly higher 
than that of other parameters. The first-order sensitivity 
and global total sensitivity of the crack width are 0.266, 
0.285, respectively. The first-order sensitivity and global 
total sensitivity of the steel section loss rate are 0.052, and 
0.155, respectively. This indicate that these two variables 
have a great impact on the risk of WS. The first-order sen-
sitivity and total sensitivity of the variables are relatively 
close, indicating that the influence of these indicators on 
the risk of water leakage is relatively similar. Therefore, in 
the case of this project, the most effective way to reduce 
the risk of WS in this area is to successively reduce the risk 
status of the chip peeling area, the crack width, and steel 
section loss rate. This approach can be used to realize risk 
evaluation and effective decision making regarding WS in 
the shield tunnel operation period.

Figure 9. Seepage water sensitivity coefficient graph
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Table 4. Five management methods for treating WS in operating tunnels

Management methods Features
Spray method 1 Common in the treatment of lining deterioration; effective treatment of variant tunnels.

2 Pay attention to foundation treatment; otherwise, weathering of the lining surface can easily occur.
3 Insufficient attachment during construction.

Coating method 1 Commonly used in areas with small WS range and light degree; the tunnel lining surface is relatively flat.
2 The coating needs a certain thickness to achieve the waterproof effect, and the cost is high.

Waterproofing 
membrane 
method

1 Commonly used when the seepage area is large and there is sufficient clear section.
2 Mainly used for WS in the arch.
3 Prefabricated components are simple in construction and have a good waterproof effect.
4 Effective for preventing peeling.

Waterproof
board method

1 Often used in areas with large WS areas and low WS.
2 Usually, used in combination with waterproof film.
3 Mostly used in mountain tunnels constructed by the mining method; a waterproof layer is formed 

between the shotcrete and the secondary masonry to block water leakage.
Slip casting 
method

1 Reinforcement of strata to increase tunnel bearing capacity and filling of holes in the lining to make the 
lining force distribution uniform.

2 Prevent the lining structure from continuing to deform or damage.
3 By repairing cracks in lining concrete structures.
4 Less impact on tunnel operation.
5 Less manpower and time required.
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5.3. WS management methods

According to the actual situation of the tunnel in the case, 
the early warning level of WS and expert experience, the 
library outputs five kinds of WS management methods, as 
shown in Table 4.

Conclusions and future prospects

Key findings

Because of their advantages, such as safety and predictabil-
ity, metro systems have met the increased traffic demand 
brought by population growth. As people increasingly rely 
on urban rail transit, the safety of metro tunnel operations 
has also received increasing attention. The shield method 
has become the preferred method for metro tunnel con-
struction due to its high efficiency and safety. However, 
because of the specific structure of the shield tunnel, many 
defects can occur during the operation of metro tunnels. 
As a defect that occurs with high frequency, has strong 
connections with other defects and can lead to severe 
consequences, WS should be given special attention in 
tunnel operation safety management. Therefore, based on 
the analysis of WS risk mechanisms, this paper proposes 
a water leakage risk analysis and management method 
based on an intelligent RF algorithm during the opera-
tion period. This paper contributes to the literature on the 
risk prediction and diagnosis of WS in operational shield 
tunnels in several ways.
(1) Based on the analysis of the mechanism of leakage in 

the shield tunnel operation period, the relationships 
between the development of leakage and other tun-
nel defects are analyzed. According to the selection 
principle of the indexes in the risk evaluation index 
system, the relevant literature, and expert experience, 
12 third-level risk indexes and four second-level risk 
indexes are selected to construct a three-level index 
system of WS risk evaluation. Combined with research 
on and experience with tunnel WS risk classification 
around the world, WS risk is divided into five safety 
states and grades, which are convenient for subse-
quent risk assessment, prediction and management.

(2) Among many machine learning algorithms, the RF 
method has the advantage of reducing the overfitting 
phenomenon in model training; the training results 
are stable, and the generalization ability of the model 
is strong. In this paper, the RF regression algorithm is 
used to predict the leakage risk grade of an operating 
tunnel, and a prediction model based on this method 
is established. The corresponding prediction process 
and steps are also proposed. This provides an effective 
way to perform WS risk grade prediction.

(3) Our paper takes the Wangzong section of Wuhan 
Metro Line 3 as an example. A data training set is es-
tablished, and the optimal parameters mtry = 6 and 
ntree = 500 are selected to construct a training model 
and evaluate the importance of the indicators. The key 
risk indicators that have a great impact on the risk of 

WS in the operation of the tunnel in this section are, 
from greatest to least impact, the spalling area of the 
segment (V6), crack width (V52), and loss rate of the 
steel section (V8), which can be considered the three 
most important indicators for safety control. There-
fore, if there is an increase in the risk of WS in this 
case study, the status of these three risk indicators can 
be compared and treated in turn. In addition, some of 
the actual project data are input into the model as the 
test set data, and the predicted results are compared 
with the actual values. The results show that the error 
index is small, which verifies the accuracy and reli-
ability of the RF model. Finally, Sobol’s index method 
is used to analyze the global sensitivity of the vari-
ables, and the results are the same as for the variable 
importance evaluation.

(4) To further verify the reliability of the RF prediction 
model, the building energy consumption prediction 
results of the RF model and the SVM and BP-ANN 
models are compared. The results show that, com-
pared with the prediction accuracy of SVM and BP-
ANN, the RF model has a greater goodness of fit and 
the smallest RMSE; thus, the prediction results of the 
RF model are found to be more accurate and stable 
than those of the other two models.

Future work

It is a complex task to control the WS of metro tunnel 
engineering, which requires comprehensive consideration 
of many factors, including the complexity of engineering 
construction, maintenance cost, and engineering mainte-
nance. The durability of the protection and other factors 
should be considered to take appropriate measures in the 
treatment of WS. In addition, the design of future water 
leakage treatment schemes should not sacrifice the origi-
nal technical standards but should consider the integrity 
of the original structure, in accordance with the principle 
of combining drainage and interception, to reduce the 
damage to the structure and protect the environment (Qi 
& Tang, 2018; Zhang et al., 2020c).

Several knowledge gaps related to our research should 
be considered in further studies. The RF method is a local 
optimal problem, which depends on the user experience. 
A combined model that integrates metaheuristic particle 
swarm optimization in the RF could be used to enhance 
the robustness of the RF model. Furthermore, we aim to 
implement decision-making recommendations and com-
pare the leakage status of improved shield operation tun-
nels with the expected status and predicted status to deter-
mine the reliability of the model and method at the actual 
engineering level. According to feedback, we can make ap-
propriate changes to the optimized model to improve its 
application to the risk management of WS during shield 
tunnel operation. Future studies can focus on developing 
an enhanced RF method to improve the comprehensive 
security status of operating tunnels, including obtaining 
other important prediction models, such as tunnel lining 
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stability and adjacent buildings induced by shield tun-
neling. Meanwhile, more datasets can be collected from 
different tunnels to further validate the reliability of the 
proposed model and increase its application scope in the 
field of engineering.

Operational shield tunnels include the uneven settle-
ment of the tunnel, lining corrosion, cracking, and other 
failure modes, which reduce the durability and bearing ca-
pacity of the structure, shorten the service time, and thus 
have an important threatening impact on the safety, com-
fort, and normal operation of the tunnel. In addition, only 
11 risk indicators are used as the input variables of the 
three models in the present study. In the future, more or 
different input variables can be used to develop RF models 
to predict and diagnose WS in operational shield tunnels.
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