DECISION-MAKING MODEL FOR CHOOSING RESIDENTIAL BUILDING REPAIR VARIANTS

Robert BUCONa, Anna SOBOTKAb

aDepartment of Construction Project Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Poland
bDepartment of Geomechanics, Civil Engineering and Geotechnics, Faculty of Mining and Geoengineering, AGH University of Science and Technology of Cracow, Poland

Received 06 Sep 2013; accepted 02 Dec 2013

Abstract. During the use of buildings it becomes necessary to carry out repair works including modernisation. Deciding on the choice of repair solutions is a difficult and complex task. Building administrators have to consider both, the benefits of some repair works, and limitations due to the availability of funds. Selection of a repair solution, bearing in mind the above, requires a comprehensive approach that will allow assessment of the building condition and determining the repair scope required. The research conducted by the authors was aimed at developing a decision-making model and its computer-aided implementation, taking into account a number of operating demands. The system algorithm proposed comprises five stages including: building condition assessment, building use value evaluation, repair classification, multiple variants of repair and the choice of repair solutions. The article describes individual stages of the model in detail, giving numerical application examples of the method for repair solution choice for five multi-family houses.

Keywords: repair solution, operating requirements, building evaluation, repair, renovation.

Introduction

Residential building management requires to maintain the building in non-deteriorated condition and obliges the administrator to reasonably invest funds for repairs (art. 185 par. 1 of the Real estate management law). Difficulties involved in this process are the main reason why vast experience and skills are required from the administrator while making repair-related decisions. This involves multiple criteria evaluation of the building condition. Various factors are adopted to assess a building condition. One of them is so called use value (Niezabitowska \textit{et al.} 2003; Orłowski, Szklennik 2011), defined as the building ability to satisfy its users’ demands. This ability is assessed by a set of measurable features important for the use, i.e. technical, energy, visual and functional ones.

The building use value appraisal allows studying its condition and establish the relevant repair needs. However, the problem encountered by residential building administrators lies in the funds available for repairs, which are usually insufficient. This article presents the methods for choosing the repair solution meeting the above assumptions. It includes five steps in which various calculation tools were used. The first stage includes building condition assessment, also applying the methods proposed for that purpose, i.e. the technical, energy and functional assessment. The second and third steps evaluate the building use value, which determines the building quality and further repair activities performed based on that. The fourth step requires to determine the repair needs based on prior building condition assessment. Various repair technologies can be employed, i.e. different variants, requiring different expenditure. The last step of the model is to show an optimum repair solution for buildings, considering the limitations of the repair funds available.

1. Decision support methods and models for building maintenance

Building condition assessment, in addition to technical deterioration, includes also other building features, such as those related to its functionality, aesthetics, energy efficiency, etc. To this end, multiple criteria decision making (MCDM) methods are used. The multiple criteria (multiple factor) evaluation of a building has been the subject of numerous analyses and research projects in Poland and abroad, aimed at developing a comprehensive method for determining the condition of a residential building. The scholars’ interest in this subject has been so
An example of a computer-aided repair decision support system is EPIQR (Energy Performance and Indoor Quality Retrofit). It is used for estimation of building renovation cost, taking into consideration the reasonable use of energy and improving the standard of living (Vilhena et al. 2011). It is an integrated system for diagnosing building condition and computer-aided decision making as to the type and scope of repair projects, including thermal improvement projects, with various work scenarios, with continued control of the project cost.

Another example of a system supporting decisions as to the allocation of funds for the repair of buildings in Tainan is presented by Perng et al. (2007). To evaluate buildings the authors propose a solution based on the multiple criteria TOPSIS analysis. To this end, they identified ten factors which relate to the technical, political and economic requirements. The result of the evaluation is showing how much needed the repair is (with a four-grade scale). The repair solutions were selected with an evolutionary algorithm which defines the most cost-effective repair methods for individual building, considering the financial limitations.
Application of the evolutionary algorithms in complex DSS models, aimed at developing the repair policy for buildings, are presented in the work of Juan et al. (2009). To evaluate the building quality, the authors propose application of such criteria as the safety, usability, user health, comfort of use, usefulness. The effect of each of them is assessed with the AHP method. To show repair solutions, they suggest application of an evolutionary algorithm based on two various (priorities) objective functions. The aim of the first one is to determine the most cost-effective scope of repair, for which no assumed repair budget, is exceeded. The other is aimed at showing the most favourable repair options in terms of cost, assuming that the minimum threshold level of building quality and the target level identified by the decision-maker would be achieved.

In the literature other interesting decision making systems in building maintenance are presented, in which such tools as the Markov chains are applied to describe the risk occurrence of building elements failure or the optimisation methods to the allocation of repair financial means, e.g. Lounis and Vanier (2000), Langevine et al. (2006).

Another example of the DSS and selection of alternative repair options is the Decision Support Model for Semi-Automated Selection of Renovation Alternatives proposed by Rosenfeld and Shohet (1999). Its structure comprises four modules: (1) building compliance with the legal and environmental requirements is initially analysed; (2) the physical and functional condition is assessed; (3) feasible actions are proposed to improve building condition, and alternative solutions are developed; (4) the qualitative and technical and economic comparison of the (feasible) alternatives is performed.

Identification and analysis of the methods and models applied in the above chosen DSS systems for building maintenance, taking into consideration multiple criteria of rankings, served as the grounds for the authors’ work on the development of an original method for selection of an appropriate variant from multiple options possible, considering the multiple criteria building assessment and limited funds for the repair works.

2. Description of the method proposed

2.1. General concept

In the method proposed, the repair-related decisions depend on three building qualities, i.e. the technical conditions, energy and functional status, whereby each of them is affected by a number of factors. Therefore this is a complex calculation and decision-making problem. Based on the above ranks, a synthetic building use value is determined, which determines the choice of the repair solution that allows the highest increment of the building use value in relation to the funds invested.

The methods for creating a decision-making model included five main stages presented in the Figure 1.

2.2. Operating (maintenance) requirement assessment

Three K_j criteria were assumed which are the basis for building use value (WUB) assessment: K_1 – technical condition; K_2 – functional status and K_3 – energy status. Technical condition assessment. A set of building components was determined by $E = \{E_1, E_2, \ldots, E_n\}$, on which the building deterioration is evaluated. While assessing the technical condition of a building, such components as walls, floors, roof, stairs, balconies, vestibules etc. were considered. The $E_i \in E$ components are assessed based on a set of factors $E_i = \{u_1, u_2, \ldots, u_p\}$ describing its damage, e.g. while assessing the walls: cracks, subsiding, vertical tilt and humidity.

To evaluate the technical condition O_{K_i}, the weighted average method was adopted (Bucón, Sobotka 2012), in which the building wear index is expressed in a $0\%–100\%$ scale. Individual building components are assessed visually, hence the assessment represents also the visual condition:

$$O_{K_i} = \sum_{i=1}^{n} (w_{E_i} \cdot O_{E_i}^{K_i})/100,$$

where: w_{E_i} – significance of the condition component evaluated; $O_{E_i}^{K_i}$ – technical deterioration of an ith component of the building [%]; n – number of components assessed for the K_i criterion.

Individual building components E_i are assessed according to the damage found u_i, based on which an
expert determines the component deterioration $O_{K_i}^{E_i}$ using the linguistic rank scale: good – G; satisfactory – S; medium – M; poor – P; bad – B, to which the deterioration grades, expressed in %, are assigned respectively $0÷15$, $16÷30$, $31÷50$, $51÷70$, $71÷100$.

Functional status assessment. A set of building features $C = \{C_1, C_2, \ldots, C_n\}$ was determined according to which its functional status will be assessed.

To assess the building functional status, the features considered were: functionality of balconies and entrances, communication inside the staircase, safety and security and ventilation. The rank assessment of all building features assumed $C_i \in C$ is affected by numerous factors $C_i = \{c_{i1}, c_{i2}, \ldots, c_{in}\}$, e.g. while assessing a balcony: the area, finishing, safety, furnishing, visual aspects etc.

To evaluate the functional status O_{K_2}, as above, the weighted average method was adopted which, in this case, consists in evaluating building features C_i based on the compliance with the requirements for each of the c_i factors:

$$O_{K_2} = \sum_{i=1}^{S} w_{C_i} \cdot O_{K_2}^{C_i},$$

where w_{C_i} – significance of the feature assessed; $O_{K_2}^{C_i}$ – functional status feature rank [points].

Functional assessment of building feature is given in a 0÷5 points scale. Based on the building feature condition C_i, an expert grades it $O_{K_2}^{C_i}$ with the linguistic rank scale: good – G; satisfactory – S; medium – M; poor – P; bad – B; no component – N, to which the grades 5÷0 points are assigned.

Energy status assessment. A set of building components $E = \{E_1, E_2, \ldots, E_n\}$ was determined to assess its energy status. Some components $E_i \in E$, such as the walls, roof, basement floor, door and window joinery etc. correspond to those assessed according to the K_1 criterion.

Assessment O_{K_1} should be carried out according to the methodology present in the standards of building thermal protection. It leads to the calculation of energy status assessment O_{K_1} expressed in kWh/m²·year, determining for heating purposes:

$$O_{K_1} = Q_h / A,$$

where: Q_h – seasonal demand for heating, [kWh/m²·year]; A – area of external partitions [m²].

Due to the fact that individual components considered while assessing the criteria adopted affect, to various degree, the building operation, i.e. its technical and functional status, their effects are varied by significance levels. The significance of components assessed are determined with the pseudo-fuzzy scaling method (Bucon, Sobotka 2012).

2.3. Assessing use value of buildings

The building use value WUB is calculated based on the assessment of three criteria K_j. Each of them is represented by a linguistic variable x_j expressed by fuzzy sets A_i in some space X_j:

$$A_i = \left\{ \left(x_j, \mu_i(x_j) \right) \mid x_j \in X_j, \mu_i(x_j) \in [0,1] \right\},$$

where: $\mu_i(x_j)$ – degree of belonging to A_i fuzzy set; i – the number of fuzzy sets for each of the jth criteria; $x_j = \{A_1, A_2, \ldots, A_i\}$, where: A_1, A_2, \ldots, A_i denote fuzzy sets to be evaluated according to the K_1 criterion; $x_2 = \{A_1^2, A_2^2, A_3^2\}$, where: A_1^2, A_2^2, A_3^2 denote fuzzy sets to be evaluated according to the K_2 criterion; $x_3 = \{A_1^3, A_2^3, A_3^3\}$, where: A_1^3, A_2^3, A_3^3 denote fuzzy sets to be evaluated according to the K_3 criterion.

Each of the A_i^j fuzzy sets, except for the extreme ones, is expressed with a number of triangular membership functions, the peaks of which are located in the centre of each of the n-adopted ranges.

Fuzzification of the input variables required determining the number of fuzzy sets and establishing the characteristics and shape of membership functions describing them. The model assumes fuzzification of each input variable in such a manner that the division correspond to the categorisation method applied in practice.

Five grading categories were adopted for the input variable describing the technical condition, according to the division adopted in building periodic inspection reports. The categories were described with five fuzzy sets using linguistic descriptions: good – G; satisfactory – S; medium – M; poor – P; bad – B, for which the degree of deterioration expressed in %, is, respectively: $0÷15$, $16÷30$, $31÷50$, $51÷70$, $71÷100$.

The other variable representing the functional status was divided to two ranges, which are described with three fuzzy sets with triangular belonging, representing the values: bad – B; medium – M; good – G, to which the following values [points] apply: $0÷2.5$, $5÷10$, $2.5÷5$.

For a third input variable (energy status), the categorisation resulting from the proposed division to energy class (Pater, Magiera 2011) was adopted. Following the naming adopted, the variable was divided into six energy classes: low energy LE, energy-efficient EE, medium energy-efficient MEE, energy-consuming EC, high energy-consuming HEC buildings, for which energy status expressed in kWh/m²·year is respectively: $20÷45$, $45÷80$, $81÷100$, $101÷150$, $151÷250$, $251+$. Relationships between the criteria grades are included in a set of rules R_i providing details of the relationships between the premises constituting the input variables x_j and conclusion representing the output variable y. The output variable (rule conclusion) in
Takagi-Sugeno-Kang (Takagi, Sugeno 1985) model adopted is expressed in a form of a functional dependency $y = f(x_1, x_2, x_3)$ between the inputs and output, and in the premise part, this rule is of fuzzy nature. For the model structure adopted, the set of rules can be presented as follows:

if $\mu_{A_i}(x_1) \geq 0$ and ... and $\mu_{A_j}(x_3) \geq 0$, \(5\)

where: $\mu_{A_i}(x_j)$ – degree of belonging of the input variable $x_j \in \{G, M, B\}$. These are the fuzzy sets of the three input variables x_1, x_2, x_3 to fuzzy sets $\{G, M, B\}$. These are the fuzzy sets of the three input variables x_j.

Linguistic variables appearing on the left side of fuzzy rules are the input variables and referred to as the premises (t, u, v) being the activated fuzzy sets. The rule is activated if the premises are met. The conclusion of every rule is provided on the right of the equation. In the model discussed, the output variable is expressed with singletons describing the building use value.

Rule base. In this paper an original algorithm for the model structure adopted, is presented (Bucan, Sobotka 2012), which forms an integral part of the model developed. It is based on expert knowledge in assessing building use value, which requires the following activities:

Step 1. Expert research. It consists in assigning each of the five values of the output variable of WUB expressed in points: very high VH (100), high H (70), medium M (50), average A (30), low L (10) of the input variables x_j.

Gathering information for every expert participating in the research involves filling in a form, in which the experts assign all the input variable values x_1, x_2, x_3, to fuzzy sets $\{G, M, B\}$, x_1 (LE, EE, MEE, MEC, EC, HEC) to one of five values of the output variable y describing WUB (VH, H, M, A, L), e.g. if $x_1 = G$ and $x_2 = G$ and $x_3 = LE\rightarrow EE$ then $y = VH$.

Step 2. Calculating criteria significance. The fuzzy extension of the AHP method was adopted, described in detail in the work of Jaskowski et al. (2010). This method allows determination of criteria significance by aggregation of ranks of the K group of experts – each of them performs $m = n \cdot (n-1)/2$ comparisons with pairs of criteria on a given problem priority level (the relative exceeding, preference, significance levels are determined with the scale 1/9, 1/7, 1/5, 1/3, 1, 3, 5, 7, 9 extended possibly by the intermediate ranks 1/8, 1/6, 1/4, 1/2, 2, 4, 6, 8). Aggregation of expert opinions is aimed at finding one common significance rank on the criteria adopted.

Step 3. Calculation is made of the degree of belonging $\mu_{WUB(i)}(x_j)$ of the input variables x_j fuzzy sets to the output variable value $WUB(n)$, expressed in the VH, H, M, A, L singletons, based on the information received from experts (step 1):

\[
\mu_{WUB(i)}(y) = \frac{O_{WUB(i)}(n)}{N}, \quad n = 1, 2, 3, ..., 5, \quad (6)
\]

where: $O_{WUB(i)}(n)$ – the number of experts to confirm the rule: “if the grades of the j criterion belong to A_i term, then the input variable belongs to the $WUB(n)$ singleton”, N – number of all experts.

Step 4. Calculating the conclusion value for each generated rule R_k (the number of k rules equals the product of fuzzy sets of input variables x_j and equals 90).

To this end, for every ith fuzzy set of the jth criterion, the membership function value and the number of fuzzy set s_i is selected, for which the membership function takes the maximum value, according to the formula:

\[
\mu_{WUB(i)}(s_i) = \max \{\mu_{A_i}(WUB(L))(y), ..., \mu_{A_i}(WUB(VH))(y)\}. \quad (7)
\]

Further on, for every rule R_k generated, the following K_k conclusion is calculated:

\[
K_k = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{WUB(i)}(s_i) \cdot WUB(s_i), \quad (8)
\]

where: s_i – premises of the jth criterion respectively for $i = u, t, v$, whereas $u = 1, 2, ..., 5$; $t = 1, 2, 6, v = 1, 2, 3$; w_j – significance of the input variable $j = 1, 2, 3$; $WUB(s_i)$ – WUB determined for the jth set A_i of variable x_j.

Step 5. To every lth rule R_l, a value of the output variable $WUB(n)$ is assigned, based on the conclusion factor K_l calculated for it. It is related, to a varied extent, to the degree of belonging to two different WUB values, which leads to a conflict and doubling the number of rules. As a solution to avoid such situation, the value $WUB(n)$ is assumed, for which the level of belonging $\mu_{WUB(n)}$ is higher.

Concluding. At this stage, every rule, the premises of which are met, is activated. Generally, based on the premises (t, u, v), an appropriate output value $WUB(n)$ is found, which is the conclusion from the fuzzy rules adopted.

Concluding with a rule base is performed in two steps:

Step 1. Calculating the level of belonging μ_{A_i} of the premises $i = u, t, v$ being the fuzzy sets of the three input variables x_j.

Step 2. Calculating the degree of meeting the entire condition (rule) as a membership function of the product of fuzzy sets being calculated with the prod operator:

\[
\mu_{WUB(n)}^a = \text{prod} (\mu_{A_1}(x_1) \cdot \mu_{A_2}(x_2) \cdot \mu_{A_3}(x_3)). \quad (9)
\]

Sharpening. Calculation of the building use value is the result of activating the conclusion of individual system rules. The sharpening process requires an appropriate defuzzification method. For the Takagi-Sugeno-Kang model, the “weighted sum” method was adopted (Takagi, Sugeno 1985). The value is determined as a weighted average of the values obtained from the rules activated:

\[
y = \sum_{k=1}^{90} \left(\frac{R_k}{\mu_{WUB(n)}^a} \cdot WUB(n) \right) \cdot R_k. \quad (10)
\]
where: \(y \) – sharpened building use value; \(WUB(n) \) – output variable values expressed as singletons; \(p_{WUB(n)}^R_k \) – degree of belonging (activation) of the output variable \(WUB(n) \) for each activated rule \(R_k \).

2.4. Repair classification of buildings and designing variant-based repairs

Building repair recommendations are based on the calculated \(WUB \). If several buildings are assessed \(B = \{B_1, B_2, ..., B_k\} \) it is possible to choose those of them for which the profitability of repairs aimed at increasing their use value will be analysed. This can be performed in two ways, i.e. by assuming such buildings for which the \(WUB \) calculated does not exceed a specific determined threshold value, or those for which the difference in the \(WUB \) assessment is greater than a specific value.

The repairs (scope, technology) for the designated buildings are determined based on the evaluation of technical condition of components, energy and functional status. The objective is to propose an appropriate repair technology (preferably in several variants), for which it is required to estimate the cost of them and calculating the value increase of the criteria \(K_j \), adopted in the paper, using the assessment method proposed in Section 2.2. All repair works proposed at this stage should ensure operation of the existing building at the standard complying with the provisions of the Construction Law and other legislation and standards. For each building \(B_i \in B \) designated to repair, based on the \(K_j \) criteria assessment, a set of possible repair activities \(N_{B_i} \) is determined. Every repair \(N_{B_i} \in N_{B_i} \) can be performed in a number of possible ways, so called variant, each from which represents a different solution in terms of the materials used, technology and cost of implementation.

2.5. Optimising the selection of repair solutions

The problem of selecting the repair solution, in the model developed, involves:
- maximising the increase of building use value while limiting;
- funds available to carry out the repair.

As a result of optimisation, out of the buildings repairs proposed \(N_{B_i} \) the \(w \) solution is determined which is a set of repair variants \(W_{r,s}^w \), ensuring the highest use value increase for the amount assumed \(K \) (which is the limiting factor). An increase of building use value \(\Delta WUB(B_i) \) is the result of the value increase of three input criteria \(\Delta O_{B_i}^{K_j} \):

\[
\Delta WUB(B_i) = \sum_{j=1}^{3} (w_{K_j} \cdot \Delta O_{B_i}^{K_j}), \quad (11)
\]

where: \(w_{K_j} \) – significance of the \(j \text{th} \) criterion.

The increase of the use value of all buildings \(\Delta WUB \) is a sum of use value increase of individual buildings \(\Delta WUB(B_i) \). Considering, in the Eqn (12), of use area of each of the buildings \(P_s(B_i) \), it is possible to determine the best repair solution resulting in the maximum use value increase for all buildings analysed altogether:

\[
\Delta WUB = \sum_{i=1}^{k} (\Delta WUB(B_i) \cdot P_s(B_i)) / P_s(B_i). \quad (12)
\]

The most satisfactory solution, selected from a set of acceptable solutions, should correspond to the maximum value of adaptation function, ensuring the highest increase of building(s) use value. This solution is a combination of different repair variants, the cost of which should not exceed the funds available for the repair. The problem can be simplified as follows:

\[
\max z : z = \Delta WUB(w), \quad K(w) \leq B, \quad w \in W, \quad (13)
\]

where: \(w \) – solution including a set of acceptable repair solution variants of all buildings; \(\Delta WUB(w) \) – building use value increase for the \(w \) solution; \(K(w) \) – cost of the \(w \) solution.

To solve the optimising task, an evolutionary algorithm was applied, aimed at seeking optimal or suboptimal (acceptable) solutions. Individual stages of the algorithm comprise the following steps:
1. Creating the initial population – initial solutions;
2. Generating repair solutions;

Representation of individuals (acceptable solutions) was adopted in a form of genomes containing information of the building for which the repair variant is proposed. The value of individual genes in a chromosome is established by the adaptation functions takes place in the tournament selection, one-point crossover and uniform mutation processes.

Optimal solutions are sought with two adaptation functions \(F_1 \) and \(F_2 \), which aim to find the best repair solution in terms of use value increase for the solutions which a) do not exceed the \(F_1 \) budget assumed and b) exceed the budget \(F_2 \):

Table 1. Representation (coding) of repair solutions

<table>
<thead>
<tr>
<th>(B_i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{B_i})</td>
<td>3 5 .. 12 2 7 .. 15 1 5 .. 8 ..</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W_{r,s}^w)</td>
<td>1 2 .. 3 3 1 .. 1 2 2 .. 1 ..</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
where: \(K \) – cost of generated solution; \(B \) – assumed cost (budget) for which the repair solution is sought; \(\Delta WUB \) – building use value increase; \(k \) – penalty factor.

The adaptation function \(F_2 \) allows searching a broader range of possible acceptable solutions. The cost \(K \) of the solution can slightly exceed the budget assumed \(B \). These results in solutions of higher effectiveness (repair cost-effectiveness in relation to the cost) presented with the formula:

\[
EF = \frac{\Delta WUB}{K}.
\]

The possibility to adjust the \(k \) factor in the Eqns (14) and (15) allows certain flexibility in finding solutions which are acceptable to the decision-maker, considering the possibility to exceed or not fully use the budget assumed. The penalty for exceeding depends on the \(k \) factor assumed, which makes it possible to control the possibility of potential exceeding of the budget assumed.

3. Model application example

On the basis of the proposed computational algorithm shown in Figure 1 and described in Section 2, a computer repair decision support system (SWDR) was developed. It enables optimisation calculations. Building assessment against the \(K^j \) adopted criteria are entered to the system as input data, and \(WUB \) is the output.

At first, buildings were evaluated against the \(K^j \) criteria adopted, based on which the \(WUB \) use value was determined. The calculation results are listed in Table 2.

As a result of the calculations, it was assumed that the buildings whose \(WUB \) assessment exceeds 50 points will not be accepted for repair. Thus, all the analysed buildings (Table 2) require activities increasing their use value. With the agreement of a repair manager repair activities were proposed for these buildings of which some can be performed according to various methods – Table 3 (presentation of repairs) and Table 4 (example).

The kind and the method of repair were accepted on the basis of virtual status. The calculation data was obtained from archival documentation, e.g. annual and 5-year evaluation, energy audits, technical documentation. Then, the cost of suggested repair was estimated and the value increase for the assessed building statuses against the formula (1, 2, 3) was determined. Depending on the repair chosen, the increase may refer to one, two or even three building statuses – see Table 5.

The results are a starting point towards optimisation, i.e. the choice of repair scope bringing the largest \(WUB \) increase assuming having limited repair funds.

The application of developed model was presented in the example of cases. The optimisation task in the first case is to choose the repair scope for all the buildings altogether, while in the second one for each building separately.

In the first case all the repairs proposed by the administrator were sought, for which the cost will be within or slightly exceed the budget of PLN 4,500,000 and the largest \(WUB \) increase will be obtained. As a result of

<table>
<thead>
<tr>
<th>Building</th>
<th>Repair activities</th>
<th>Repair variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4. Façade wall repair variants of one building

<table>
<thead>
<tr>
<th>Repair variants description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1 Façade walls thermal insulation</td>
</tr>
<tr>
<td>1/2 Façade walls thermal insulation First floor wall cladding</td>
</tr>
<tr>
<td>1/3 Façade wall painting</td>
</tr>
</tbody>
</table>

Table 5. Sample of repair variants possible for building \(B_1 \)

<table>
<thead>
<tr>
<th>Repair component</th>
<th>Repair variant</th>
<th>(\Delta O_{K_1}) [%]</th>
<th>(\Delta O_{K_2}) [pt]</th>
<th>(\Delta O_{K_3}) [kWh/ m²]</th>
<th>(K) [PLN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Façade</td>
<td>1</td>
<td>3.60</td>
<td>0.00</td>
<td>27.12</td>
<td>434,625</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.82</td>
<td>0.00</td>
<td>27.12</td>
<td>449,640</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.34</td>
<td>0.00</td>
<td>0.00</td>
<td>67,053</td>
</tr>
<tr>
<td>2 Roof</td>
<td>1</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>27,773</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.20</td>
<td>0.00</td>
<td>0.00</td>
<td>101,660</td>
</tr>
<tr>
<td>3 Building entrances</td>
<td>1</td>
<td>0.54</td>
<td>0.43</td>
<td>0.00</td>
<td>31,953</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.54</td>
<td>0.85</td>
<td>0.00</td>
<td>87,953</td>
</tr>
<tr>
<td>4 Balconies</td>
<td>1</td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>38,116</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.96</td>
<td>0.44</td>
<td>0.00</td>
<td>301,617</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.96</td>
<td>0.00</td>
<td>0.00</td>
<td>193,116</td>
</tr>
<tr>
<td>5 Gutters and downspouts</td>
<td>1</td>
<td>0.72</td>
<td>0.00</td>
<td>0.00</td>
<td>16,290</td>
</tr>
</tbody>
</table>
performed calculations, five repair solutions were obtained. Each repair solution presented in Table 6 consists of repair variants for 5 buildings considered. The solution number 1 is the mostly preferred due to the best WUB increase relation to the costs (Table 6).

Repair solution number 1 exceeded the assumed repair budget by PLN 18,144, providing the building use value increase ΔWUB 21.06 points, with the found use effectiveness factor EF of 4.66. To compare, the best repair solution not exceeding the budget (3 in Table 5) allows ΔWUB 20.35 pt, with the EF factor 4.53.

The repair solution 1 consists of over a dozen repair variants, which are assigned to each of five buildings (Table 7).

The description of repair variants presented in Table 7 together with their costs performance is shown in Table 8. For the sake of brevity, only four repair variants are presented for three of five buildings considered.

In the second case out of the repair set assigned to each building (Table 5 – example for building B_1) the ones were sought for which the largest building use value increase of each building will be obtained.

The cost of repair in a building is dependent on its P_a usable area. Accordingly, the budget B of PLN 4,500,000 was divided pro rata between 5 buildings, thereupon it was obtained for $B_1 = 1,078,147; B_2 = 1,203,428; B_3 = 768,246; B_4 = 724,741; B_5 = 725,438$.

As a result of calculations performed, the most favourable repair solutions were generated for each out of 5 buildings (Table 9).

The total cost of repair solutions for five buildings (Table 9) exceeded the assumed budget by PLN 20,834, resulting in ΔWUB of 18.87 points. This value is a weighted average, where the weights are the buildings’ total usable floor area (P_a). The fund use effectiveness factor EF is 4.17. Chosen repair variants included in the repair solutions presented in Table 9 are listed in Table 10.

The calculations performed clearly prove that the highest increase of building use value of 21.06 points for the amount PLN 4,518,144 was achievable for the first example, i.e. the repair variants included in the repair solution were chosen from a set of all repair activities proposed for the buildings being analysed.

The second example shows other possible use of the model. Pro rata division of budget applied for the buildings and the choice of the most favourable repair solutions for each of them allowed the lowest increase of use value (calculated for all the buildings) that equals 18.87 points for the amount PLN 4,520,834.

It has to be stressed, however, that the approach presented in the second example is more appropriate when the buildings analysed are built with different construction technologies, since applying the first approach would result in priority being given to certain material solutions adopted in individual construction technologies.

Conclusions

The article presents a decision-making model for choosing repair solutions for the most cost-effective scope of repair in terms of the assessment criteria adopted. This required the authors to solve five tasks which constituted the model. At each step, an approach or methods were proposed to solve the specific task.

Table 6. Five best repair solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>F</th>
<th>ΔWUB [pt]</th>
<th>EF</th>
<th>K [PLN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.89</td>
<td>21.06</td>
<td>4.66</td>
<td>4,518,144</td>
</tr>
<tr>
<td>2</td>
<td>20.35</td>
<td>20.51</td>
<td>4.54</td>
<td>4,517,378</td>
</tr>
<tr>
<td>3</td>
<td>20.32</td>
<td>20.35</td>
<td>4.53</td>
<td>4,491,967</td>
</tr>
<tr>
<td>4</td>
<td>20.26</td>
<td>20.30</td>
<td>4.52</td>
<td>4,492,982</td>
</tr>
<tr>
<td>5</td>
<td>20.20</td>
<td>20.36</td>
<td>4.51</td>
<td>4,518,058</td>
</tr>
</tbody>
</table>

Table 7. Comparison of repair variants (solution 1)

<table>
<thead>
<tr>
<th>Building</th>
<th>Repair/variant</th>
<th>K [PLN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3, 3/1, 5/1, 6/1, 7/2, 12/1</td>
<td>349,305</td>
</tr>
<tr>
<td>2</td>
<td>1/2, 2/2, 3/1, 4/3, 5/1, 6/2, 7/1, 8/1, 9/2, 10/1, 11/1, 14/1, 16/1</td>
<td>2,343,659</td>
</tr>
<tr>
<td>3</td>
<td>1/3, 3/1, 5/1, 6/1, 7/1, 9/1, 16/1</td>
<td>319,895</td>
</tr>
<tr>
<td>4</td>
<td>1/2, 2/2, 3/1, 5/1, 6/2, 8/1, 9/2, 10/2</td>
<td>879,638</td>
</tr>
<tr>
<td>5</td>
<td>1/2, 3/1, 5/1, 6/2, 7/1, 8/1, 9/2, 10/2, 11/1</td>
<td>625,647</td>
</tr>
</tbody>
</table>

Table 8. Details of the repair variants generated (solution 1)

<table>
<thead>
<tr>
<th>Building</th>
<th>Repair Variant</th>
<th>Repair description</th>
<th>K [PLN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 3</td>
<td>Façade painting</td>
<td>67,053</td>
</tr>
<tr>
<td>3</td>
<td>1 1</td>
<td>Vestibule renovation</td>
<td>31,953</td>
</tr>
<tr>
<td>5</td>
<td>1 5</td>
<td>Guttering replacement</td>
<td>16,290</td>
</tr>
<tr>
<td>6</td>
<td>1 6</td>
<td>Staircase door and window replacement</td>
<td>66,617</td>
</tr>
</tbody>
</table>

Table 9. Repair solutions for 5 buildings

<table>
<thead>
<tr>
<th>Building</th>
<th>F</th>
<th>ΔWUB [pt]</th>
<th>EF</th>
<th>K [PLN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.78</td>
<td>15.24</td>
<td>1.39</td>
<td>1,092,546</td>
</tr>
<tr>
<td>2</td>
<td>20.16</td>
<td>20.19</td>
<td>1.68</td>
<td>1,204,010</td>
</tr>
<tr>
<td>3</td>
<td>19.91</td>
<td>19.97</td>
<td>2.60</td>
<td>767,342</td>
</tr>
<tr>
<td>4</td>
<td>19.33</td>
<td>20.12</td>
<td>2.72</td>
<td>739,085</td>
</tr>
<tr>
<td>5</td>
<td>19.47</td>
<td>19.65</td>
<td>2.74</td>
<td>717,851</td>
</tr>
</tbody>
</table>

Total cost: 4,520,834
The model developed becomes a key part of the need for strategic planning in building management. It can also be used as a tool supporting the administrator in multiple criteria building appraisal and the choice of the optimal repair solution bearing in mind the financial constraints.

References

Robert BUCOŃ. PhD at Lublin University of Technology, Faculty of Civil Engineering and Architecture, Department of Construction Project Engineering in Poland. Academic degree: PhD in construction from Lublin University of Technology (2013). Author of 23 scientific articles. Research interests include construction technology and organisation, properties management, simulation modelling and multiple criteria decision making, expert systems, operation research.

Anna SOBOTKA. Professor at AGH University of Science and Technology in Cracow, Faculty of Mining and Geoengineering, Department of Geomechanics, Construction and Geotechnics in Poland. Academic degrees: PhD in construction from Warsaw University of Technology and DSc from Poznan University of Technology (2001). Author of about 200 scientific articles. Research interests include construction technology and organisation, project management, construction logistics management and sustainable development in construction, properties management, simulation modelling and multiple criteria decision making.