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Abstract. Cash flow information is crucial for the decision making process in construction management. Due to the 
complexity and the dynamic progress of a construction project, forecasting cash flow demand throughout various phases 
of the project remains a challenging problem. This article presents a novel inference model, named as Adaptive Time- 
dependent Least Squares Support Vector Machine (LS-SVMAT) for cash flow prediction. In the LS-SVMAT, Least 
Squares Support Vector Machine (LS-SVM) is integrated with an adaptive time function (ATF) to generalize the input-
output mapping of cash flow. Since cash flow data are time-dependent, data points recorded in different periods can  
contribute dissimilarly to the training process of the prediction model. Thus, the role of the ATF is to determine the ap-
propriate weight associated with each data point at a specific time period. By doing so, LS-SVMAT can better deal with 
the dynamic nature of the time series. Furthermore, to identify the optimal parameters for the inference model, Differen-
tial Evolution (DE) based cross validation process is utilized in this research. Comparing to other benchmark methods, 
the proposed model has identified the most appropriate time function and has yielded superior forecasting results. There-
fore, LS-SVMAT can be a promising tool for construction managers in cash flow prediction.
Keywords: cash flow prediction, least squares support vector machine, adaptive time function, Differential Evolution, 
artificial intelligence, construction management.
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Introduction

Construction project is shown to be context-dependent 
and highly uncertain; this explains why the construc-
tion industry suffers the largest number of bankruptcies 
compared to other sectors of the economy (Boussabaine, 
Kaka 1998). The nature of construction projects, which 
is characterized by constant changes in the environment, 
pressures to maintain schedules and reduce costs with 
increasingly complex construction techniques, makes the 
task of project management a significant challenge. 

In project management, cash is a critical factor 
that imposes significant influence on project profitabil-
ity (Hwee, Tiong 2002; Jiang et al. 2011). Poor cash 
flow control can lead to project failure for contractors 
due to liquidity shortage for supporting their daily ac-
tivities (Khosrowshahi, Kaka 2007). Hence, reliable 
cash flow prediction over various phases of a project 
is desirable since it puts the project manager in a better 
position to identify potential financial problems and to 
develop appropriate strategies to mitigate the negative 
effects of such problems on the project success (Hwang,  
Liu 2005). 

For the purpose of project control, Russell et al. 
(1997) pointed out that one may identify and keep track 
of several time-dependent variables that change through 
the construction progress. Such method can help manager 
monitor the project status and foresee some undesirable 
events that may happen in the future. Nevertheless, predict-
ing project performance dynamically in terms of cash flow 
is enormously challenging. It is because each time point is 
associated with numerous time-dependent variables.

Hence, another alternative for project control in 
terms of cash flow is to analyse the pattern of cash de-
mand in the past and then infer that pattern into the future.  
This, in essence, is the time series forecasting approach 
that can effectively assist both short-term and long-term 
decision making (Williams 1994; Nam et al. 2007). Due 
to its practical importance, various approaches that em-
ploy traditional statistical methods as well as advanced 
artificial intelligence (AI) methods have been developed 
to tackle the time series problems.

A survey carried out by Sapankevych and Sankar 
(2009) found that real-world time series are too complex 
to be modelled using traditional statistical methods. Thus, 
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tics, utilizing deterministic types of time function may 
not yield desirable performance. Thus, this article aims 
to put forward a flexible form of time function, namely 
ATF, which is capable of adapting itself to different time 
series problems in an autonomous manner.

Additionally, in AI field, it is recognizable that tun-
ing parameters play an important role in establishing the 
predictive model (Suykens 1999; Bishop 2006). These 
parameters control the model’s complexity, and they are 
needed to be determined properly via cross-validation. 
In doing so, the main objective is to obtain an optimal 
model that is capable of producing the best predictive 
performance on new data. In this study, DE, a fast and ef-
fective stochastic optimizer proposed by Storn and Price 
(Price et al. 2005), is employed in the cross-validation 
process to achieve such objective.

Therefore, this article aims to propose a hybrid AI 
model that employs various advanced techniques to help 
project managers in predicting the future cash demand. 
The second section of this paper describes the proposed 
approach LS-SVMAT. The cross validation process for 
optimizing model’s parameters is mentioned in the third 
section. The fourth section demonstrates application of 
the inference model in cash flow forecasting. Conclu-
sion on our study is mentioned in the final section.

1. Adaptive time-dependent least squares support 
vector machine

LS-SVM is a supervised learning technique proposed for 
solving both classification and regression problems.  For 
standard formulation of LS-SVM, readers are guided to 
previous works of Suykens et al. (2002) and De Brabanter  
et al. (2010). This section aims to describe the LS-LSVMAT  
which incorporates LS-SVM with an adaptive form of 
time function. 

Consider the following regression model that de-
fines the mapping relationship between a response vari-
able and independent variables: 

  (1)

where: x ∈ Rn, y ∈ R, and  is the mapping 
to the high dimensional feature space. 

Given a training dataset  the formulation 
of LS-SVMAT can be given as follows:

 Minimize ; (2)

Subjected to  k = 1, ..., N,
where: w ∈ Rn is the normal vector to the regression hy-
perplane; b ∈ R is the bias; ek ∈ R is an error variable; 
γ > 0 denotes a regularization constant; sk ∈[0, 1] is a 
time-depended weight associated with an error variable. 

It is noted that sk is a function of time sk = f(tk) 
where tk is the time period of the data point k. As 

this demands more advanced forecasting algorithms such 
as Kalman filters, artificial neural networks (ANN), and 
support vector machines (SVM). The survey also point-
ed out that among AI methods, SVM has the ability to  
accurately forecast time series data especially when the 
data of interest are non-linear and non-stationary. 

Moreover, SVM has been utilized in a variety of 
applications in construction engineering (An et al. 2007; 
Cheng et al. 2010). Hence, this method can be promising 
for cash flow problem. The principles of SVM are based 
on the structural risk minimization and statistical learn-
ing theory. After being trained, SVM is capable of pre-
dicting the future value of cash demand. The advantages 
of this method are strong inference capacity and gener-
alization. Nevertheless, SVM training requires solving a 
quadratic programming problem subjected to inequality 
constraint. This means that the training process for large 
data sets requires expensive computational cost (Guo, 
Bai 2009).

LS-SVM has been proposed recently to overcome 
the drawback of SVM (Suykens et al. 2002; De Brabanter  
et al. 2010). One obvious advantage of LS-SVM is the 
alleviation of the computational cost.  In its training pro-
cess, a least squares cost function is proposed to obtain a 
linear set of equations in the dual space. Consequently, to 
derive the solution, it is required to solve a set of linear 
equations, instead of the quadratic programming as in 
SVM. And, this linear system can be efficiently solved 
by iterative methods such as conjugate gradient. Studies 
have been carried out to demonstrate the prediction ca-
pability of LS-SVM (Yu et al. 2009; Samui et al. 2011). 

However, one shortcoming of LS-SVM is that it 
does not consider the unbalanced feature of real-world 
time series. In construction industry, data related to cost 
are collected periodically in various phases of the pro-
ject; thus, many factors of interest in construction lend 
themselves to time series behaviour (Khosrowshahi, 
Kaka 2007). It is obvious that during the project execu-
tion, data recorded more recently could provide more 
information for the decision makers. It is because cost 
items reported in distant past may be less relevant due to 
changes in the working environment. In cash flow pre-
diction, data collected closer to the timing of prediction 
should be more important than that which is more distant. 
Furthermore, the level of importance of data recorded in 
different phases of the project may not be similar. Thus, 
any forecasting techniques applied for the case of cash 
flow should take into account this very nature of time 
series.

To address the issue of unbalanced learning, Lin 
and Wang (2002) first proposed the weight, which is ex-
pressed in terms of a fuzzy membership, associated with 
each input point; and this allows each one to contrib-
ute dissimilarly in the training process. Two time func-
tions, namely linear and quadratic, are used to calculate 
those weights. Nevertheless, since each time series and 
each domain problem may possess different characteris-
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mentioned earlier, real-world time series data can be  
unbalanced due to the fact that recent data can be more 
 relevant than distant ones. Therefore, data points should 
to be weighted differently according to time. This study 
introduces the ATF for determine the value of sk used in 
Eqn (2). Consider the case of a construction project, the 
total project duration can be divided into a number of 
completion periods (U). Thus, the proposed time func-
tion assigns small weighting values for data points at the 
initial phase of the project. Meanwhile, data points re-
corded at the later phase are coupled with greater weights 
because they possess more valuable information for the 
training process (Fig. 1). Using the proposed ATF, the 
duration of a completed project is divided into T time 
domains. It is noted that the number of time domains 
(T) is not necessarily equal to the number of completion 
periods (U).

For the first time domain D1, the time function has 
two free parameters: the initial value and the slope. The 
weights within D1 are calculated as following: 

  (3)

where: sk denotes the weighting value associated with the 
data point k; tk is the time period; so is the initial value of 
the weighting value and it is usually set to be relatively 
close to 0; a1 represent the slope parameter.

Meanwhile, the time functions for other domains 
only need the slope parameter to specify its shape. The 
weights within a time domain Dv are calculated in the 
following way:

  (4)

where: so,v–1 is the maximum weighting value in the pre-
vious time period; av represents the slope parameter.

To solve the optimization problem stated in Eqn (2),  
one can construct the Lagrangian and derive the dual 
problem. Similar to original LS-SVM (Suykens et al. 
2002), the Lagrangian is given by:

  
 (5)

where αk are Lagrange multipliers.  
And the conditions for optimality are given by:

 (6)

After elimination of e and w, the following linear system 
is obtained:

  (7)

where:

  (8)

  (9)

  (10)

  (11)

And the kernel function is applied as follows: 

  (12)

The resulting LS-LSVMAT model for function estimation 
is expressed as:

  (13)

where αk and b are the solution to the linear system (7). 
The kernel function that is often utilized is Radial Basis 
Function (RBF) kernel given as following:

  (14)

where σ denotes the kernel function parameter.
It is noticed that the regularization constant (γ),  

kernel function parameter (σ), the initial weight (so), and 
the slope parameters (av) are the tuning parameters of 
the proposed LS-LSVMAT. In our research, these tun-
ing parameters are automatically optimized by the DE 
based cross validation process which is demonstrated in 
the next section of the article.

2. Optimizing model tuning parameters
2.1. Differential Evolution
Differential Evolution (DE) is an Evolutionary Algo-
rithm which is designed for real parameter optimization  
(Price et al. 2005). DE algorithm relies on the imple-
mentation of a novel crossover-mutation operator, based 
on the linear combination of three different individuals 

Fig. 1. Adaptive time function (ATF)



682 M.-Y. Cheng et al. Cash flow prediction for construction project using a novel adaptive time-dependent ...

and one subject-to-replacement parent (or target vector) 
(Becerra, Coello 2006). The crossover-mutation operator 
yields a trial vector (or child vector) which will compete 
with its parent in the selection operator. The selection 
process is performed via selection between the parent and 
the corresponding offspring (Mezura-Montes et al. 2004). 
The algorithm of DE is depicted in Figure 2. In this figure,  
it is noted that NP represents the size of the population; 
Xj,i is the jth decision variable of the ith individual in the 
population; g is the current generation; and D denotes 
the number of decision variables. randj(0,1) is a uniform 
random number lying between 0 and 1; and rnb(i) is a 
randomly chosen index ranging between 1 and NP.

In the selection process, the trial vector is compared 
to the target vector (or the parent) (Storn, Price 1997). If 
the trial vector can yield a lower objective function value 
than its parent, then the trial vector replaces the target 
vector. The selection operator is expressed as following:

  (15)

where: Xi,g represents the  parent vector at generation g; Ui,g 
denotes the trial vector at generation g; Xi,g+1 is the chosen 
individual which survives to the next generation (g+1).

The optimization process iterates until the stop-
ping criterion is satisfied. The user can set the type of 
this stopping condition. Commonly, maximum genera-
tion (Gmax) or maximum number of function evaluations 
(NFE) can be applied as the stopping condition. When 
the optimization process terminates, the final optimal so-
lution is available for the user assessment.

2.2. Differential Evolution based cross validation
In machine learning, one important goal is to construct a 
prediction model that can deliver the best generalization. 
It is because model performance on the training data set  

is not necessarily a good indicator of the predictive  
performance on testing data due to the problem of over-
fitting (Bishop 2006). Over-fitting arises when a regres-
sion model fits the training set very well, but performs 
poorly on the new data set. Hence, to build a desirable 
prediction model, one commonly used technique is the  
S-fold cross-validation (Suykens et al. 2002; Bishop 2006; 
Samarasinghe 2006). Employing this approach, the train-
ing data is divided into S folds and this allows a proportion  
(S – 1) / S of the available data to be used for training 
while other portion of the data is for assessing model 
performance. 

Since our study employs LS-SVMAT as the regres-
sion machine, its tuning parameters consist of the regu-
larization parameter γ, the RBF kernel parameter σ, the 
initial weight so, and the slope parameters av. The pro-
posed cross validation approach utilizes DE (Price et al. 
2005) to automatically explore various combinations of 
(γ, σ, so, and av) and to identify the optimal set of these 
tuning parameters. In the following section, the DE-
based cross-validation (Fig. 3) is described in detail.

In the step of data processing, the training data set is 
divided into S folds, in our study S is selected to be five. In 
each run, one fold is used as a validating set; meanwhile, the 
other folds are used for training the model. In LS-SVMAT  
training, the machine is utilized to learn the mapping func-
tion between input and output for each run. After the train-
ing process, the propose method is applied to predict the 
output of the validating sets. In order to determine the op-
timal tuning parameters, the following objective function 
is used in the step of fitness function evaluation:

  (16)

where  and  denote the training and validating er-
ror, respectively, for the kth run. The training and validat-

Fig. 2. Differential Evolution optimization algorithm
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ing errors herein are Root Mean Squared Error (RMSE) 
calculated as follows:

  (17)

where  and  represent predicted and actual value for 
output jth. In addition, N represents the number of train-
ing data points used in each run. 

The fitness function, in essence, represents the trade-
off between model generalization and model complex-
ity. It is worth noticing that well-fitting of the training  
set may reflect the model complexity. However, complex 
model tends to suffer from over-fitting (Suykens et al.  
2002; Bishop 2006). Thus, incorporating the error of 
the validating data can help identify the model that fea-
tures the balance between minimizing training error and 
achieving generalization capability.

In each generation, the DE algorithm carries out mu-
tation, crossover, and selection process to guide the initial 
population to the final optimal solution. The search termi-
nates when the current generation g achieves the maxi-
mum number of generation Gmax. After being optimized, 
the prediction model is ready to be used in the next step.

3. LS-SVMAT for cash flow prediction
3.1. Experimental results
This section of the article illustrates the performance of the 
proposed inference model LS-SVMAT in real-world cash 
flow prediction problems. The database used in the paper 
was collected from a construction contractor in Taipei from 

1996 to 2006. Herein, the standard cumulative cost-time 
curves were employed for cash flow forecasting. As cash 
flow is recorded sequentially, it features characteristics of 
time series. Hence, LS-SVMAT, which fuses LS-SVM and 
ATF, can be very potential solve to the problem at hand.

The employed database contains percentage of ex-
penditure cash flow taken from 13 high rise building pro-
jects. The LS-SVMAT utilizes 10 projects as training set 
and 3 projects as testing set.  Every project was separated 
into 20 sections; each section represents a uniform pe-
riod of 5% total project completion.  It is noted that for 
weighting data, the total project duration is divided into 
5 time domains (T = 5).

To predict future cash flow demand, three sequential 
periods of expenditure cash flow were utilized as input pat-
terns. There are 17 input data in a completed project from 
the first set (1, 2, 3) to the final set (17, 18, 19). Prediction 
results are represented by the cumulated cash flow ratio 
of the 4th through the 20th periods. Hence, 170 data points 
are employed to train the inference model and 51 data 
cases for testing its performance. Table 1 illustrates the 
cash flow data for one project in the database. In Table 1,  
the three inputs X1, X2, and X3 represent the pattern of 
expenditure cash flow in the past; meanwhile, the output 
Y denotes the forecasted cash demand of the project.

To illustrate that LS-SVMAT is capable of delivering 
accurate predictive results, the proposed model is bench-
marked with Evolutionary Support Vector Machine Inference  
Model (ESIM) (Cheng, Wu 2009). ESIM is established 
based on the standard SVM without any weighting mech-
anism. Additionally, LS-SVM models that utilizes linear 
and quadratic time functions proposed by Lin and Wang 

Fig. 3. Differential Evolution based cross-validation process
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by the unit of the predicted output; hence, it can express 
the difference between the actual and the predicted cash 
flow. MAPE is calculated as follows:

  (20)

where: A
iY  and P

iY  are actual and predicted value for 
output i, respectively; n denotes the number of data 
points.

When the training process terminates, LS-SVMAT  
as well as other benchmark models, including  
LS-SVML, LS-SVMQ, and ESIM can be employed for 
predicting new cases of project cash flow. It is noticed 
that since the first three models utilized time functions 
for dealing with unbalanced learning, the optimal ATF 
for LS-SVMAT is illustrated in Figure 4; meanwhile, the 
optimal shapes of linear and quadratic time function for 
LS-SVML and LS-SVMQ are shown in Figure 5 and  
Figure 6, respectively.

The result comparison is provided in Table 2. It is 
recognizable that the proposed model has achieved the 
most desirable outcome in both training and testing set. 
For training set, RMSE and MAPE of LS-SVMAT are 
0.020 and 4.540, respectively. When predicting testing 
cases, LS-SVMAT obtains 0.022 for RMSE and 4.731 for 
MAPE. Additionally, since the training error and testing 
error of LS-SVMAT are relatively close to each other, it 
can be shown that the inference model does not suffer 
from over-fitting. This means DE based cross validation 
process is really effective to achieve a balance between 
model generalization and model complexity.

Furthermore, prediction results of the other two  
LS-SVM models, which also utilizes time functions, are 
better than that of ESIM, which is not equipped with 
time function. Thus, from the conducted experiments, it 
can be concluded that time functions are able to enhance 
the prediction capability. In addition, because forecast-
ing outcome of LS-SVML is slightly better than that of 
LS-SVMQ, it can be seen that model performance may 
vary when different types of time function are employed.

(Lin, Wang 2002) are also used for result comparison; the 
two models are named as LS-SVML and LS-SVMQ. The 
formulations of the linear and the quadratic function are 
shown in Eqn (18) and Eqn (19), respectively:

  (18)

  (19)

where: t1 and tm denote the first and the last time period 
of a project, respectively; σ represents the time function 
parameter which is the lower bound of weighting values. 
It is worth noticing that when LS-SVM is integrated with 
the two aforementioned time functions, all of model tun-
ing parameters, including the regularization parameter, 
the kernel function parameter, and the time function pa-
rameter, are selected via the DE based cross validation 
process.

Moreover, to quantify the modelling accuracy of 
each approach, Root Mean Square Error (RMSE) and 
Mean Absolute Percentage Error (MAPE) have been em-
ployed as evaluation criteria.  RMSE (Eqn (17)) is first 
computed by summing the squared deviations between 
the predicted and the observed outputs, then taking the 
square root of summation. Since the errors are squared 
before calculating the average deviation, more weights 
are given to data points with larger prediction errors. 
Thus, RMSE is effective for identifying undesirable large 
deviations. Meanwhile, MAPE quantifies the modelling 
performance by computing the ratio between the devia-
tion and actual output. MAPE magnitude is not affected 

Table 1. Expenditure cash flow for one construction project

Case
Input pattern Output

X1 X2 X3 Y
1 0.34 4.97 6.38 7.21
2 4.97 6.38 7.21 9.71
3 6.38 7.21 9.71 15.99
4 7.21 9.71 15.99 23.45
5 9.71 15.99 23.45 27.55
6 15.99 23.45 27.55 31.74
7 23.45 27.55 31.74 36.25
8 27.55 31.74 36.25 42.20
9 31.74 36.25 42.20 47.69
10 36.25 42.20 47.69 54.04
11 42.20 47.69 54.04 58.72
12 47.69 54.04 58.72 72.45
13 54.04 58.72 72.45 78.16
14 58.72 72.45 78.16 82.04
15 72.45 78.16 82.04 90.65
16 78.16 82.04 90.65 95.23
17 82.04 90.65 95.23 100.00

Fig. 4. Adaptive time function
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The detailed results for 51 testing cases, including 
actual and predicted cash flow, are provided in Table 3. 
Herein, the result deviation is calculated as the absolute 
different between actual and predicted cash flow at a 
time period. The average deviation of LS-SVMAT, LS-
SVML, LS-SVMQ, and ESIM are 1.83%, 2.30%, 2.51%, 
and 3.58%, respectively. Furthermore, the maximum  
deviations of the four models are 4.85%, 10.32%, 
14.34%, and 8.98%. Hence, prediction performance in 
terms of result deviation of LS-SVMAT is significant bet-
ter than that obtained from other approaches. If we set 
5% as the error threshold for predicting project cash flow, 
only the proposed inference model is qualified.

3.2. Discussion
Based on the results shown above, it can be seen that 
the LS-SVMAT, which is fused with the newly developed 

ATF, provides the best forecasting outcome. Thus, this 
form of time function, illustrated in Figure 4, is deemed 
best suited for the cash flow prediction problem. The ATF 
seems to be divided into two regions that are significantly 
different from each other. In the first region, from time 
period 1st to 7th, the weighting values increases gradu-
ally from 0.44 to 0.96. In the second region, the values 
of time function get stable reflected in an apparently 
straight line. Additionally, it can also be observed that 
the optimal time function is found to be concave-down.  
Meanwhile, the quadratic time function (Fig. 6), due the 
restriction of its functional formula, is always depicted in 
a concave-up shape. Thus, this explains why the quad-
ratic function cannot capture the trend similar to that of 
the proposed adaptive method. 

Furthermore, this weighting strategy of the ATF is 
understandable in the context a construction project. As in 
the initial stage of a project, fewer tasks were commenced 
and thus only a small proportion of works was carried 
out. The works on site at this stage are mostly preparatory 
activities; financial transactions and working information 
were less likely to appear. Thus, the weighting value for 
data points collected in this period should be low. When 
the project moves forward, it reaches a stable state in 
which most of the main activities are executed. Therefore, 
information collected at the later time periods should be 
considered more valuable and given greater weights. Ac-
cordingly, the ATF function is found to best demonstrate 
this feature as it delivers the best forecasting results.

Moreover, since LS-SVMAT is a hybrid AI model, 
the approach can be quiet complex for practical man-
agers. Nevertheless, construction management is a com-
plicated field and predicting project performance is by 
no means an easy task. Therefore, it is very challeng-
ing to construct a simple model that yields highly accu-
rate forecasting performance. Even though the proposed 
model is relatively complicated to establish, with more 
effort on software engineering, a user-friendly interface 
can be integrated into the model; and this enables LS-
SVMAT to be a more promising tool for practical project  
management.

Conclusions

This article has presented a novel approach, named as 
LS-SVMAT, to assist construction managers in dealing 
with project cash flow forecasting. The proposed ap-
proach, which fuses LS-SVM and ATF, is developed 
as an intelligence model specifically designed for time  

Fig. 5. Linear time function

Fig. 6. Quadratic time function

Table 2. Result comparison

Performance measurement LS-SVMAT LS-SVML LS-SVMQ ESIM

Training
RMSE 0.020 0.025 0.029 0.044

MAPE 4.540 6.374 7.860 13.221

Testing
RMSE 0.022 0.030 0.035 0.043

MAPE 4.731 5.778 6.148 13.899
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Table 3. Detailed result of testing cases

Case Actual 
output

LS-SVMAT LS-SVML LS-SVMQ ESIM

Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev.

1 11.63 13.35 1.72 13.34 1.71 13.20 1.57 19.78 8.15

2 16.92 15.73 1.19 14.88 2.04 15.33 1.59 22.30 5.38

3 21.36 21.29 0.07 22.45 1.09 22.09 0.73 25.50 4.14

4 28.40 25.88 2.52 25.02 3.38 24.83 3.58 29.13 0.73

5 33.21 33.41 0.20 34.66 1.45 34.53 1.32 34.37 1.16

6 39.46 38.60 0.86 40.10 0.64 40.04 0.58 39.38 0.08

7 42.43 45.43 3.00 46.24 3.81 46.09 3.66 44.98 2.55

8 48.33 48.76 0.43 48.11 0.22 48.44 0.11 49.23 0.90

9 56.45 55.01 1.44 51.71 4.74 51.75 4.70 53.94 2.51

10 60.41 62.90 2.49 60.85 0.44 61.24 0.83 59.31 1.10

11 65.91 66.99 1.08 68.41 2.50 69.32 3.41 64.76 1.15

12 73.41 72.70 0.71 72.22 1.19 72.52 0.89 70.17 3.24

13 77.34 79.75 2.41 79.65 2.31 79.69 2.35 75.50 1.84

14 85.42 83.45 1.97 83.78 1.64 83.60 1.82 80.65 4.77

15 89.42 91.03 1.61 88.61 0.81 87.91 1.51 86.75 2.67

16 92.50 94.41 1.91 94.74 2.24 94.28 1.78 91.63 0.87

17 100.00 97.26 2.74 98.63 1.37 97.48 2.52 96.21 3.79

18 11.34 11.04 0.30 9.55 1.79 9.35 1.99 18.58 7.24

19 16.32 15.23 1.09 15.20 1.12 15.10 1.22 21.08 4.76

20 21.93 20.38 1.55 19.85 2.08 19.79 2.14 24.52 2.59

21 24.20 26.40 2.20 25.32 1.12 25.04 0.84 29.06 4.86

22 31.21 29.26 1.95 30.15 1.06 30.34 0.87 32.93 1.72

23 37.98 36.76 1.22 33.90 4.08 33.97 4.01 37.63 0.35

24 47.98 43.53 4.45 41.09 6.89 41.13 6.85 42.66 5.32

25 54.45 53.85 0.60 59.05 4.60 60.44 5.99 50.11 4.34

26 60.92 60.57 0.35 55.59 5.33 55.06 5.86 57.23 3.69

27 68.29 67.48 0.81 67.34 0.95 68.15 0.14 64.25 4.04

28 76.53 74.73 1.80 73.72 2.81 73.13 3.40 70.55 5.98

29 80.45 82.56 2.11 81.60 1.15 81.97 1.52 77.41 3.04

30 83.57 86.29 2.72 85.99 2.42 85.87 2.30 83.32 0.25

31 87.54 89.39 1.85 87.72 0.18 87.32 0.22 87.94 0.40

32 90.52 92.98 2.46 96.23 5.71 97.14 6.62 91.35 0.83

33 96.44 95.54 0.90 97.94 1.50 97.36 0.92 94.44 2.00

34 100.00 100.72 0.72 99.55 0.45 99.09 0.91 98.50 1.50

35 8.65 7.21 1.44 8.33 0.32 8.10 0.55 15.83 7.18

36 11.71 12.28 0.57 11.25 0.46 11.01 0.70 18.52 6.81

37 13.40 15.39 1.99 15.81 2.41 15.82 2.42 21.16 7.76

38 15.03 17.71 2.68 16.40 1.37 16.79 1.76 24.01 8.98
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Case Actual
output

LS-SVMAT LS-SVML LS-SVMQ ESIM

Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev.

39 21.98 19.72 2.26 18.50 3.48 17.94 4.04 25.95 3.97

40 24.24 26.72 2.48 27.20 2.96 27.85 3.61 29.30 5.06

41 30.41 29.13 1.28 29.52 0.89 30.03 0.38 32.59 2.18

42 35.81 35.99 0.18 33.49 2.32 33.69 2.12 37.38 1.57

43 42.49 41.45 1.04 41.89 0.60 42.11 0.38 41.70 0.79

44 52.94 48.54 4.40 50.00 2.94 50.64 2.30 47.36 5.58

45 60.52 59.01 1.51 59.93 0.59 60.69 0.17 54.46 6.06

46 69.21 66.63 2.58 58.89 10.32 54.87 14.34 62.07 7.14

47 74.37 75.47 1.10 75.14 0.77 72.24 2.13 70.31 4.06

48 76.27 80.52 4.25 78.42 2.15 78.44 2.17 76.83 0.56

49 87.50 82.65 4.85 84.09 3.41 85.09 2.41 81.53 5.97

50 90.53 92.99 2.46 86.05 4.48 84.40 6.13 87.42 3.11

51 100.00 95.23 4.77 96.78 3.22 96.15 3.85 92.31 7.69

Note: Pred. denotes predicted output;
Dev. denotes result deviation.

Continued Table 3

series data. LS-SVMAT makes prediction of future pro-
ject cash demands by case learning of patterns in the 
past. Moreover, DE searching algorithm is utilized in the 
cross validation process to identify the most appropriate 
tuning parameters without the need of trial-and-error pro-
cess. Experimental result and performance comparison 
have proved the strong potential of the new inference 
model.

Currently, LS-SVMAT has a limitation: the model 
is built using a single database collected from one con-
struction contractor in Taipei. Although the data are quiet 
homogeneous and capable of facilitating cash flow esti-
mation effectively, more historical cases from different 
contractors should be incorporated to enhance the gener-
alization of the prediction model. On the other hand, all of 
the recorded data used for cash flow prediction are high-
rise building projects. Hence, data collected from other 
types of construction project, such as highway and tun-
nelling structure, can be worth investigated. It is because 
other project types may possess different characteristics. 
Nevertheless, the procedure of collecting new data cases 
requires time and effort. Therefore, we would like to con-
sider these to be promising future research directions.
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