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Abstract. As construction projects become larger and more diversified, various factors such as time, cost, quality, envi-
ronment, and safety that need to be considered make it very difficult to make the final decision. This study was conduct-
ed to develop an integrated Multi-Objective Optimization (iMOO) model that provides the optimal solution set based on 
the concept of the Pareto front, through the following six steps: (1) problem statement; (2) definition of the optimization 
objectives; (3) establishment of the data structure; (4) standardization of the optimization objectives; (5) definition of the 
fitness function; and (6) introduction of the genetic algorithm. To evaluate the robustness and reliability of the proposed 
iMOO model, a case study on the construction time-cost trade-off problem was analyzed in terms of effectiveness and 
efficiency. The results of this study can be used: (1) to assess more than two optimization objectives, such as the initial 
investment cost, operation and maintenance cost, and CO2 emission trading cost; (2) to take advantage of the weights 
as the real meanings; (3) to evaluate the four types of fitness functions; and (4) to expand into other areas such as the 
indoor air quality, materials, and energy use.
Keywords: multi-objective optimization, pareto front, non-dominated solution, fitness function, construction 
management.

Introduction

The Construction Management Association of America 
(CMAA) defines Construction Management (CM) as a 
professional service that applies effective management 
techniques to control various standards, such as the time, 
cost, quality, environment, and safety, under a series of 
processes from the project planning phases to operation 
and maintenance phase. CM is defined as a manage-
ment system created for the successful performance of 
a project from the owner’s viewpoint (Henderickson, Au 
1989; CMAA 1999; Unnikrishnan et al. 2009).

Various complex and large-scale projects such as super- 
high-rise buildings, green buildings, super-long-span 
bridges, u-city projects, and urban regeneration projects 
have recently emerged. In the early stage of a project, it is 
important to recognize the role of a construction manager 
or contractor in effective and reliable management of a 
project. For instance, a super-high-rise building project 
requires careful review of new techniques or methods in 
terms of structural and construction engineering. Based 
on the review, a plan should be established to engage 
appropriate labor and equipment. Such decision-making 
ultimately affects the time, cost, and quality, among other 
factors, of a project, and thus, determines the outcome 

of the project as the final decision. The larger the pro-
ject scales, the more varied factors for consideration are  
generated. This makes it very difficult to make the final 
decision. It becomes increasingly difficult to review all 
possible combinations of factors for the best decisions, 
which leads to obstacles in obtaining reliability. To solve 
this problem, experts should be involved or a sophis-
ticated decision support system should be developed  
(Pagnoni 1990; Adeli, Hung 1995; Adeli, Sarma 2006).

As the delivery methods (i.e. the design and build, 
best-value contract, management contract, prime contract-
ing, build-operate-transfer, partnering, etc.) are diversified, 
the target standards on project performance (i.e. the time, 
cost, quality, environment, etc.) likewise become diversi-
fied based on the characteristics of a project (Zheng et al. 
2004; Ammar 2011). For instance, the best-value con-
tract grants a higher value to quality than to time and cost  
(Ansell et al. 2009; Lam et al. 2009; Asmar et al. 2010; 
Sullivan 2011). LEED certification projects give priority 
to the environmental standards. Nevertheless, while meet-
ing the construction contract time, there should be no in-
crease in the cost or a reduction in quality (Hegazy 1999; 
Hegazy, Ersahin 2001; Rogoža et al. 2006).
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This study was conducted to develop an integrated 
multi-objective optimization (iMOO) model capable of 
comprehensively analyzing various standards that are tra-
ditionally considered in the construction industry, such 
as time and cost, and of determining an optimal solu-
tion according to the following procedure: (1) through 
an extensive literature review, a preliminary analysis was 
conducted on various methodologies applied in the past 
(i.e. heuristic, mathematical programming, and genetic 
algorithms) and the limitations of these methodologies 
were analyzed; and (2) by solving these limitations, a 
model with improved flexibility or applicability and us-
ability was developed that can be applied to various areas 
related to multi-objective optimization. Two criteria were 
used to assess the robustness and reliability of the pro-
posed iMOO model: effectiveness in terms of the quality 
of the generated optimal solution set; and efficiency in 
terms of computational time.

1. Conventional multi-objective optimization  
techniques

There have been several studies on multi-objective  
optimization, and various methodologies have been  
implemented, including heuristics, mathematical pro-
gramming, and genetic algorithms.

First, using heuristic methods, previous studies 
hoped to solve the Time-Cost Trade-off Problem (TCTP). 
Based on the rule of thumb, this methodology may pro-
vide a good result, but it cannot guarantee that the result 
would always be the optimal solution. Additionally, since 
the result is not presented in terms of the range of possi-
ble solutions, this methodology is inappropriate for use in 
analyzing various scenarios, such as in Fondahl’s method, 
Prager’s structural model, Moshlhi’s structural stiffness 
method, and Siemens’s effective cost slope model (Fondahl  
1961; Prager 1963; Siemens 1971; Moselhi 1993).

Second, some methodologies, such as linear pro-
gramming and integer programming, hoped to solve 
TCTP by applying mathematical programming methods. 
While linear programming may be appropriate in deter-
mining the existence of a linear time-cost relationship, 
it is limited in determining the existence of a discrete 
time-cost relationship. To solve this problem, integer pro-
gramming was introduced (Liu et al. 1995; Burns et al. 
1996). Integer programming, however, requires too much 
time and effort to model a large number of activities or 
complex relationships. Many studies have pointed out the 
disadvantages of heuristics and mathematical methods, 
the most serious of which is that they are not appropriate 
for dealing with more than one objective.

Third, to solve this issue, several studies have  
defined the trade-off among management indices as mul-
ti-objective optimization problems and introduced genet-
ic algorithms (Goldberg 1989; Adeli, Cheng 1993; Li, 
Love 1997; Elbeltagi et al. 2005; Ng, Zhang 2006; Chen, 
Weng 2009). Feng et al. (1997) introduced the concept of  
multi-objective optimization to optimize the time and 

cost at the same time. However, this approach uses the 
convex hull concept, which is also used in linear pro-
gramming and thus has a limitation in providing the ac-
tual optimal solution. Gen and Cheng (2000) hoped to 
solve TCTP using the adaptive weight approach (AWA), 
but they were only able to produce an optimal solution 
when several assumptions were satisfied. Zheng et al. 
(2004) aimed to solve TCTP using the modified adap-
tive weight approach, which improved the disadvantages 
of AWA. Zheng et al. (2005a) and Zheng and Ng (2005b) 
also proposed the range of possible solutions by introduc-
ing the concept of Pareto ranking and niche formation.

Fourth, aside from TCTP, several studies have con-
sidered the quality, environment, and productivity at the 
same time (Hsieh, Liu 2004; Balling et al. 2004; Huang 
et al. 2009; Jiang et al. 2011; Liu et al. 2012; Simanaviciene  
et al. 2012). El-Rayes and Kandil (2005) tried to solve 
the time-cost-quality trade-off problem in highway con-
struction. Marseguerra et al. (2004) and Martorell et al. 
(2005) applied the concept of multi-optimization using 
genetic algorithms to solve the optimization problem on 
the technical specifications and maintenance activities in 
nuclear power plants. Carvalho et al. (2012) conducted a 
study to assess the economic and environmental aspects 
on a trigeneration system.

2. Motivation from previous studies

Through an extensive literature reviews with regards to 
the multi-optimization, the limitations of the methodolo-
gies applied to the existing research were identified. At 
the same time, the advantages of these methodologies 
were determined. Based on the results, this study aims 
to develop more intuitive, simplified, applicable and flex-
ible model (i.e. research team named it “iMOO model”) 
to solve the multi-optimization problems. The following 
are several motivations for developing the iMOO model:

 – The iMOO model should guarantee that the results 
would always be the optimal solution, which could 
not be achieved using heuristic method.

 – The iMOO model should be simplified to minimize 
the time and effort spent to model a large number of 
activities or complex relationship, which could not 
be achieved using linear and integer programming.

 – The iMOO model should provide an optimal solu-
tion set based on the concept of the Pareto front. Ac-
cordingly, the reliability on the final results should 
be improved (refer to Figs 1 and 2).

 – The iMOO model should have improved flexibility 
or applicability depending on the problem statement 
and should be able to easily handle more than two 
optimization objectives (refer to Fig. 3).

 – The iMOO model should have improved usability 
by simplifying the complicated processes and equa-
tions shown in previous studies (Feng et al. 1997; 
Goldberg 1989; Li, Love 1997; Gen, Cheng 2000; 
Zheng et al. 2004, 2005a; Zheng, Ng 2005b) (refer 
to Section 3, “Model implementation”).
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 – The iMOO model adopts two criteria for improving 
the performance of the models proposed in previous 
studies: (1) effectiveness in terms of the quality of 
the generated optimal solution set; and (2) efficiency 
in terms of computational time (refer to Section 4, 
“Model application”).

 – The iMOO model realizes an optimization algo-
rithm using a genetic algorithm.
Figures 1 and 2 show the concept of the Pareto front 

(i.e. non-dominated set) and the optimal solution set, re-
spectively (Chen and Weng 2009). As shown in Figure 1,  
the alternatives for the Pareto front were not superior to 
the other alternatives in terms of both of two optimiza-
tion objectives (i.e. ZA and ZB, which represent the time, 
cost, quality, environment, etc.). The Pareto front sig-
nifies a set of alternatives whose superiority cannot be 
easily determined.

Figure 2 explains Areas (1)–(4), which are compart-
mentalized based on Alternative α. First, all alternatives 
in Area (1) are superior to the Alternative α in terms of 
both two optimization objectives, ZA and ZB (i.e. the area 
that Alternative α is dominated by). Moreover, within 
Area (1), the set of alternatives whose superiority can-
not be easily determined is called the optimal solution 
set. Second, Areas (2) and (3), compared to Alternative 
α, signify indifferent areas in which one of the two opti-
mization objectives is superior and the other is inferior. 
Third, all alternatives in Area (4) are inferior to the Alter-
native α in terms of both of two optimization objectives, 
ZA and ZB (i.e. the area that Alternative α dominates).

The proposed iMOO model presents the process of 
producing the optimal solution set based on the two con-
cepts explained in Figures 1 and 2 – the Pareto front and 
the optimal solution set. This approach can also be applied 
identically to more than two objectives. Figure 3 concep-
tually shows three optimization objectives (for which it 
was assumed that an index is better when ZA and ZB are 
smaller and when ZC is larger). This shows that the pro-
posed iMOO model can be easily expanded to multiple 
dimensions.

3. Model implementation

Based on the motivations for this study that were ex-
plained in Section 2, “Motivation from the previous stud-
ies”, the following core engine of the iMOO model was 
developed.

The values of the optimization objectives, which 
are defined by the characteristics of a project, should 
be standardized. First, the maximum extreme point 
(Z+) and the minimum extreme point (Z–), i.e. the two 
extreme points within the whole criteria space, can be 
found using Eqns (1) and (2) suggested by Gen and 
Cheng (2000). Moreover, the hyperplane, which is used 
to find the optimal solution set, can be established based 
on the two extreme points (here, it was assumed that 
an index is better when ZA and ZB are smaller) (refer 
to Fig. 4):

  (1)

  (2)Fig. 1. Pareto front in the two-objective space

Fig. 2. Non-dominated area and the optimal solution set

Fig. 3. Non-dominated optimal solution in the three-objective 
space
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where: Z+ is the maximum extreme point; Z– is the 
minimum extreme point; ZA

max and ZB
max are the 

maximum value for the optimization objectives of A 
and B, respectively; and ZA

min and ZB
min are the mini-

mum value for the optimization objectives of A and B,  
respectively.

Second, all points within the whole criteria space 
should be standardized using Eqns (3) and (4):

  (3)

  (4)

where: SA is the standardized value for the ZA; and SB is 
the standardized value for the ZB.

As the original values for the optimization objec-
tives of A and B are converted into standardized values 
between 0 and 1, several advantages can be obtained:

 – The effect from the non-identical unit between the 
optimization objectives of A and B that are applied 
to the fitness function can be removed in advance.

 – Gen and Cheng (2000) did not solve the problem of 
a zero division scenario. Zheng et al. (2005a) and 
Zheng and Ng (2005b) attempted to solve this is-
sue using several stages of processes, complicated 
equations, and random number τ (between 0 and 1). 
This study could solve this problem using a simpli-
fied process called the standardization of optimiza-
tion objectives.

 – By simplifying the optimization process and equa-
tion, this study offers flexibility – i.e. it can easily 
access various applied problems.

 – According to the project characteristics and the 
owner’s requirements, the weight value of the opti-
mization objectives can be applied. Gen and Cheng 
(2000), Zheng et al. (2005a) and Zheng and Ng 
(2005b) also used a weighed value, but since their 
process did not have a stage where the optimization 
objectives were standardized, the weighed value 
cannot be a weighed value in its purest sense.

 – The model can help facilitate understanding and 
solve the problems on more than two optimization 
objectives through the multi-dimensional concept.
As shown in Figure 5, the model consists of four 

types of fitness functions. Based on the characteristics 
of the optimization objectives that were defined accord-
ing to the project characteristics, an appropriate fitness 
function can be selected. A concrete example was ex-
plained in Section 4 “Model Application”. As mentioned, 
all points can be standardized using Eqns (3) and (4) (re-
fer to Fig. 5). A weight value can be found through the 
significance evaluation of each optimization objective. In 
this study, the weighted Euclidean distance, as shown in 
Eqn (5), was used:

 (5)

where: wEdx,b is the weighted Euclidean distance be-
tween x and b; xi is the value of the i-th measure for the 
particular data; bi is the corresponding benchmark value 
(0 or 1) for the value of xi; and wi is the weight value for 
the i-th measure.

There are many methods for calculating the weight 
value (e.g. AHP based on interviews with specialists, the 
will of the decision-maker, or statistical methods, etc.), 
but these methods were not considered in this study. Four 
types of fitness functions are as follows:

(1) In case of minimizing the value for the optimi-
zation objective of A, and minimizing the value for the 
optimization objective of B:

  (6)

where: the optimization process is continued until the 
Fitness Function (i) meets the minimum value; WA is 
the relative weight defined by the final decision-maker 
for minimizing the value of the optimization objective 
of A; and WB is the relative weight defined by the final 
decision-maker for minimizing the value of the optimi-
zation objective of B. For instance, if the optimization 
objectives of A and B are time and cost, respectively, the 

Fig. 5. Concept of the four types of fitness functionsFig. 4. Two extreme points and the hyperplane
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two variables are optimized if they are both closer to the 
minimum value.

(2) In case of minimizing the value for the optimiza-
tion objective of A, while maximizing the value for the 
optimization objective of B:

  (7)

where: for instance, if the optimization objectives of A 
and B are cost and quality, respectively, the optimization 
objective of A (cost) is optimized if it is closer to the 
minimum value, whereas the optimization objective of B 
(quality) is optimized if it is closer to the maximum value.

(3) In case of maximizing the value for the optimi-
zation objective of A, while minimizing the value for the 
optimization objective of B:

  (8)

where: for instance, if the optimization objectives of A 
and B are sustainability and cost, respectively, the opti-
mization objective of A (sustainability) is optimized if it 
is closer to the maximum value, whereas the optimiza-
tion objective of B (cost) is optimized if it is closer to 
the minimum value.

(4) In case of maximizing the value for the optimi-
zation objective of A, and maximizing the value for the 
optimization objective of B:

 
 

(9)

where: for instance, if the optimization objectives of A 
and B are productivity and safety, respectively, two vari-
ables are optimized if they are both closer to the maxi-
mum value.

The iMOO model can solve all possible problems 
with four types of fitness functions (refer to Fig. 5). 
Moreover, the iMOO model can solve the problems on 
more than two optimization objectives through the multi-
dimensional concept (refer to Fig. 3).

(5) In case of minimizing the value for the optimiza-
tion objectives of A and B, and maximizing the value for 
the optimization objective of C:

 
 

(10)

where: for instance, if the optimization objectives of A, 
B, and C are cost, time, and environment, respectively, 
the optimization objectives of A (cost) and B (time) are 
optimized if they are closer to the minimum value, while 
the optimization objective of C (environment) is opti-
mized if it is closer to the maximum value.

4. Model application

The iMOO model proposed in this study was developed 
as a computer-aided program based on the following six-

phase process: (1) problem statement; (2) definition of 
the optimization objectives; (3) establishment of the data 
structure; (4) standardization of the optimization objectives; 
(5) definition of the fitness function; and (6) introduction of 
the genetic algorithm. To evaluate the robustness and reli-
ability of the proposed iMOO model, a case study on the 
construction TCTP was analyzed in terms of effectiveness 
and efficiency. In order to illustrate the concept of the pro-
posed iMOO model more easily as well as to evaluate the 
robustness and reliability of the iMOO model more clearly, 
the case study used in Liu et al. (1995) and Zheng et al. 
(2005b) was applied to the iMOO model in this study.

4.1. Problem statement
In a construction project, the indices that the owner or 
the project manager is most interested in are the time, 
cost, quality, and environment. These indices have a 
trade-off relationship since there are so many consid-
erations in construction project, i.e. construction mate-
rials, construction methods, equipment, labors, etc. For 
instance, applying new technology to reduce the project 
time or improve the external appearance or the residen-
tial environment increases the project cost. If the budg-
et is insufficient, it is difficult to undertake measures 
to reduce time or improve the quality. Accordingly, a 
reasonable method for determining the optimal solution 
is required to solve such a trade-off relationship while 
satisfying the limited budget, contract period, and mini-
mum quality requirements.

4.2. Definition of optimization objectives
Traditionally, it is project time and cost that are most 
strongly bound by a trade-off relationship in construc-
tion project. Once design alternatives or construction 
methods that satisfy the minimum requirements of own-
er are selected, project manager reviews them in terms 
of the time and cost and then makes the final decision. 
Thus, in this study, the time and cost are defined as the 
optimization objectives in performing the model ap-
plication. The two objectives can be calculated using 
Eqs (11) and (12):

 
  (11)

where: Ti
n is the duration of activity (i) on the critical 

path using resource utilization (n) and l is the number 
of activities. To establish the critical path in the activity 
network, the critical path method is used to calculate the 
activity time and flow.

 
 

(12)

where: Mi
n is the direct cost of activity (i) using resource 

utilization (n); Ti
n is the time of activity (i) using resource 

utilization (n); Ri
n is the daily cost rate in $/day using 

resource utilization (n); and l is the number of activities.
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4.3. Establishment of the data structure
In order to derive the optimal solution for the aforemen-
tioned optimization objectives, the basic information on 
each variable should be determined and their relationship 
should be established. Figure 6 shows the seven activities 
and their relationship in the case used in Liu et al. (1995) 
and Zheng and Ng (2005b). Table 1 shows the descrip-
tion of the case study, i.e. activities and their relationship, 
construction methods applicable for each activities and 
their duration and direct cost. Generally, if the duration 
of the project increases, the indirect cost may increase 
even if the direct cost is reduced. This relationship leads 
to an increase in the total cost. In order to define such 
a relationship, as determined by Zheng and Ng (2005b), 
the indirect cost was set at $500/day in this study.

4.4. Standardization of optimization objectives
The heuristic method was used to calculate the maximum 
extreme point (Z+) and the minimum extreme point (Z–), 
i.e. the two extreme points within the whole criteria space. 
Since the goal was to minimize both two-optimization  
objectives in the case, the maximum extreme point (Z+) 
based on Eqn (1) became the most undesirable point and 

the minimum extreme point (Z–) based on Eqn (2) be-
came the ideal point:

• Ideal point: Z– (time, cost) = (60, 143,000);
• Most undesirable point: Z+ (time, cost) = (105, 203, 200).

The values are located on the original coordinate 
axis (refer to Fig. 4). To define the fitness function and 
derive the optimal solution, a new coordinate axis be-
tween 0 and 1 should be created through the standardi-
zation process for these values using Eqns (3) and (4) 
(refer to Fig. 5).

4.5. Definition of the fitness function
As illustrated in Section 4.4 “Standardization of op-
timization objectives”, the goal was to minimize both  
two-optimization objectives. Accordingly, the Fitness 
Function (i) presented in Eqn (6) was used. The ideal 
point corresponded to (0, 0) on the standardized coordi-
nate axis (refer to Fig. 5). As a result, the combination at 
which the Fitness Function (i) had the minimum value 
is the optimal solution.

4.6. Introduction of the genetic algorithm
A genetic algorithm (GA) was used as a search algo-
rithm for determining the optimal solution of the fitness 

Table 1. Description of the case study

Activity
description

Activity
number

Precedent 
activity Construction methods Duration

(days)
Direct cost

($)

Site preparation 1 –
1 Crew 1 + Equipment 1 14 23,000
2 Crew 2 + Equipment 2 20 18,000
3 Crew 3 + Equipment 3 24 12,000

Forms and rebar 2 1

1 Method 1 15 3,000
2 Method 2 18 2,400
3 Method 3 20 1,800
4 Method 4 23 1,500
5 Method 5 25 1,000

Excavation 3 1
1 Equipment 1 15 4,500
2 Equipment 2 22 4,000
3 Equipment 3 33 3,200

Precast concrete 
girder 4 1

1 Method 1 12 45,000
2 Method 2 16 35,000
3 Method 3 20 30,000

Pour foundation 
and piers 5 2, 3

1 Method 1 22 20,000
2 Method 2 24 17,500
3 Method 3 28 15,000
4 Method 4 30 10,000

Deliver PC 
girders 6 4

1 Railroad 14 40,000
2 Truck 18 32,000
3 Barge 24 18,000

Erect girders 7 5, 6
1 Crane 1 + Crew 1 9 30,000
2 Crane 2 + Crew 2 15 24,000
3 Crane 3 + Crew 4 18 22,000
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function. In a GA, the decision variables that affect the  
optimization objectives are defined as chromosomes. 
Such chromosomes consist of various genes. In this 
study, each gene in the chromosome signified each ac-
tivity in the network defined in Figure 6.

As shown in Figure 7, the number on each gene 
signified the construction method that performed each 
activity (refer to Table 1). The result value of fitness 
function was calculated by applying the properties (i.e. 
time and cost) of the construction method. Additional 
information on the fundamentals of multi-objective op-
timization and GA can be found in the related references 
(Certa et al. 2011; Elbehairy et al. 2006; Elegbede, Ad-
jallah 2003; Geem 2010; Kandil et al. 2010; Konak et al. 
2006; Moradi et al. 2011; Sayin, Kouvelis 2005; Šešok,  
Belevicius 2008; Šešok et al. 2010; Šostak, Vakrinien 
2011; Venskus et al. 2010). In this study, a software pro-
gram called ‘OptQuest’ (an optimization tool that runs 
with a software program called ‘Crystal Ball’) was used 
to introduce the GA.

5. Results and discussion

This research aims to develop an iMOO model for solv-
ing a multi-objective optimization problem, which de-
termines the optimal solution set based on the concept 
of the Pareto front. Toward this end, this research team 
introduced the GA as a search algorithm and also sim-
plified the complicated process and equation. Thus, the 
robustness and reliability of the proposed iMOO model 
was enhanced in terms of effectiveness and efficiency.

Figure 8 shows the list of 1,000 highly ranked pop-
ulations generated through the GA in the scatter diagram 
on the original coordinate axis. The dotted curve at the 
bottom left of the diagram signify the Pareto front. As 
explained in Section 4.4 “Standardization of optimization 

objectives,” the coordinate axis should be standardized 
before the fitness function is defined.

Figure 9 shows the list of the 250 highly ranked 
populations generated through the GA in the scatter dia-
gram on the standardized coordinate axis. The diagram 
was transformed into the same scale on the standard-
ized axis. As shown in Figure 9, all 250 highly ranked 
populations existed near the ideal point (0, 0) based on 
the longitudinal section and cross-section (compared to 
Fig. 8). This result showed that the reliability of the 
proposed iMOO model was improved as the process 
proceeded.

As shown in Figure 10, the distribution of the 50 
highly ranked populations was closer to the ideal point 
(0, 0) (compared to Fig. 9). This result signifies that the 
two optimization objectives (time and cost) were being 
improved at the same time as the process proceeded.

To assess the robustness and reliability of the pro-
posed iMOO model, two criteria were used: (1) effec-
tiveness in terms of the quality of the generated optimal 
solution set; and (2) efficiency in terms of computational 
time. Figures 8 to 10 showed that the robustness and re-
liability of the proposed iMOO model were enhanced.

Fig. 7. Description of chromosome
Fig. 9. 250 highly ranked populations and the Pareto front in 
the standardized coordinate axis

Fig. 6. Activity network of the case study

Fig. 8. 1,000 highly ranked populations and the Pareto front 
in the original coordinate axis
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First, the effectiveness of the proposed iMOO 
model was validated from Figures 8, 9, and 10 as fol-
lows: (1) the higher the rank of the population was, the 
more concentrated on the center of the Pareto front the 
population became; and (2) the optimal solution set that 
was finally generated through the GA (the circle area in 
Fig. 10) was identical to the results of previous stud-
ies (Liu et al. 1995; Zheng et al. 2005b). Consequently, 
given the objective of this research that is to develop 
more intuitive, simplified, applicable and flexible model 
to solve the multi-objective optimization problem com-
pared to the previous studies (Liu et al. 1995; Zheng 
et al. 2005b), it was determined that the effectiveness in 
terms of the quality of the generated optimal solution set 
was achieved. Moreover, depending on the decision crite-
ria, the decision-maker can select the more effective one 
among the optimal solution set. As shown in Figure 10,  
the two coordinates, Solution 1 (0.178, 0.158) and  
Solution 2 (0.156, 0.233), are standardized values, while 
the original values are (68, 152,000) and (67, 157,000), 
respectively. For instance, according to the set level of the 
value of the loss due to construction delay, the optimal so-

lution can be changed. If the opportunity cost is $500/day,  
the cost of Solution 1 is $153,000 (i.e. 152,500 + 500*(68 –  
67) = 153,000). Thus, it was determined that Solution 1 
is superior to Solution 2. If the decision-maker sets the 
opportunity cost at $4,500/day or more, depending on 
the project characteristics, however, the cost of Solution 
1 will exceed $157,000 (i.e. 152,500 + 4,500*(68 – 67) =  
157,000). Thus, it was determined that Solution 2 is su-
perior to Solution 1.

Second, the efficiency of the proposed iMOO mod-
el can be validated using the total computational time 
(shown in Fig. 11). According to the iMOO model devel-
oped in this study, the time spent in determining the opti-
mal solution set on a computer [2.8 GHz IntelR CoreTM i5  
processor with 6.00 GB (2.96 GB available) of RAM] 
was only 11 seconds. As shown in Figure 11, the results 
of the 1,000 simulation runs showed no more improve-
ment in the fitness function. It was determined that ef-
ficiency in terms of computational time was achieved.

In conclusion, the proposed iMOO model showed 
improved effectiveness and efficiency, compared to the 
results of previous studies (Liu et al. 1995; Zheng et al. 
2005b), indicating that the robustness and reliability of 
the proposed iMOO model was enhanced.

Conclusions

This study was conducted to develop an iMOO model 
that can provide the optimal solution set based on the 
concept of the Pareto front, which involves the following 
six-phase process: (1) problem statement; (2) definition 
of the optimization objectives; (3) establishment of the 
data structure; (4) standardization of the optimization ob-
jectives; (5) definition of the fitness function; and (6) in-
troduction of the genetic algorithm.

A simple case was verified using the iMOO mod-
el that was proposed in this study. The iMOO model is 
more intuitive, simplified, applicable and flexible one 
compared to the previous studies. By using simplified 
process and equations of the iMOO model, the optimal 
solution can be also found in a real project that has con-
siderably more activities. The results can be summarized 
as follows.

First, to verify the iMOO model developed in this 
study, a simple case was used. The case had 4,860 pos-
sible combinations (3*5*3*3*4*3*3; refer to the fourth 
column of “Construction methods” in Table 1). The op-
timal solution set could be derived within 11 seconds 
only. It was shown that an optimized approach to de-
velop the iMOO model would be more effective rather 
than heuristic method and mathematical programming. 
Since a real project is considerably more complicat-
ed, it takes a considerable time to review all possible  
combinations using the heuristic method, and the result 
cannot ensure the reliability of the optimal solution. Fur-
thermore, mathematical programming would take too 
much effort and time to define an extremely complex  
relationship.

Fig. 10. 50 highly ranked populations, the Pareto front, and 
the optimal solution set in the standardized coordinate axis

Fig. 11. Optimization summary
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Second, in this study, a GA was used to solve a 
multi-objective optimization problem. Based on the con-
cept of the Pareto front, an attempt was made to de-
rive the optimal solution. This study also simplified the  
complicated process and equation proposed in previ-
ous studies and offered a solution that allows the imple-
mentation of the meaningful weight value based on the  
project characteristics and the owner’s requirements. However, al-
though there are various methods of calculating the weight value, 
that was not considered as a main issue in this study. At the same 
time, compared to the results of previous studies, the proposed 
iMOO model showed improved effectiveness and efficiency, indi-
cating that the robustness and reliability of the iMOO model was  
enhanced.

Third, the proposed iMOO model allowed more op-
timal solutions from the optimal solution set based on the  
decision criteria of the decision-maker. By analyzing 
the trade-off relationship between the time and cost (i.e.  
the indirect cost or the opportunity cost), the final optimal 
solution can be selected. Furthermore, the iMOO model  
showed improved flexibility or applicability and usability 
against the problems on more than two optimization ob-
jectives through the multi-dimensional concept (refer to 
Fig. 3), according to the problem statement.

The iMOO model developed in this study can be 
used for several objectives in future research: (1) to en-
sure the usability of the iMOO model, the research team 
will apply it to a real project that has considerably more 
activities; (2) to ensure the extendibility of the iMOO 
model, the research team will apply it to solve the prob-
lems on more than two optimization objectives through 
the multi-dimensional concept; and (3) to ensure the ap-
plicability or flexibility of the iMOO model, the research 
team will apply it to the other research subject such as the 
optimal selection of new renewable energy system. The 
results of this study can be used: (1) to assess more than 
two optimization objectives (i.e. the initial investment 
cost, operation and maintenance cost, and CO2 emission 
trading cost); (2) to take advantage of the weights as the 
real meanings; (3) to evaluate the four types of fitness 
functions; and (4) to expand into other areas such as the 
indoor air quality, materials, and energy use.
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