
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT
ISSN 1392-3730 print/ISSN 1822-3605 online

2014 Volume 20(1): 82–94
doi:10.3846/13923730.2013.843583

PROPOSING A NEW METHODOLOGY BASED ON FUZZY LOGIC  
FOR TUNNELLING RISK ASSESSMENT

Abdolreza YAZDANI-CHAMZINI
Young Researchers Club, South Tehran Branch, Islamic Azad University,  

Tehran, Iran

Received 07 Mar 2013; accepted 17 Jul 2013

Abstract. Tunnels are artificial underground spaces that provide a capacity for particular goals such as storage, under-
ground transportation, mine development, power and water treatment plants, civil defence. This shows that the tunnel 
construction is a key activity in developing infrastructure projects. In many situations, tunnelling projects find them-
selves involved in the situations where unexpected conditions threaten the continuity of the project. Such situations 
can arise from the prior knowledge limited by the underground unknown conditions. Therefore, a risk analysis that can 
take into account the uncertainties associated with the underground projects is needed to assess the existing risks and 
prioritize them for further protective measures and decisions in order to reduce, mitigate and/or even eliminate the risks 
involved in the project. For this reason, this paper proposes a risk assessment model based on the concepts of fuzzy set 
theory to evaluate risk events during the tunnel construction operations. To show the effectiveness of the proposed mo-
del, the results of the model are compared with those of the conventional risk assessment. The results demonstrate that 
the fuzzy inference system has a great potential to accurately model such problems.
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Introduction 

Nowadays, the world is witnessing an ever-increasing 
need for tunnels on account of their unique features and 
potential applications. Tunnel is defined as artificial un-
derground space that provides a high capacity for particu-
lar goals like storage, underground transportation, mine 
development, and civil defence. Hence, tunnel construc-
tion plays a critical role in developing infrastructure pro-
jects. Tunnel construction imposes risks on all parties 
involved as well as on those not directly involved in the 
project (Eskesen et al. 2004). These risks may dramati-
cally influence operation requiring an unexpected time 
for renovation resulting in major cost and time delays 
(Fouladgar et al. 2012b). Cases in point, the Jubilee Line 
Transit Project in London was finished two years late 
and £1.4 billion (67%) over budget (the budget which 
was communicated at the time of decision to proceed) 
and Denmark’s Great Belt Link with 54% over budget 
(Salvucci 2003). To avoid such problems, managers are 
obliged to carry out a risk management program. Iden-
tification and management of risk is a key to meeting 
cost and schedule for such projects. Generally, risk ma-

nagement in tunnelling helps authorities to make a proper 
decision on account of the following reasons (Reilly, 
Brown 2004; Fouladgar et al. 2012b): 1) to reduce the 
risk to project goals and objectives; 2) to demonstrate 
that options were comprehensively and rationally evalu-
ated; 3) the process will reveal useful information even if 
hazards do not occur; 4) to clarify internal project goals, 
objectives and priorities and focus the project team; and 
5) probable ranges of cost and schedule can be estimated. 

According to the importance of the problem of risk 
in tunnelling, different models have been conducted to 
provide a systematic framework in order to manage the 
risks involved in tunnel construction (Einstein 1996; Yoo, 
Kim 2003; Moergeli 2004; Eskesen et al. 2004; Reilly, 
Brown 2004; Reilly 2005; Huang, Chen 2006; Aye et al. 
2006; Richards, Nilsen 2007; Thomas, Banyai 2007; Ho-
licky 2008; Gattinoni et al. 2008; Hong et al. 2009; Zou, 
Li 2010; Aneziris et al. 2010; Cerić et al. 2011; Foulad-
gar et al. 2012b; Sousa, Einstein 2012; Yazdani-Chamzi-
ni et al. 2013). However, rocks and soils are materials 
with properties that can change instantly and significantly 
from one point to the next as well as further compli-
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cations may come from uncertainties in the strains that 
the new facility must withstand during construction and 
operation (Ghorbani et al. 2012). Therefore, there is an 
intrinsic risk associated with tunnel construction owing 
to the limited a priori knowledge of the existing subsur-
face conditions (Sousa, Einstein 2012). These uncertain 
conditions can potentially lead to the unwanted consequ-
ences during the process of tunnel construction that may 
adversely affect the project. However, the aforementio-
ned models ignore the inherent uncertainty involved in 
the process of tunnelling. This may inaccurately reflect 
the situation of tunnel construction operations. On the 
other hand, the merit of using new powerful technology 
is to model a system or sub-system accurately. Consequ-
ently, it is necessary to develop the robust methodology 
that is capable of handling the uncertainty involved in the 
process of modelling as well as accurately assesses the 
risks connected with tunnelling. 

The merit of using a fuzzy approach is to model the 
behaviour of a system or sub-system using linguistic la-
bels and fuzzy expressions instead of rigid mathematical 
rules and equations to be more adapted to the real world 
cases. Fuzzy logic, first introduced by Zadeh (1965), is 
a powerful tool to handle the inherent uncertainty and 
complexity connected with engineering problems. Based 
on the unique capabilities of fuzzy logic, this technique is 
widely employed by a large number of researchers to mo-
del different aspects of risk management. The advantages 
of the fuzzy approach in comparison with the traditional 
methodology are two-fold (Tay, Lim 2006): 1) it simply 
allows risk evaluation, ranking, and prioritization to be 
conducted based on experts’ knowledge, experiences, and 
opinions; and 2) it allows the risk evaluation function to 
be customized based on the nature of a process.

Markowski and Mannan (2009) developed the ap-
plication of the fuzzy logic for risk assessment of major 
hazards connected with transportation of flammable sub-
stances in long pipelines. Xu et al. (2010) developed a 
fuzzy synthetic evaluation model for assessing the risk 
level of a particular critical risk group (CRG) and the 
overall risk level associated with public–private part-
nerships (PPP) projects in China. An Imprecise Fuzzy 
Waste Load Allocation Model (IFWLAM) is developed 
by Rehana and Mujumdar (2009) for water quality ma-
nagement of a river system subject to uncertainty arising 
from partial ignorance.

Khazaeni et al. (2012) presented a fuzzy adaptive 
decision making model for selection of balanced risk 
allocation which transforms the linguistic principles 
and experiential expert knowledge into a more usable 
and systematic quantitative-based analysis by using the 
fuzzy logic. Dikmen et al. (2007) proposed a fuzzy risk 
assessment methodology for international construction 
projects. The proposed methodology uses the influence 
diagramming method for construction of a risk model 
and a fuzzy risk assessment approach for estimating a 
cost overrun risk rating. Khalil et al. (2012) used a com-
bination method based on the Layer of Protection Analy-

sis (LOPA) and Fuzzy Logic methodology to prevent or 
limit industrial accidents.

Nieto-Morote and Ruz-Vila (2011) presented a risk 
assessment methodology based on the Fuzzy Sets The-
ory and the Analytic Hierarchy Process (AHP). Ngai and 
Wat (2005) developed a fuzzy decision support system 
(FDSS) for the assessment of risk in e-commerce (EC) 
development. A system for assessing the risk of natural 
disasters based on employing fuzzy set theory is presen-
ted by Karimi and Hüllermeier (2007) to complement 
the probability theory with an additional dimension of 
uncertainty. Gürcanli and Müngen (2009) proposed a 
method for assessment of the risks exposed construction 
sites using a fuzzy rule-based safety analysis to deal with 
uncertain and insufficient information.

A new predictive risk assessment model for a ho-
spital information system (HIS) was developed by Yucel 
et al. (2012) to estimate risk before the implementation 
of new HIS. Wulan and Petrovic (2012) proposed a fuz-
zy logic based system for risk analysis and evaluation 
within enterprise collaborations. Shahriar et al. (2012) 
developed a fuzzy based bow-tie analysis to analyse 
the risk of oil and gas pipelines. Alidoosti et al. (2012) 
proposed a fuzzy inference system for the risk assess-
ment of critical asset. A fuzzy risk assessment approach 
for occupational hazards in the construction industry is 
presented by Liu and Tsai (2012). Yazdani et al. (2011) 
developed a framework based on fuzzy logic to analyse 
the risk of critical infrastructures. Jamshidi et al. (2013) 
developed an application of the fuzzy logic for modelling 
the uncertainty involved in the problem of pipeline risk 
assessment. Razani et al. (2013) used fuzzy inference 
system (FIS) to predict the roof fall rate in underground 
mining in order to control, mitigate, and/or even elimina-
te the risks imposed by underground projects. It is clear 
that fuzzy logic has demonstrated its worth as a practical 
engineering and problem-solving tool. 

The main aim of this paper is to propose a new me-
thodology based on fuzzy logic to provide an organized 
and systematic framework for identifying and analysing 
the significance of potential events associated with tunnel 
construction. The proposed method incorporates fuzzy 
concepts into a conventional risk assessment framework. 
This technique can help authorities to model the risks 
more accurately and reliably. To valid the proposed mo-
del, a real case study is illustrated and the conclusions 
derived from the model are compared with the outcome 
obtained by the conventional method.

1. Traditional risk assessment 

Risk assessment techniques are central to gaining an un-
derstanding of what is most uncertain about a project, 
and they are the foundation for risk management (Ken-
drick 2003). A wide spectrum of methods is developed 
to model the risks imposed by projects. Probability-im-
pact function, a branch of the traditional risk assessment 
methods, is one of the most popular techniques used for 
assessing the level of the risks. Based on the basic con-
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cepts of the traditional risk assessment, the risk is defi-
ned as a function of probability and impact of different 
accident scenarios (Heldman et al. 2007). This approach 
applies a risk matrix, well-known as probability-impact 
(P-I) matrix, to assess the level of risk for different sce-
narios. The P-I matrix combines the probability of an 
event with its consequence into an output linguistic risk 
level. The impact component investigates the potential 
effect of the risk on a project objective such as schedu-
le, cost, quality or performance; whereas, the probability 
component investigates the likelihood that each specific 
risk will occur (Nieto-Morote, Ruz-Vila 2011). 

The P-I matrix analysis is a strong tool for identi-
fying and eliminating potential failures to improve the 
level of safety and reliability of systems or processes. 
This method provides information for authorities to make 
a strategic decision. 

A typical P-I matrix for risk assessment in tunnel 
construction is shown in Figure 1. 

According to Figure 1, the probability is assigned 
by numbers such as 1, 2, 3, 4, and 5 corresponding to a 
linguistic scale: improbable (IM), remote (R), occasional 
(O), probable (P), and frequent (F), respectively. Also, 
Figure 1 depicts a similar scale for consequence cate-
gories. Consequence is determined by numbers such as 

1, 2, 3, 4, and 5 corresponding to negligible (N), minor 
(M), major (MA), critical (C), and catastrophic (CA), re-
spectively. Output risk level is linguistically denoted as 
intolerable (INT), significant (S), substantial (SU), toler-
able (T), and insignificant (IN). As an illustration, for a 
typical case in the process of tunnel construction, assume 
that collapse is a relatively common accident. Therefore, 
the occurrence probability to this accident can be proba-
ble. Whereas, its consequences are definitely serious and 
its importance to tunnel construction is critical (impact 
index is critical). The scales for probability, impact, and 
risk levels are given in Tables 1–3.

In the system of the P-I matrix, the risk index of oc-
currence is the product of the probability and impact ra-

Fig. 1. P-I risk matrix (Parker 2005)

Table 1. Definition of probability levels

Linguistic term Definition Crisp rating Fuzzy rating Universe of discourse (X)
Improbable (IM) So unlikely event, it may not be experienced 1 1 < P ≤ 2.5 XP€(1.5)
Remote (R) Unlikely to occur during lifetime 2 1 ≤ P ≤ 3.5
Occasional (O) Likely to occur during lifetime 3 1.5 ≤ P ≤ 4.5
Probable (P) May occur several times 4 2.5 ≤ P < 5
Frequent (F) Will occur frequently 5 3.5 ≤ P ≤ 5

 
Table 2. Definition of impact levels

Linguistic term Definition Crisp rating Fuzzy rating Universe of 
discourse (X)

Negligible (N) Highly have no impact on the process of tunnelling 1 1 < I ≤ 2.5 XI€(1.5)
Minor (M) Have no critical impact on the process of tunnelling 2 1 ≤ I ≤ 3.5
Major (MA) Have no substantial impact on the process of tunnelling 3 1.5 ≤ I ≤ 4.5
Critical (C) Have certain impact on the performance of tunnelling 4 2.5 ≤ I < 5
Catastrophic (CA) Have highly impact on the performance of tunnelling 5 3.5 ≤ I ≤ 5

Table 3. Definition of risk levels (Parker 2005; Alidoosti et al. 2012)

Linguistic
 term Definition Response Crisp rating

(R = P × I ) 
Fuzzy 
rating

Universe of 
discourse (X)

Insignificant (IN) Risk is tolerable without any mitigation Monitor (1–4) 0 ≤ R ≤ 2.5 XR(fuzzy)€(0.5)

Tolerable (T) Some partial mitigation may be needed Regular attention (5–8) 0 ≤ R ≤ 3 XR(Crisp)€(1.25)

Substantial (SU) Mitigation may be needed Early attention (9–12) 1 ≤ R ≤ 4

Significant (S) Mitigation should be implemented to reduce risk Unacceptable (13–16) 2 ≤ R < 5
Intolerable (INT) Mitigation that reduces risk must be implemented Unacceptable (17–25) 3 ≤ R ≤ 5

Improbable Remote Occasional Probable Frequent

Im
p

ac
t

Negligible 1 2 3 4 5

Minor 2 4 6 8 10

Major 3 6 9 12 15

Critical 4 8 12 16 20

5 10 15 20 25

R P I=

Catastrophic

Probability
×
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tings (Merna, Al-Thani 2005). This relationship is mathe-
matically defined as follows (Fouladgar et al. 2012b): 

 R = P × I, (1)

where R represents the risk index, P represents probabi-
lity of occurrence and I represents impact of occurrence. 
The values for P and I are obtained by using the values 
scaled given in Tables 1 and 2. For example, consider a 
potential event having value of 2 and 4 for its P and I 
ratings; it will have a total R of 8 (R = 2 × 4 = 8). Values 
of the R can range from 1 to 25, in which 1 expresses the 
smallest risk and 25 addresses the largest. The risks with 
lower probability and impact are a less serious hazard to 
project goals than the risks with higher probability and 
impact (Fouladgar et al. 2012b). This value helps autho-
rities to rank the order of concerns in the process of de-
signing and constructing. This means that for a relatively 
high R, the authorities must fulfil a proper reaction stra-
tegy to reduce or eliminate the risks involved in project. 

The traditional approach appears to have a number 
of advantages owing to its unique capabilities. However, 
there are some shortcomings that are mostly connected 
with the uncertainty involved in real-world problems. A 
drastic remedy for such problems is to take into account 
the concepts of fuzzy logic in the process of the risk 
assessment. 

2. Proposed methodology

The handling of the uncertainty involved in the process of 
project risk management reflects all the available infor-
mation about risks under consideration. The modelling of 
the uncertainty leads to a comprehensive analysis on the 
project risks; as a result, the potential events can be pre-
dicted with high accuracy. This is due to the fact that the 
uncertainties of risk events may be attributed to the ran-
domness inherent in nature and to the lack of sufficient 
data related to the chances of their occurrence and poten-
tial consequences (Beriha et al. 2012). The experts with 
a high experience in the field of risk analysis can provide 
a valuable opinion to model the existing uncertainty. Ho-
wever, it is difficult task for the expert team to quantify 
their valuable knowledge in order to estimate the uncer-
tainty. The fuzzy set theory is a powerful mathematical 
tool that uses linguistic terms to model the uncertainty 
resulted from the complexity of systems or sub-systems. 
Fuzzy logic has the ability to express the ambiguity of 
human thinking and translate expert knowledge into com-
putable numerical data (Yazdani-Chamzini et al. 2012).

Therefore, the fuzzy logic is used to propose a sys-
tematic and standard methodology for handling the un-
certainty. Schematic diagram of the proposed model is 
depicted in Figure 2. 

Compared with the P-I risk matrix, the proposed 
model replaces the risk index with a fuzzy risk assess-
ment function. From Figure 2, it is clear that a fuzzy 
inference system is applied in the framework of the fuzzy 
risk assessment to replace the product function used in 
the traditional P-I matrix.

3. Fuzzy set theory 

The main idea of the fuzzy set theory is to model the 
complex structure of science and engineering problems 
more reliability, surely, and accurately. Instead of deter-
mining the exact boundary as in an ordinary set, a fuzzy 
set allows no sharply defined boundaries because of the 
generalization of a characteristic function to a member-
ship function (Gupta et al. 1988). This technique is a 
system based on knowledge (expert system) that is wi-
dely used to handle the inherent uncertainty involved in 
real-life problems (Lashgari et al. 2011, 2012; Fouladgar 
et al. 2011, 2012a, c, d; Yazdani-Chamzini, Yakhchali 
2012). 

4. Fuzzy inference system 

The fuzzy inference system is a rule-based system built 
in the form of inference if-then rules (Wang 1997). Fuzzy 
inference is the process of mapping from a given input 
set to an output set using fuzzy logic (Elsayed 2009). 
The process of fuzzy inference involves fuzzification of 
crisp input by defining the membership function, fuzzy 
logic operators, and IF-THEN rules (Beriha et al. 2012). 

Several fuzzy inference systems have been develo-
ped to model the linear and nonlinear behaviour of sys-
tems, including the Mamdani, the Takagi–Sugeno–Kang 
(TSK), the Tsukamoto and the Singleton fuzzy models. 
The differences between these fuzzy inference systems 
lie in the consequents of their rules, and thus, aggregation 
and defuzzification procedures differ accordingly (Gha-
semi, Ataei 2013).

The Mamdani fuzzy model is one of the most popu-
lar mechanisms in fuzzy logic for modelling the problems 
facing with complexity and uncertainty. The Mamdani 
fuzzy logic system has many attractive features (Wang 
1994): 1) it is suitable for engineering systems because 
its inputs and outputs are real-valued variables; 2) it pro-
vides a natural framework to incorporate fuzzy IF–THEN 
rules from human experts; and 3) there is much freedom 
in the choices of fuzzifier, fuzzy inference engine, and 

Fig. 2. Overall view of the fuzzy risk assessment system
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defuzzifier, so that we may obtain the most suitable fuzzy 
logic system for a particular problem. The general “if–
then” rule structure of the Mamdani algorithm is of the 
following form (Jamshidi et al. 2013):

 1 1If  is  and ...  is  Then  is i i i i
n nR x F x F y G=   

         (for i = 1, 2, … K),                                         (2)  

where: K is total number of fuzzy rule; xn and Gi are 
linguistic values defined by fuzzy sets on the universes of 
discourse. The If-part of the rule is called the antecedent 
comprising the inputs, whereas the Then-part of the rule 
is known as the consequent including the output. The 
aggregated output for the K rules is:

1 21 2( ) max{min[ ( ), ( ),..., ( )]},

   1, 2,...,

i i i i
i n nG y F F Fi

x x x

i K

µ = µ µ µ

=
                                                                                                                                                     

       i = 1, 2, … K.                                              (3) 

A typical fuzzy inference system is depicted in 
Figure 3. From the figure, it can be seen that a fuzzy 
inference system consists of four main parts: (1) fuzzi-
fication; (2) knowledge base; (3) inference engine; and 
(4) defuzzification. 

These parts are explained as follows:
Fuzzification: in the first part, the crisp input is 

transferred into a linguistic variable (fuzzy value) us-
ing the membership functions built in the fuzzy data 
base. The fuzzification converts the precise information 
into the form of imprecise information like “very low”, 
“low”, “medium”, “high”, “very high”, etc. with a de-
gree of membership. Generally, the value belongs to the 
closed interval 0 to 1, where 1 represents full member-
ship and 0 expresses non-membership. In this study, the 
Gaussian MF is adopted to represent each linguistic term 
on account of the following reasons (Masters 1995; Xie 
2003; Sumathi, Paneerselvam 2010; MathWorks 2012; 
Alidoosti et al. 2012): 1) this function exhibits properties 
that are mathematically and computationally tractable; 
2) this function is a continuously differentiable function 
and has the advantage of being smooth and nonzero at 
all points; and 3) this function is smooth and concise. 
Probability of occurrence and the impact are represented 
by fuzzy sets whose ranges are selected to coincide with 
the indicative frequency and severity ranges shown in 
Tables 1 and 2, respectively. For a better understanding, 
membership functions connected with the input param-
eters are schematically depicted in Figures 4 and 5. The 
fuzzy risk assessment index is considered as output pa-

rameter varying from 0 to 5. In this paper, risk is divided 
into five equal partitions as depicted in Figure 6. Risks 
are represented by fuzzy sets whose ranges are coincided 
with the linguistic terms given in Table 3. By using an 
appropriate conversion scale, the linguistic terms must be 
transformed into fuzzy ratings. One of the key points in 
fuzzy modelling is the definition of fuzzy numbers which 
represent vague concepts and imprecise terms expressed 
in a natural language (Nieto-Morote, Ruz-Vila 2011).

In the present work, the fuzzification decomposes 
system variables, including probability (P), severity of 
impacts (C) and risk categories (R), with crisp numbers 
and maps the crisp numbers into fuzzy sets. The structure 
of FIS constructed in this paper is presented in Figure 7. 

Fig. 3. Structure of FIS

Fig. 4. Membership function for probability of occurrence 

Fig. 5. Membership function for impact levels

Fig. 6. Membership function for risk
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In order to construct the fuzzy model, a number of the 
fuzzy if-then rules are generated to fulfil the reasoning 
associated with the input and output parameters. Tables 1 
and 2 present the membership functions of the two input 
parameters employed in the process of risk management 
as illustrated in the next section.

Knowledge base: The membership functions result-
ed from the previous stage is used to generate the fuzzy 
if-then rules. These rules form the knowledge base as a 
set of the rules extracted from experts. Such rules are 
usually more conveniently formulated in linguistic terms 
than in numerical terms, and they are often expressed as 
“If-Then” rules which are easily implemented by fuzzy 
conditional statements (Chin et al. 2008). The fuzzy 
inference process uses min-max inference to calculate 
the rule conclusions based on the system input values 
(Zadeh 1992). The truth value of a rule is derived from 
the conjunction. This means that the true value is ob-
tained from minimum degree of membership of the rule 
antecedents. Thus the truth-value of the rule is taken to 
be the smallest degree of truth of the rule antecedents 
(Pillay, Wang 2003). Then, this truth value is applied to 
all consequences of the rule. If any fuzzy output is a 
consequence of more than one rule, then output is set to 
the highest (maximum) truth value of all the rules that 
include it as a consequence (Chin et al. 2008). The result 
of the rule evaluation is a set of fuzzy conclusions that 
reflect the effects of all the rules whose truth-values are 
greater than zero (Pillay, Wang 2003). 

An important contribution of the fuzzy inference 
system is to provide a systematic procedure for trans-
forming a knowledge map into non-linear mapping (Beri-
ha et al. 2012). A fuzzy IF-THEN rule is an IF-THEN 
statement in which some linguistic labels are character-
ized by membership functions. The number of rules de-
pends on the type of problem. In this study, according to 
the category of the two input parameters and using the 
logical AND operation, the total number of rules in the 
knowledge base is equal to 25. The rules are designed 
to follow the logic of the risk evaluator. These rules are 
developed on the basis of the experts’ opinion and the 
available information derived from safety analysis. These 
rules are deliberately constructed as listed in Figure 8.

Inference engine: the inference engine, by means 
of a knowledge base, maps input fuzzy sets into fuzzy 
output sets. For achieving the aim, the inference engine 
combines the fuzzy if-then rules generated by expert’s 
knowledge.

Fuzzy inferences of the groups are assigned through 
grades of membership functions of two components. An 
inference engine is a computer program that simulates 
the outputs of the fuzzy inference system by deriving 
answers from the knowledge base. This engine uses the 
if-then rules to formulate new conclusions. In order to 
provide a better understanding of the constructed model, 
the if-then rules are schematically depicted in Figure 9. 

The relationships between input and output parame-
ters can be better understood by a three-dimensional plot. 

This plot represents the mapping from two input parame-
ters (i.e. probability and impact) to one output (i.e. risk). 
The plot is well-known as risk surface and is applied for 
risk assessment. This plot shows different regions of risk 
depend on the value of the input parameters. Figure 10 
shows the resulting control surfaces of the fuzzy inputs 
P and I as well as the fuzzy output risk. 

Defuzzification: the ultimate step in approximate 
reasoning is defuzzification. This step contains the pro-
cess of the replacement of a fuzzy value with a crisp out-
put, comprising a procedure of weighting and averaging 
the outputs from all of the individual fuzzy rules. There 
are six methods for defuzzification as follows (Wong, 
Monaco 1995):

1) centroid average (CA);
2) centre of gravity (COG);
3) maximum centre average (MCA);
4) mean of maximum (MOM);
5) smallest of maximum (SOM);
6) largest of maximum (LOM).
In this paper, the centre of gravity (COG), one of 

the most popular methods for defuzzifying fuzzy output 
functions, is selected on account of its simple computa-
tions and plausible intuitions. The COG is defined by the 
following equation:

 

*
( )  

( ) 
i

i

x x dx
Z

x dx

µ
=

µ
∫
∫

, (4)

where: x is the output variable; Z * is the defuzzified out-
put; and µi(x) is the aggregated membership function. 
The defuzzification process creates a crisp value from the 
fuzzy sets to reflect the riskiness of the design; so that, 
the reaction strategies can be ranked to mitigate the level 
of the existing risks. 

Fig. 8. List of the fuzzy if-then rules

Rule 1: if (probability is improbable) and (consequence is negligible) then risk is insignificant.

Rule 2: if (probability is improbable) and (consequence is minor) then risk is insignificant.

Rule 3: if (probability is improbable) and (consequence is major) then risk is tolerable.

Rule 4: if (probability is improbable) and (consequence is critical) then risk is tolerable.

Rule 5: if (probability is improbable) and (consequence is catastrophic) then risk is substantial.

Rule 6: if (probability is remote) and (consequence is negligible) then risk is insignificant.

Rule 7: if (probability is remote) and (consequence is minor) then risk is tolerable.

Rule 8: if (probability is remote) and (consequence is major) then risk is substantial.

Rule 9: if (probability is remote) and (consequence is critical) then risk is substantial.

Rule 10: if (probability is remote) and (consequence is catastrophic) then risk is significant.

Rule 11: if (probability is occasional) and (consequence is negligible) then risk is tolerable.

Rule 12: if (probability is occasional) and (consequence is minor) then risk is tolerable.

Rule 13: if (probability is occasional) and (consequence is major) then risk is substantial.

Rule 14: if (probability is occasional) and (consequence is critical) then risk is significant.

Rule 15: if (probability is occasional) and (consequence is catastrophic) then risk is significant.

Rule 16: if (probability is probable) and (consequence is negligible) then risk is tolerable.

Rule 17: if (probability is probable) and (consequence is minor) then risk is substantial.

Rule 18: if (probability is probable) and (consequence is major) then risk is significant.

Rule 19: if (probability is probable) and (consequence is critical) then risk is significant.

Rule 20: if (probability is probable) and (consequence is catastrophic) then risk is intolerable.

Rule 21: if (probability is frequent) and (consequence is negligible) then risk is tolerable.

Rule 22: if (probability is frequent) and (consequence is minor) then risk is substantial.

Rule 23: if (probability is frequent) and (consequence is major) then risk is significant.

Rule 24: if (probability is frequent) and (consequence is critical) then risk is intolerable.

Rule 25: if (probability is frequent) and (consequence is catastrophic) then risk is intolerable.
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5. Case study 

A case study is presented to demonstrate the potential 
application of the proposed model for assessing the risks 
involved in the tunnel construction projects. For achiev-
ing the aim, the proposed model is used to assess and 
prioritize the risks in the Zagros long tunnel. This project 
is under construction in sedimentary rock. It is one of the 
most important water transfer projects in central Iran that 
is planned to transfer water from the high elevations in 
Zagross Mountains to dry plains of Central Iran. Lot #2 
of the project, a 26 km long tunnel with an average depth 
of 400 m, is currently under construction using a dou-
ble shield (DS) TBM (Hamidi et al. 2010). The tunnel 
is driven in a variety of geological formations, includ-
ing Pabdeh (PEPd), Gurpi (KGu) and Ilam (Ki) (Sahel 
Consulting Eng. 2007). The description of anticipated 
geological and petro-logical condition along the tunnel 
is shown in Figure 11. The tunnel passes through several 
formations with rock mass conditions varying from weak 
to good, with RMR ranging from 20 to 60. The encoun-
tered geological conditions required TBM operation to 
change frequently from hard rock to soft, dry to flowing, 
sticky to nonsticky ground (and vice versa), more often 
than expected (Hamidi et al. 2010).

A tunnelling project is constructed from several ma-
jor phases that these phases should be clearly analysed 
to identify the risks in order to make a decision for min-

imizing the level of risks (Fouladgar et al. 2012b). For 
achieving the aim, both project-specific risks arise from 
the internal environment and general risks imposed by 
the external environment must be considered to identify 
all the risks that a tunnel construction project may en-
counter. Each of the internal and external environments 
may be a potential source of miscellaneous risks. 

One of the simplest methods of identifying risk is 
checklist analysis. In this paper, a checklist analysis is con-
ducted to understand which risks are involved in the case 
study illustrated. Therefore, risk assessment is made by us-
ing the checklists filled by a team of 7 experts with a min-
imum experience of four years in field of safety analysis.

Hence, an in-depth analysis of the tunnel construc-
tion process made it possible to identify forty-seven ma-
jor risks associated with tunnelling as listed in Table 4. 
From Table 4, it can be seen that the project risks are 
divided into the four groups, twelve categories and risk 
events are located in the lowest level. 

To get information on the existing risks, a ques-
tionnaire was designed. Then, the questionnaire was 
submitted to the safety professionals and the respons-
es were gathered. For each type of the potential events 
listed in Table 4, the level of probability for each risk 
and its impact on each objective based on the values 
given in Tables 1 and 2 are determined by expert team 
including seven assessors with a high degree of knowl-
edge in the area of risk management. The expert team 
prioritizes the potential events in terms of P and I; so 
that, an event with high risk is located at the top pri-
ority. The team members discussed the case until they 
reached a consensus. Therefore, risk levels are derived 
from these numerical values as presented in Table 5. 
In order to valid the proposed model; the outputs are 
compared with those of the conventional risk assess-
ment. Based on the basic concepts of the conventional 
risk assessment, the relative importance of the risks is 
resulted from the product of the probability and impacts.  
To achieve the aim, the evaluator team employs the crisp 
ratings given in Table 1 and 2 to calculate the level of the 
risks in the form of consensual value. 

Fig. 9. Sample of rules

Fig. 10. Control surfaces of the inputs
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Table 4. List of the risks identified 

Risk group Risk categories Risk events
Te

ch
ni

ca
l r

is
ks

Planning risk

(R1) Land acquisition problem 
(R2) Difficulty in cooperation with related government departments
(R3) Public opposition
(R4) Unscientific planning of tunnel construction 

Design risk

(R5) Inadequate design specification and documentation
(R6) Over break
(R7) Inaccurate survey data
(R8) Design mistakes
(R9) Lack of experienced designers
(R10) Conflict designs on interface between adjacent areas

C
on

st
ru

ct
io

n 
ris

k

Geological risk

(R11) Water inflow
(R12) Tunnel walls instability
(R13) Tunnel face instability
(R14) Fault zone
(R15) Squeezing

Safety risk

(R16) Collapse
(R17) Rock burst
(R18) Roof fall
(R19) Collisions
(R20) Toxic gas leakage
(R21) Poor ventilation
(R22) Fire in tunnel

Health and environment risk

(R23) Disturbance to the residents near the construction site
(R24) Physical damage to workers
(R25) Ecological constraints
(R26) Surface subsidence
(R27) Noise
(R28) Air pollution

Pr
oj

ec
t-m

an
ag

em
en

t r
is

ks

Interface risk
(R29) Interference of different operations
(R30) Inconsistent schedule in intersections
(R31) Damage to the foundation of adjacent buildings

Quality risk

(R32) Inappropriate machine and equipment selection
(R33) Rough and incomplete construction program
(R34) Inappropriate material selection
(R35) Machinery breakdown
(R36) Poor workmanship

Time risk
(R37) Poor construction programming
(R38) Delay of materials supply

Human risk

(R39) Managerial inability
(R40) Lack of experienced professional consultants
(R41) Change of key personnel
(R42) Workers’ strike

Ex
te

rn
al Cost risk

(R43) High tender price
(R44) Material price escalation
(R45) Labour cost escalation

Contractual risk (R46) Delay in contractual progress payment
Financial risk (R47) Financing difficulties
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Table 5. Comparison between the results of the proposed model and the conventional model

Risk events
Input Output

Crisp Fuzzy Conventional method Proposed model
Probability Impact Probability Impact Risk Rank Risk Rank

(R1) 3 2 2.78 2.21 6 30 1.56 45
(R2) 2 3 2.34 3.05 6 30 2.56 32
(R3) 2 4 2.34 4.12 8 23 2.89 17
(R4) 1 4 1.12 3.98 4 44 1.57 44
(R5) 2 4 2.00 3.78 8 23 2.50 33
(R6) 2 3 2.21 3.36 6 30 2.75 21
(R7) 2 3 2.31 3.16 6 30 2.69 23
(R8) 1 5 1.12 4.68 5 42 2.31 38
(R9) 1 3 1.24 2.73 3 46 1.53 46

(R10) 3 4 3.13 3.86 12 7 3.53 10
(R11) 4 2 4.34 2.12 8 23 2.65 24
(R12) 3 3 3.16 3.00 9 19 2.61 26
(R13) 2 3 2.12 2.89 6 30 2.38 36
(R14) 3 2 3.21 2.34 6 30 1.99 40
(R15) 2 3 1.77 3.28 6 30 2.24 39
(R16) 3 4 3.14 4.09 12 7 3.67 4
(R17) 1 5 1.13 5.00 5 42 2.59 27
(R18) 3 4 3.21 4.11 12 7 3.67 4
(R19) 5 3 4.66 3.12 15 4 3.67 4
(R20) 5 4 4.90 4.13 20 1 4.34 1
(R21) 3 2 3.32 2.16 6 30 1.91 41
(R22) 2 4 1.87 4.23 8 23 2.59 27
(R23) 3 4 3.12 3.96 12 7 3.60 9
(R24) 5 2 4.62 2.32 10 16 2.88 19
(R25) 3 2 2.58 2.31 6 30 1.68 43
(R26) 3 4 3.12 3.76 12 7 3.44 13
(R27) 4 2 3.77 2.13 8 23 2.41 35
(R28) 3 3 3.21 2.87 9 19 2.57 30
(R29) 2 4 2.34 3.67 8 23 2.89 17
(R30) 2 3 2.17 2.84 6 30 2.32 37
(R31) 3 4 3.23 3.79 12 7 3.46 12
(R32) 4 3 3.55 3.22 12 7 3.16 16
(R33) 1 4 1.43 3.53 4 44 1.82 42
(R34) 2 3 2.13 3.27 6 30 2.65 24
(R35) 5 2 4.67 2.33 10 16 2.88 19
(R36) 2 3 2.19 3.06 6 30 2.57 30
(R37) 3 3 3.03 2.92 9 19 2.47 34
(R38) 4 4 3.77 4.18 16 2 3.71 3
(R39) 2 5 2.32 4.61 10 16 3.25 15
(R40) 1 3 1.06 2.89 3 46 1.41 47
(R41) 2 4 2.21 3.67 8 23 2.75 21
(R42) 3 4 3.09 4.11 12 7 3.67 4
(R43) 3 5 2.73 4.56 15 4 3.35 14
(R44) 3 4 3.00 3.82 12 7 3.49 11
(R45) 3 3 2.68 3.07 9 19 2.58 29
(R46) 4 4 4.11 3.62 16 2 3.66 8
(R47) 3 5 3.32 4.55 15 4 3.77 2
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6. Results and discussions 

The main aim of the study is to develop a powerful 
model for modelling the risks involved in construction 
projects using a fuzzy rule-based system. In order to in-
vestigate the potential application of the proposed model, 
the PI risk matrix method is applied to calculate the ex-
isting risks. For achieving the aim, after listing the risks, 
a category is determined for both probability and impact 
based on the scale given in Tables 1 and 2, in which 1 
means minimum level and 5 represents the maximum. 
The risk index is filled in by combining the category in-
formation in the two columns or by assigning weights to 
the categories and using the product of the weights of the 
probability and impact (Kendrick 2003). 

The results of the proposed model are obtained by 
using the same data applied in the P-I risk matrix. A com-
parison between the final rankings of the fuzzy proposed 
model with that of the conventional risk assessment is 
provided in Table 5. The events with respect to risks are 
ranked from least to most severe. Compared with the 
traditional risk assessment, the ranking of the proposed 
model are clearly different. 

It can be seen that the P-I method never assumes 
values 7, 11, 13, 14, 17, 18, 19, 21, 22, 23, and 24. The 
most significantly debated shortcoming of the traditional 
risk assessment is that various sets of P and I may gen-
erate an identical value for risk index. However, the risk 
implication may be completely different. This means that 
the two parameters are assumed to have the same im-
portance. This may result in a bad impact on the results 
of risk assessment process; so that, the results may be 
wrong and invalid. As an illustration, take into account 
two different scenarios having values of 2, 3 and 3, 2, 
for P and I, respectively. Both these failure scenarios will 
have a risk value of 6. However, the risk implication of 
the two scenarios may be significantly different. This is 
due to the fact that the importance weight of the proba-
bility parameter is significantly different from the impact. 
This problem may impose a waste of time and finance. 
The merit of using fuzzy rule base is to deal with such 
failures. 

In another case, risks 6 and 41, the output of the 
proposed model is 2.75. Hence, two potential causes ac-
quire the same value. However, the P-I risk matrix pro-
duces a value of 6 and 8 for risks 6 and 41, respectively. 
This shows that the ranking of risk 6 in comparison with 
that of risk 41 has the higher value. This ranking can lead 
to a waste of time, resources and finances. This problem 
is prominent when there is a dataset with a high level of 
uncertainty. This demonstrates that a more reliable, sure, 
and accurate risk assessment can be yield by using the 
fuzzy logic.

Conclusions 

Probability-impact (P-I) matrix is a powerful risk anal-
ysis tool which is widely used in different aspects of 
science, management and engineering problems. Risk 

analysis with aid of P-I risk matrix is the process of pri-
oritizing risks for future analysis by assessing and com-
bining their probability of occurrence and impact. The 
most important part of analysing the risks imposed by 
project is to separate the parts of the work that are less 
risky from the parts that are more risky. Organization can 
improve the performance of the project by focusing on 
high-priority risks. 

Nevertheless, acquiring precise assessment infor-
mation on the risk components (i.e. probability of oc-
currence and the impact) is difficult and even in many 
situations impossible. For this reason, this paper proposes 
a fuzzy risk assessment for handling the uncertainty as-
sociated with the process of modelling a complex sys-
tem which allows the risk components and their relative 
importance to be considered in modelling the risks im-
posed by the project in a linguistic manner rather than 
in a precise way. The output of the fuzzy risk model is 
used for further decision-making in the process of risk 
management. The potential applications of the proposed 
model is examined and illustrated with a real world case 
study. The results demonstrate that the proposed model 
in comparison with the conventional approach provides 
a more practical and reliable way for risk assessment. 
Compared with the conventional approach, the fuzzy 
model proposed has the following advantages:

1) The relative importance between the risk compo-
nents P and I is taken into account in the process 
of prioritization of the risks involved in the project, 
which makes the proposed model more flexible, ac-
curate, practical, and realistic.

2) The assessment is easier to be accomplished because 
risk components and their relative importance are 
evaluated by linguistic terms instead of crisp values. 

3) Due to the fact that the relative importance between 
P and I are not exactly the same, different combina-
tions of P and I produce different risk values. This 
enables the proposed model to completely evaluate 
the risks and rank them in a descending order. 
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