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Abstract. Information dependency may be the most important key for managing information exchange to reduce
project risks. Studies to date have not successfully discovered objective and quantitative surrogate to measure
information dependency. This paper suggests an approach to measure information dependency with the
productivity relationships among various disciplines for heavy industrial engineering projects. As part of a
Construction Industry Institute (CII) study, the authors identified the information exchange pattern of engineering
disciplines. Based on the patterns, the authors discovered the information dependency that various engineering
disciplines had with their productivity relationships and conducted a survey afterwards for validation. Both results
show significant and consistent evidence suggesting that: 1) information of equipment and piping disciplines is
statistically dependent rather than the other paired disciplines; and 2) productivity relationship can be a legitimate
surrogate to measure information dependency between equipment and piping disciplines. As such, this study
enlightens a research trajectory for improvement of engineering productivity.
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1. Introduction

Effective exchange of information is critical to suc-

cessful engineering for heavy industrial projects such

as chemical manufacturing, electrical generating, gas

distribution, or oil refining, etc. (CII 2008). Project

engineering complexity has increased dramatically

with technology development. This complexity can

be attributed to process design, system integration,

construction method selection and even sustainability

considerations. As a result, coordination of the

engineering process requires intensive collaboration

among various disciplines. Given the enormous un-

certainty common in many large complex projects,

intensive information exchange among the different

engineering disciplines creates high project risks. For

sequential engineering activities, if a task fails to meet

its performance expectations, it will most likely have

an impact on the performance of the next tasks (Ortiz

et al. 2009). Furthermore, engineering errors for a task

may produce a significant amount of reworking for

others. Thus, to effectively allocate project contingen-

cies and accurately predict project schedule and cost,

project managers should be aware of interdisciplinary

information dependency (Kim, Gibson Jr. 2003; Ortiz

et al. 2009; Watermeyer 2002).

Knowledge of information dependency among

different engineering tasks serves an important purpose

for sequence optimization or interface management. In

previous studies, organizations optimize work pro-

cesses (including overlapping tasks, activity sequence

reordering, etc.) to effectively compress project sche-

dule (Austin et al. 1996; Hegazy et al. 2001; Oloufa et al.

2004; Sanvido, Norton 1994). For example, Data

Structure Matrix (DSM) is perhaps the most well-

know method to optimize engineering networks and

deliver products with high quality and low cost (Bashir

et al. 2009), however, quantified and precise associa-

tions in an engineering network are required to make

the model reliable. As a result, from a technical

perspective, the application of DSM has been consid-

ered premature in the construction industry because of
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its lack of measures for information dependency based

on empirical data.

1.1. Definitions of information dependency

Many studies have attempted to define and quantify

information dependency among engineering tasks.

For instance, Pekericli et al. (2003) identified char-

acteristics for information dependencies: task sensitiv-

ity, timing of created information, parties involved,

frequency of communication, type and format of

information, and method and bandwidth of informa-

tion delivery. Based on these characteristics, the study
proposed a number of factors to model information

dependencies. Nonetheless, the study falls short by not

using real data for validation. Zhang et al. (2006)

developed an approach to measure the dependency

strength of coupling tasks during new product devel-

opment. In this study, the author mathematically

defined influence parameters on task output, para-

meter change, feedback change and expected task
change. Additionally, the author developed an equa-

tion representing dependencies with predefined influ-

ence parameters. In order to simulate the impact of

communication on project performance, Ortiz et al.

(2009) set probability for information exchange from

the SimVision User Guide considering the experience

of the general contractors, project scope and size. With

this foundation, the authors developed an approach to
facilitate project managers that are designing project

networks; however, the probability value was selected

according to a guide rather than based on empirical

data and therefore the results may not be conclusive.

Bashir et al. (2009) developed a metric to quantify the

level of project complexity which involves many

interdependent tasks. However, the metric did not

perform satisfactorily and ultimately, the authors
recognized that their experiment should be performed

based on more diverse and actual project data.

1.2. Information dependency based on empirical data is

imperative

In summary, most of the studies characterized task

dependencies in terms of communication frequency as

well as the amount of shared information. Engineer-

ing tasks which share a significant amount of infor-
mation indicate that they are highly dependent and

intensive collaboration is required; thus, the perfor-

mance of an anterior task may affect the performance

of its successors. For instance, a common engineering

parameter of an oil refining plant is the nozzle

specification demonstrated on piping layout and

equipment configurations. Different types of equip-

ment may have various nozzle specifications for which
piping layout will be designed accordingly. Although

these dependency characteristics have been explored in

the building industry (Bashir et al. 2009; Pekericli

et al. 2003), limited research has addressed engineer-

ing information dependencies for the heavy industrial

projects. According to Liao (2008), heavy industrial

projects include oil refining plants, chemical manu-

facturing facilities, and power generation plants while

building projects include office building, Laboratory,

etc. In addition, engineering processes for heavy

industrial projects are different from those of building

projects and so while valuable, the lessons learned

from the building industry for information modeling

are limited in application within the industrial sector.

1.3. Research objective and hypothesis

The objective of this research is to establish that

engineering discipline information is interdependent

and that productivity correlations among the disci-

plines can be used to establish these dependencies.

Thus, the hypothesis is that relationships between the

predecessor and successor engineering disciplines can

be modeled through correlation analysis of engineer-

ing productivity performance for the disciplines.

2. Methodology

A rigorous literature review was conducted to capture

knowledge related to information exchanges and a

summary of their patterns was made. The authors

then collected productivity data through the CII

ongoing program, Engineering Productivity Metric

System (EPMS). By performing regression analyses on

productivity data, patterns of information flow among

engineering disciplines were discovered. Dependencies

of information flow were modeled with linear regres-

sion; afterwards, a survey was conducted in CII

trainings and workshops. A comparison was con-

ducted between results from regression models and a

survey was conducted for validation. Lastly, the

conclusions were made and recommendations for

future research were also addressed.

2.1. The Engineering Productivity Metric System

(EPMS)

In 2002, with the collaborative input of many industry

experts, the Construction Industry Institute (CII)

commenced development of a standardized Engineer-

ing Productivity Metric System (EPMS) for the

purpose of benchmarking engineering productivity.

The EPMS defines engineering productivity as a ratio

of engineering direct work hours to be issued for

construction quantities (Kim 2007). Engineering direct

work hours refers to the work hours for activities such

as deliverable production, site investigations, meetings,

planning, constructability, engineering rework, and

request for information (RFI). Indirect engineering

work hours, by CII’s definition, include activities such
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as document control and quality management and are

excluded from productivity calculations (Kim 2007).

The EPMS consists of a set of metrics for six

major disciplines which account for the majority of the
engineering work for industrial construction and which

are often on the critical path. These disciplines include

concrete, steel, electrical, piping, instrumentation, and

equipment. As noted, all of the metrics are defined as

engineering work hours per issued for construction

quantities and these quantities are measured in various

units. For instance, piping is measured in linear foot

and equipment is measured in piece. The EPMS uses a
hierarchical metric structure, where every discipline has

their underlying metrics: Level II (discipline), Level III

(sub-category), and Level IV (element). Level I is a

project level summary and is not addressed in this

paper. The major advantage of a hierarchical EPMS is

that engineering productivity data can be collected

flexibly at various levels of detail, and can be aggre-

gated to the discipline level (Kim 2007).
Two items are addressed for clarification of the

data used in this study. First, only the Level II metrics are

utilized in this study because of data availability. In the

metric hierarchy, the lower the level, the greater the data

precision, however, at the lower levels, the sample- sizes

become limiting. To address the restriction on minimum

sample size for regression analysis, data precision was

sub-optimized. Second, although the EPMS tracks
concrete and steel separately, most CII companies track

concrete and structural hours together as a single civil

discipline. Thus, concrete and steel engineering produc-

tivity were normalized and combined into a single civil

discipline, for this research (Liao et al. 2009).

Several major engineering firms have submitted

their data and employed these metrics to benchmark

their productivity against the EPMS database. After
six years of data collection from 2002, a significant

amount of engineering productivity data has been

collected from various engineering organizations using

EPMS. This data provides a significant opportunity to

examine engineering information dependencies via

productivity relationship among various disciplines.

2.2. Software used in data preparation/analyses

Data preparation is the essential foundation for

effective data analysis. In this research, engineering
productivity data were first stored in a secured

Microsoft SQL Server 2005† database. Next, engi-

neering productivity data tables were exported and

saved as Microsoft Access† files for ease of query.

After further preparation, tables were exported to

Microsoft Excel† because of its high compatibility

with statistical packages. SPSS† was utilized to per-

form data analyses. Given relatively small sample size
compared to other research fields, a p-value of 0.1 was

determined as the acceptance level for significance test

in this study, balancing the chance of identifying a

false relationship with the chance of missing a

significant correlation (Bobko 2001).

2.3. The EPMS database

A total of 112 heavy industrial projects with engineering

productivity datawere submitted to the EPMS database

from 2002 to 2008. The total installed cost of all projects

is US$ 4.5 billion. Table 1 presents the distribution of
these projects by respondent type, project type (process

or non-process), project nature (addition, grass roots,

or modernization), and also project size.

Contractors submitted the majority of data with a

total of 92 projects whereas owners submitted only 20.

Based on the observation of the PM team, the data

disparity by respondent is primarily because contrac-

tors are better staffed to track engineering productivity
and more readily have access to the data. All projects

submitted were heavy industrial projects which are

further classified into two major categories: process and

non-process. Process projects include projects such as

chemical manufacturing, oil refining, pulp & paper and

natural gas processing projects. Non-process projects

include power and environmental remediation projects.

This taxonomy was developed based on Watermeyer’s
definition, which defined non-process projects as those

that yield products that cannot economically be stored

(Watermeyer 2002). Process projects comprise the

majority of the productivity dataset with a total of 77,

and the remaining 35 are non-process projects. An

analysis of project nature reveals that 37 are additions,

53 are modernizations, and 22 are grass roots. In

accordance with CII convention, a project with a
budget greater than five million dollars is categorized

as a large project. Accordingly, 68 projects were

categorized as large projects (greater than five million

dollars) and the remaining 44 projects were categorized

as small ones (less than five million dollars).

A distribution of direct engineering work hours by

discipline was also produced and is presented in Fig. 1.

Table 1. The EPMS database

Project Characteristics Sample Size (N �112)

Respondent Type

Owner 20

Contractor 92

Project Type

Process 77

Non-Process 35

Project Nature

Addition 37

Grass Roots 22

Modernization 53

Project Size

Large (� $ 5MM) 68

Small (B�$ 5MM) 44
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The piping discipline accounts for the majority of work

hours with 45%, a substantially higher percentage of

the total hours than other disciplines. This distribution

may not be typical of most projects but is reasonable

since these are industrial construction projects.

3. Patterns of information flows

According to Watermeyer (2002), for heavy industrial

projects, equipment is either engineered or selected

from the catalogue provided by vendors. Once equip-

ment information, such as installed locations or con-

figurations becomes available, plant layout drawings

are developed. At this point, civil engineering, instru-

mentation (control) engineering, piping engineering

and electrical engineering are involved for equipment

support, process and layout engineering (Skinner 1968;

Watermeyer 2002). As shown in Fig. 2, the flow of

engineering information for equipment is generally

upstream and a long-lead item, whereas piping, civil,

instrumentation and electrical follow. However, the

information flow among the down-stream disciplines

is project-sensitive. In other words, it is difficult to

generalize the sequence among various disciplines

regarding their information exchange.

4. Discovery of information dependency

Providing patterns of information flow from equip-

ment to other disciplines, embedded information

dependency was then discovered with productivity
relationships of various disciplines via regression,

instead of simple correlations. Three major steps

were conducted: 1) the authors worked closely with

the Productivity Metrics team (PM team), an ad-hoc

committee of the CII BM&M committee, to select

project characteristics as controlled variables incorpo-

rated in regression analyses, enhancing its credibility

of comparisons among models; 2) engineering pro-
ductivity metrics were transformed as well as aggre-

gated prior to regression analysis; and lastly 3) the

regression models were developed between the equip-

ment (upstream) discipline and other downstream

disciplines. The relationships among downstream

disciplines were not included in this study because

theoretical evidence for their information flow is

insufficient.

4.1. Selection and coding of project characteristics

The authors worked with the PM team to select

control variables for regression analyses. Project type

and project size were selected because they are the key

surrogates of engineering complexity, which signifi-

cantly affect productivity (Liao 2008). Namely, four
regression models were developed between four down-

stream disciplines and the upstream discipline (i.e.

equipment discipline), project type and project size. A

general form is listed as Eq. (1) (‘‘Downstream EPi’’

indicates engineering productivity of the ith down-

stream discipline):

Downstream EPi ¼
b0þb1 � Upstream EP þ b2 � Type þ b3 � Size:

(1)

Fig. 1. Work-hour distributions in the EPMS

Fig. 2. Information exchange patterns among various engineering disciplines
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4.2. Transformation and aggregation of engineering

productivity metrics

The EPMS consists of engineering productivity me-

trics with various units. For example piping produc-

tivity uses (design hours per linear foot), equipment

productivity (design hours per equipment piece), and

instrumentation productivity (design hours per tagged

device) producing discipline level metrics. Electrical

and civil disciplines, however, require aggregation

from their underlying metrics. Because the distribu-

tions of the underlying metrics are positively skewed, a

z-score method developed by Liao et al. (2009) was

used to normalize data with natural log transforma-

tion producing a standard normal distribution and

then aggregate them to the discipline level. Quantile-

quantile probability plots (Q-Q plot) were next

utilized to examine metric normality. Through this

process, five engineering productivity metrics (equip-

ment, piping, civil, instrumentation, electrical) were

prepared for further analysis.

4.3. Regression analyses

Project type and size characteristics were incorporated

in the models with the transformed and normalized

productivity data and regression analyses were per-

formed. Multicollinearity concerns were checked using

the Variance Inflation Factor (VIF) to prevent poten-

tial instability of the regression coefficients. As a

result, all VIFs are less than two, smaller than the

rule of thumb four, indicating no excessive correla-

tions between independent variables for all models. As

shown in Table 2, the equipment-piping model is

significant, illustrating that 50% of the variability of

piping productivity can be explained by equipment

productivity controlling project type and size while the

other 50% may be explained by other factors not

captured in the model, for instance, drawing review

(R2�0.5, b�0.5, p B0.1). The result also indicates

that when equipment engineering productivity im-

proves 1 standard deviation (i.e. saves 2.72 engineering

hours per piece of equipment), piping engineering

productivity improves with 0.5 standard deviations

(i.e. saves 1.65 engineering hours per linear feet of

pipe) and the a, however. For many projects, when

equipment is under development and changes take

place to accommodate requirements of the project, the

piping engineering team may experience significant

amount of modifications on piping layout, joint, or

material engineering.
Although project type and size may have partial

impact on civil and electrical engineering productivity,

no statistical evidence was found to support the impact

of equipment engineering productivity on the other

downstream disciplines. These results demonstrate

relatively slack relationships among these disciplines.

5. Validation of the measurement of Information

Dependency

A survey was conducted to collect feedbacks from

industry for validation of the results. A Likert scale

ranging from 1 (very weak) to 5 (very strong) was used

to assess the strength of information dependency

characterized by the communication frequency and

the amount of shared parameters between paired

disciplines. The survey was distributed to industry

practitioners at CII training sessions and workshops

in 2008. A total of 60 respondents completed the

survey. The major functions performed by the respon-

dents’ organizations include: engineering � 50 percent,

engineering-procurement-construction (EPC) � 40

percent, and other 10 percent. Functions of the other

respondents include construction management and

vendor (or supplier). All the respondents have more

Table 2. Regression models of information dependencies

DownstreamEPi

Model R2

(F-value) n

Constant (b0)

(p-value)

UpstreamEP Beta*

(b1) (p-value)

Project Type Beta

(b2) (p-value)

Project Size Beta

(b3) (p-value)

Piping 0.5** (11.77) 47 0.1 (0.67) 0.5** (0.00) �0.3** (0.01) �0.2** (0.08)

Civil 0.2** (3.03) 35 0.4** (0.07) 0.2 (0.32) �0.3** (0.07) �0.4** (0.02)

Instrumentation 0.1 (1.23) 30 0.36** (0.04) 0.1 (0.76) 0 (0.87) 0.3 (0.11)

Electrical 0.6** (11.04) 23 0.55** (0.01) 0.2 (0.11) �0.7** (0.00) �0.1 (0.37)

Note: Every Dependency Model Includes Equipment EPM, Project Size (Cost), and Project Type;
*Standardized Regression Coefficient;
**Significant at 0.1 alpha level.

Fig. 3. Information dependencies assessed by industrial

practitioners
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than five year experience in construction engineering,

indicating credible feedback for this study.

Average dependency scores for paired disciplines

for information dependency as determined through the

survey are presented as Fig. 3. The results indicate that

equipment-piping has the highest mean information

dependency with a score of 4.15 whereas equipment-

instrumentation, equipment-electrical, and equipment-

civil had lower dependency ratings of 3.71, 3.65, and

3.81, respectively. After conducting one-way Analysis

of Variance (ANOVA) test to compare the means across

different groups, as demonstrated in Table 3, a sig-

nificant difference was discovered (F �4.75, df �3,

p B0.1). The heterogeneity difference in group means

(Table 4) shows is established and thus the post hoc test

with the Tukey method was applied. Pair-wise compar-

isons in Table 5 demonstrate that the average response

of equipment-piping is significantly higher than all

other responses, indicating that the experts considered

that a significantly larger amount of parameters is

shared between equipment and piping disciplines and

thus more intensive communication/collaboration is

required in this relationship than for the other paired

relationships.

By comparing results of productivity analyses

and the survey, an interesting finding was discovered.

Productivity relationships indicate that information of

piping engineering is significantly dependent on that

of equipment; however, no statistical evidence was

discovered for the relationships between equipment

and civil, instrumental, and electrical disciplines. The

survey data demonstrate that information dependency

between piping and equipment disciplines is statisti-

cally higher than the others. Because the productivity

data and survey data are consistent, productivity

relationships can be referred as a legitimate surrogate

for measuring information dependency.

6. Discussion

Both regression models and survey results demon-

strate a, suggesting that information released from the

equipment discipline significantly affects piping en-

gineering. For instance, if a change occurs on equip-

ment engineering, piping parameters such as layout or

material selections may change significantly. A pru-

dent project manager should prioritize the equipment-

piping engineering interface when allocating limited

management resource. Practices such as early freezing

of equipment information and precise transformation

of equipment information are highly recommended to

avoid unnecessary risks in heavy industrial projects.

However, productivity relationships between

equipment and other downstream disciplines (civil,

electrical, instrumentation) do not show significant

results. This does not mean that information between

them is irrelevant. Equipment information may still

affect these other disciplines; however, other discipline

engineering may not be as ‘‘sensitive’’ as piping

discipline when equipment changes occur. Nonethe-

less, productivity relationships among the downstream

disciplines should be further explored at various

detailed levels when sufficient data are available.

Table 3. ANOVA test for group means

S.S.* df Mean Square F Sig.

Bet. Groups 9.150 3 3.050 4.751 .003

Within Groups 151.500 236 .642

Total 160.650 239

*Sum of Squares

Table 4. Test for homogeneity of sample variability

Levene Statistic df1 df2 Sig.

1.971 3 236 .119

Table 5. Post-hoc comparisons with Tukey method

90% Confidence Interval

(I) Num group (J) Num group Mean Differences (I-J) Std. Error Sig. Lower Bound Upper Bound

Tukey HSD Equip.-Inst. Equip.-Civil �.100 .146 .903 �.44 .24

Equip.-Piping �.45* .146 .012 �.79 �.11

Equip.-Elect. 0.050 .146 .986 �.29 .39

Equip.-Civil Equip.-Inst. 0.100 .146 .903 �.24 .44

Equip.-Piping �.35* .146 .081 �.69 �.01

Equip.-Elect. .150 .146 .735 �.19 .49

Equip.-Piping Equip.-Inst. 0.45* .146 .012 .11 .79

Equip.-Civil 0.35* .146 .081 .01 .69

Equip.-Elect. 0.5* .146 .004 .16 .84

Equip.-Elect. Equip.-Inst. �.050 .146 .986 �.39 .29

Equip.-Civil �.150 .146 .735 �.49 .19

Equip.-Piping �0.5* .146 .004 �.84 �.16

*Significant at 0.1 alpha level
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7. Conclusions and Recommendations

Information dependency is critical to engineering

management wherein task sequencing methodology

or prioritizing interface management may apply. In
this study, the authors conducted data analyses on

productivity relationships as well as a survey and the

results were consistent. These results support the

argument that productivity relationship can be a

legitimate measure of information dependency, at

least between equipment and piping disciplines, and

thus indicate an important milestone of design

research. Project managers can verify important
management interface and allocate resource accord-

ingly, thereby improving engineering performance.

Future studies can use this approach to: 1) discover

information dependencies on element level when more

data becomes available; and 2) develop design struc-

ture matrix to optimize engineering sequence on

various levels with results derived from this research.
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