
 Copyright © 2012 Vilnius Gediminas Technical University (VGTU) Press Technika 
 www.informaworld.com/tcem 

106

 

             

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 

ISSN 1392-3730 print/ISSN 1822-3605 online 

2012 Volume 18(1): 106–113 

doi.org/10.3846/13923730.2011.619330 

 

 

 

VIBRATION OF A CRACKED CANTILEVER BEAM UNDER MOVING MASS LOAD 

Murat Reis
1
, Yaşar Pala

2 

Uludağ University, Engineering Faculty, Görükle, 16059 Bursa, Turkey 

E-mails: 
1
reis@uludag.edu.tr (corresponding author); 

2
mypala@uludag.edu.tr 

Received 28 May 2009; accepted 29 Dec. 2010 

Abstract. This study is devoted to the investigation of the vibration of a cracked cantilever beam under moving mass load. 
The present formulation contains inertial, centripetal and Coriolis forces that depend on mass and the velocity of the mov-
ing load. The existence of crack induces a local flexibility which is a function of the crack depth, thereby changing its vi-
bration behavior and the eigen-values of the system. The response of the system is obtained in terms of Duhamel integral. 

The differential equation which involves complicated terms on the right side is solved via an iterative procedure. It has 
been shown that the centripetal and Coriolis forces make an effect to decrease the deformations on the beam since the de-
formed beam remains concave during the passage of the moving load. It has also been detected that the previous solutions 
for the case of moving constant force had several mistakes. The results are exemplified for various values of the variables. 

Keywords: beam, centripetal, Coriolis, crack, moving mass, vibration.  

 
1. Introduction 

There has been much work on the cracked structures 
since the crack influence the static and dynamic response 
of the mechanical system. The occurrence of crack at the 
beam induces a local flexibility which is a function of the 
crack depth, thereby changing its dynamic behavior and 
the eigen-values of the system. Several techniques were 
proposed to determine the eigen-functions of the cracked 
structures. While some of these researchers were dealt 
with the detection of crack (Rizos, Aspragathos 1990; 
Liang et al. 1991; Chondros, Dimarogonas 1980), some 
others were based on investigating the effects of cracks 
on the frequencies of the beam (Dimarogonas 1996; Lin, 
Chang 2006; Shifrin, Ruotolo 1999).  

Reis et al. (2008) has been investigated the dynamic 
response of the supported bridges under moving load. 
Khalfallah (2008) analyzed cracked flexural reinforced 
concrete structures with special highlighting of modeling 
the interaction between concrete and reinforcement. Parhi 
and Behera (1997) used the Runge-Kutta method to find 
the deflection of a cracked circular shaft subjected to a 
moving load. Mahmoud and Abou Zaid (2002) used an 
iterative modal analysis approach to determine the 
cracked beam’s response. Most of these works have ana-
lyzed the problem numerically or hybrid numerically. Lin 
et al. (2002) presented an extended method for the beam 
vibrations with an arbitrary number of cracks for obtain-
ing the modes and frequencies of the system. Lin and 
Chang (2006) analyzed the forced response of a cracked 
cantilever beam under a concentrated moving load. In this 
paper, the crack divides the beam into two parts. Each 
part obeys Euler–Bernoulli beam theory. Forced response 
was obtained by the modal expansion theory using the 
determined eigen-functions. However, as proved in the 

following paragraphs, the method presented is deficient 
in many respects and must be reformulated. 

The results obtained so far in the literature can be 
only a rough approximation to determine the dynamic 
behavior and the resonant response of the system for 
heavy moving masses. Hence, a more complicated, but 
sensitive method considering the effects of centripetal 
forces, Coriolis forces and the inertia of the moving mass 
loads in a cracked beam is inevitable for predicting the 
more realistic behavior of the system. Therefore, this 
study is devoted to investigating these effects on the dy-
namic behavior. And an analytical approach is presented 
for investigating the dynamic response of cracked beams 
under moving mass load. The analysis results in a com-
plicated differential equation whose solution requires 
using iterative techniques. Lin and Chang (2006) have 
solved a similar problem for a constant moving force. It 
should be expected that a mass rather than a force in the 
analysis makes the formulation much more complicated. 
The reason for this complexity is the existence of coupled 
terms on the right hand side of the differential equation in 
the case of mass loads. The mass rotations and the shear 
effects of the beam are neglecting in the study. The pre-
sent analysis is performed for a single-side crack. Forced 
response is obtained in terms of Duhamel integrals. 

 
2. Eigen-value analysis 

Let us consider a cracked cantilever beam which has a 
length of L (Fig. 1). It contains an open crack located at  
x = L0. The dimensions of the uniform cross-section of 
the beam are: width B, thickness H, crack depth D. The 
crack divides the beam into two parts. According to Eu-
ler-Bernoulli beam theory, the equation of motion for 
each part in the case of free vibration can be written as: 
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Fig. 1. Cracked cantilever beam under moving mass load 
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where y1 and y2 are the vertical displacements, E is the 

elastic modulus, I is the moment of inertia and m is the 

mass per unit length. The boundary conditions for the 

beam are given by:  

 ( ) ( ) ( ) ( )1 1 2 2
0, = 0, 0,       , , 0y t y t y L t y L t′ ′′ ′′′= = = . (2) 

The compatibility requirements enforce continuities of 

the displacement, bending moment and shear force, re-

spectively, across the crack and can be expressed as:  
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here 
0 0
,L L

+ −  denote the locations immediately before 

and after the crack position, respectively. Discontinuity 

condition at the crack can be written as:  

 
2 0 1 0 1 2 0
( , ) ( , ) ( , )y L t y L t Ly L t

+ − +′ ′ ′′− = θ , (4) 

where 
1
θ  is the non-dimensional crack sectional flexibil-

ity, which is a function of the crack extent (Haisty, 

Springer 1998). For a single sided open crack 

(Ostachowitz, Krawczuk 1991): 

 ( )2

1
6 ( ) /f H Lθ = πγ γ , (5) 

here /D Hγ =  is the non-dimensional crack-depth ratio, 

and 

 2 3( ) 0.6384 1.035 3.7201 5.177 ...f γ = − γ + γ − γ + .  (6) 

Using the separable solution ( ) ( , ) ( ) n
i t

i ni
y x t x e

ω

= φ ,        

i = 1, 2  and  n = 1, 2, … in Eq. (1) leads to: 

 4

1 1 0
( ) ( ) 0,           0IV

n n n
x x x Lφ −λ φ = < < , (7) 

 4

2 2 0
( ) ( ) 0,          IV

n n n
x x L x Lφ −λ φ = ≤ < , (8) 

where: 

 
2

4 n

n

m

EI

ω
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Using Eqs (3) and (4), the conditions on 
1n

φ   and  
2n

φ   

are readily obtained as:  
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( ) ( )

( ) ( )
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,

n n

n n

n n

L L

L L
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 (10) 

 ( ) ( ) ( )2 0 1 0 1 2 0n n n
L L L L
− + +′ ′ ′′φ − φ = θ φ .  (11) 

On the other hand, using the boundary conditions in 

Eq. (2), we obtain: 

 
( ) ( )

( ) ( )
1 1

2 2

0 0,      0 0,

0,     0

n n

n n
L L

′φ = φ =

′′ ′′′φ = φ = .
 (12) 

The solutions of Eq. (7) and Eq. (8) can be shown to be: 

( ) ( ) ( )

( ) ( )
1 1 1

1 1 0

sin cos

sinh cosh ,        0

n n n n n

n n n n

x A x B x

C x D x x L

φ = λ + λ +

λ + λ < < ,
  (13) 

( ) ( ) ( )

( ) ( )
2 2 0 2 0

2 0 2 0

0

sin cos

sinh cosh ,       

,

n n n n n

n n n n

x A x L B x L

C x L D x L

L x L
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(14) 

where A
ni, Bni, Cni and D

ni are constants to be determined. 

Using the conditions given by Eqs (10), (11) and (12), 

and eliminating all the coefficients, the frequency equa-

tion is obtained as:  

 
[ ]

[ ]

6 2 2 1 1 4 4 3 3

3 2 2 1 5 4 4 3

.

. 0
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Here the following abbreviations are made: 

 

1 0 2 0

3 0 4 0
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 (16) 
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6
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u
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+ − +
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.

 (17) 

After finding the eigen-values of the cracked cantilever 

beam, these values are written in the Eigen functions of 

the beam. It is clearly seen that there is only one un-

known term (A
n1) in the eigen-functions: 
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Using the ortonormality condition 
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A
n1 can be obtained as:  

 

( ) ( )1

1

1 2 2

1 2

1 10

1
.n

L L
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n nL

A

x x
dx dx

A A

=
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 (21) 

 

3. Dynamic response analysis 

The equation of motion of the beam under a moving mass 

M can be written as (Michaltsos, Kounadis 2001): 

 [ ] ( )
4 2

4 2 M

y y
EI m M g a x vt

x t

∂ ∂
+ = − δ −

∂ ∂
, (22) 

here  ( )x vtδ −  is  Dirac’s delta function. Since the trans-

verse displacement y is a function of x and time t, we 

obtain the transverse acceleration aM as: 

 2
2

M
a y v y v y′′ ′= + +�� � .   (23) 

The second and third terms on the right side of 

Eq. (23) correspond to the centrifugal and Coriolis accel-

erations. Inserting Eq. (23) into Eq. (22) yields: 

 
( )

( )

4 2
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2
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y y
EI m Mg x vt

x t

M y v y v y x vt

∂ ∂
+ = δ − −

∂ ∂

⎡ ⎤′′ ′+ + δ −⎣ ⎦
�� � .

 (24) 

A series solution of Eq. (24) can be sought in the 

form: 

 ( ) ( ) ( )
1

,

N

n n

n

y x t x q t

=

= φ∑ , (25) 

where eigen-functions ( )
n

xφ  of the cracked system are 

given by Eqs (13) and (14), q
n
(t) are the generalized co-

ordinates and  N  is the number of eigen-functions used to 
approximate the solution. Substituting Eq. (25) into 

Eq. (24), multiplying by ( )
m

xφ  and integrating from 0 to 

L lead to: 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

1 0

0

1 0

2

1 0

1 0

       

2 .

LN

n n n m n

n

L

m

LN

m n m

m

LN

m n m

m

LN

m n m

m

q q x x dx
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 (26) 

Using the ortogonality condition of eigen-functions, 

Eq. (26) can be written as:  

 

( ) ( )

( ) ( )
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1

2
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2 .

N
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m

N N
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M
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m
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=
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∑
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 (27) 

A very important point that must be recalled here is 
that, although the eigen-functions are orthogonal, they are 

not orthonormal in general. In other words, they result in:  

 φ = φ = φ + φ =∫ ∫ ∫ ∫
�

�

� � � �

� �

� � �

�� � �

� � � �

�

�� �� �� �� � .    (28) 

Due to the crack, integration is divided into two parts. In 
order to make this term normalized, the constant A’s in 

the expressions (Eq. (13) and Eq. (14)) for eigen-

functions must be chosen as = ��� � . However, this 

value must also take place on the right hand side of 

Eq. (27).  

A closed form solution to Eq. (27) is not possible. 

However, we can seek an approximate solution of 

Eq. (27). In order to solve Eq. (27), a technique devel-

oped by Michaltsos and Kounadis (2001) will be used. 
This method has also been used by Kounadis (1985). In 

fact, this method is a different version of Picard’s method 

applied to this differential equation. According to this 

method, a first approximate solution of the differential 

equation is obtained by keeping only the first term on the 

right side of Eq. (27). This leads to: 
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0

1
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0

2

,           ,

,           ,

n

n n n

n

LMg
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m v
q q

LMg
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m v

⎧
φ ≤⎪⎪
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⎪ φ >
⎪⎩

��     (29) 
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where: 

1 1 1

1 1

( ) sin ( ) cos ( )

sinh ( ) cosh ( ),

n n n n n

n n n n

vt A vt B vt

C vt D vt

φ = λ + λ +

λ + λ
    (30) 

2 2 2

2 2

( ) sin ( ) cos ( )

sinh ( ) cosh ( ).

n n n n n

n n n n

vt A L vt B L vt

C L vt D L vt

φ = λ − + λ − +

λ − + λ −
   (31) 

The solution of the homogenous part of Eq. (27) for  

0
/t L v≤   is: 

 ( )1 1 2
sin cos

n n nh
q d t d t= ω + ω , (32) 

where d1, d2 are constants to be determined. Let us as-

sume that the proper solution to Eq. (27) has the form: 

 
( )1 1 1

1 1

sin cos

          sinh cosh

n n n n np

n n n n

q A t B t

C t D t

= Ω + Ω +

Ω + Ω ,
 (33) 

where 
n n

vΩ = λ . Substituting Eq. (33) into Eq. (29) 

yields: 

( ) ( )

( ) ( )

1 1

1 1
2 2 2 2

1 1

1 1
2 2 2 2

,        ,

,        .

n n

n n

n n n n

n n

n n

n n n n

A BMg Mg
A B

m m

C DMg Mg
C D

m m

= =

ω −Ω ω −Ω

= =

ω +Ω ω +Ω

 (34) 

Thus, the general solution to Eq. (27) for <
�
�� � �   

takes the form: 

 ( ) ( )1 1 2 1
sin cos

n n n n p
q t d t d t q= ω + ω + .   (35) 

In order to determine d1 and d2 in Eq. (35), we use 

the initial conditions ( )1
0 0

n
q =  and ( )1

0 0
n

q =� . After 

some operations, one readily finds: 

 ( )1 1 1 2 1 1
,        

n

n n n n

n

d A C d B D
Ω

= − + = − −
ω

. (36) 

The last form of ( )1n
q t  in the first region can thus 

be written as:  

 

( ) ( )1 1 1 1 1

2 1 1

1 1

( ) ( ) sin

cos sin cos

sinh cosh .

n m n h n p n

n n n n n

n n n n

q t q t q q d t

d t A t B t

C t D t

= = + = ω +

ω + Ω + Ω +

Ω + Ω

 
(37) 

Now, we insert Eq. (37) into Eq. (27) for the first part  

0
/t L v≤ : 

( )2

1 1 1 1 1

1

2

1 1 1 1 1

1 1

2
 

2 ,

N

n n n n m m

m

N N

m m m m n

m m

M
q q vt g q
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v q v q Q

=

= =

⎧ ⎡ ⎤⎪
+ ω = φ − φ −⎢ ⎥⎨

⎢ ⎥⎪ ⎣ ⎦⎩

⎫⎡ ⎤ ⎡ ⎤⎪′′ ′φ − φ =⎢ ⎥ ⎢ ⎥⎬
⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎭

∑

∑ ∑

�� ��

�

 (38) 

here 
1 1 1
,  ,  

m m m
q q q� ��  are to be found from Eq. (37). Substi-

tuting Eq. (37) into right hand side of Eq. (38), we have: 

 2

1 0
,        /

n n n n
q q Q t L v+ω = ≤�� . (39) 

Under zero initial conditions, the solution of 

Eq. (39) has the form: 

( ) ( ) ( )1 0

0

1
sin ,      /

t

n n n

n

q t Q t d t L v= τ ω − τ τ ≤

ω ∫ . (40) 

In the same manner, for 
0
/t L v>  the solution of 

homogeneous part and the proper solution can be written 

as:  

 ( )2 1 2
sin cos

n n nh
q d t d t= ω + ω , (41) 

 
( )2 2 2

2 2

sin cos

           sinh cosh .

n n n n np

n n n n

q A t B t

C t D t

= Ω + Ω +

Ω + Ω

 (42) 

One can readily show that the coefficients in 

Eq. (42) are in the forms: 

( ) ( )

( ) ( )

2 2

2 2
2 2 2 2

2 2

2 2
2 2 2 2

,   ,

,   .

n n

n n

n n n n

n n

n n

n n n n

A BMg Mg
A B

m m

C DMg Mg
C D

m m

= =

ω −Ω ω −Ω

= =

ω +Ω ω +Ω

 (43) 

Hence, the general solution of ( )2n
q t  in the second re-

gion can be written as:  

 ( )
0

2 1 2 2
sin cos ( )n n n n p

L
t

v

q t d t d t q

>

= ω + ω + .      (44) 

In order to determine 
1
d  and 

2
d  in Eq. (44), we use the 

initial conditions:  

 

( )
0

0 0

2 1 1

/

0

1

0

1
sin

n n

L v

n n

n

L L
q q H

v v

L
Q d

v

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
τ ω − τ τ⎜ ⎟ω ⎝ ⎠∫

 (45) 

and  

 

( )
0

0 0

2 1 2

/

0

1

0

cos

n n

L v

n n

L L
q q H

v v

L
Q d

v

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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τ ω − τ τ⎜ ⎟

⎝ ⎠∫

� �

.

 (46) 

After some operations, one readily finds: 

 

( )

( )

0

1 1 2 2

0

2 2 2

sin

cos

,

n

n n

n

n n n

n

L
d H B D

v

L

v
H A C

ω
= − − +

ω

⎡ ⎤−Ω +⎣ ⎦ω

 (47) 
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( )

( )

0

2 1 2 2

0

2 2 2

cos

sin

.

n

n n

n

n n n

n

L
d H B D

v

L

v
H A C

ω
= − − −

ω

⎡ ⎤−Ω +⎣ ⎦ω

 (48) 

The last form of ( )2n
q t  in the second region can thus be 

written as: 

( ) ( )2 2 2 2

1 2 2

2 2 2

( ) ( )

sin cos sin

cos sinh cosh .

n m n h n p

n n n n

n n n n n n

q t q t q q

d t d t A t

B t C t D t

= = + =

ω + ω + Ω +

Ω + Ω + Ω

  (49) 

For the second part 
0
/t L v> , we have  

( )2

2 2 2 2 2

1

2

2 2 2 2 2

1 1

2
 

2 .

N

n n n n m m

m

N N

m m m m n

m m

M
q q vt g q

mL

v q v q Q

=

= =

⎧ ⎡ ⎤⎪
+ω = φ − φ −⎢ ⎥⎨

⎢ ⎥⎪ ⎣ ⎦⎩

⎫⎡ ⎤ ⎡ ⎤⎪′′ ′φ − φ =⎢ ⎥ ⎢ ⎥⎬
⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎭

∑

∑ ∑

�� ��
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  (50) 

here, 
2 2 2
,  ,  

m m m
q q q� ��  are to be found from Eq. (49). Writ-

ing Eq. (49) in Eq. (50) together, we have: 

 2

2 0
,         /

n n n n
q q Q t L v+ω = >�� .   (51) 

The solution of Eq. (51) has the form: 
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τ ω − τ τ >

ω

∫

∫
  (52) 

A very important point here is that if the time at which 

we wish to plot the curve is smaller than the time required 

for the load to arrive at the crack, Eq. (40) is the answer 

of Eq. (27). When the load passes across the crack, then 

Eq. (52) is the answer of Eq. (27). 
 

4. Results and discussion 

The maximum deflection that the beam would have is the 

deflection of the free end of the beam. Therefore, dynam-

ic deflection of the free end is divided by these static 

deflections of the free end in the graphics below. This 
static deflection (depending upon the position of the 

mass) is given by ( )
( )

( )
2

3
6

Mg x
y L x L

EI
⎡ ⎤= −⎣ ⎦ , where x is 

the location of the mass. In the following calculations, as 

an example, we assume 8 m,L =  0.2 m,H =  0.1 m,B =  

A B H= ×  11 2
2.06 10 N/m ,E = ×  37800 kg/m ,ρ =  

m A= ρ× . The number of terms in the series has been 

taken as n = 4. It has been observed that the series rapidly 

converges (Lin, Chang 2006). Since the right hand side of 

the differential equation involves the unknown functions, 
as the number of terms in the series is increased, the solu-

tion time highly increases. 

In the first place, the effects of the crack depth and its 

location on the dynamic deflections must be determined. 

To do this, in Fig. 2, the normalized deflection at the free 

end ( )dynamic static/y y y=  versus normalized position of 

the moving load ( )/t vt L=  has been plotted for various 

values of crack-depth ratios ( )0.25 0.5 0.75γ = − − . The 

crack is located at the midpoint of the beam in this case  

(L0 = 4 m). As expected, the normalized deflections at the 

free end increase as the crack-depth ratio’s (γ) increase. In 
Fig. 3, the normalized deflections at the free end versus 

normalized position of the moving load has been plotted 

for different values of the crack position L0 = (2 m, 4 m, 

6 m) and 0.5γ = . As seen in the figure, as the crack loca-

tion goes away from the fixed end, the normalized deflec-

tion at the free end decreases and approaches to that of the 

un-cracked case. 

One of the main purposes of the present work is to 

see the effects of inertia, centripetal and Coriolis forces 
on the dynamic response. The velocity and the mass of 

the moving load are two parameters which affect these 

force terms directly. Therefore, in Figs. 4 and Figs. 5 the 

normalized deflections at the free end versus normalized 

position of the moving load have been plotted for various 

values of the velocity and the mass of the moving load. 
The crack is assumed to be at the middle of the beam 

( )0
4 m,  0.5L = γ =  in Figs. 4 and 5. 

In Fig. 4, the effect of the constant force corre-

sponding to F = Mg, the mass load involving inertia force 

and the mass load with inertia force plus centripetal and 
Coriolis forces have been presented in separate curves in 

each figure. Dotted lines correspond to the case of con-

stant force; dashed lines correspond to the case of mass 

load with inertia effect while solid lines correspond to the 

case of the case of mass load involving the totality of the 

effects.  
In Fig. 5, the effect of the mass has been presented 

in separate curves in each figure for various values of the 

velocity of the moving load. Dotted lines correspond to 

the case of M = 100 kg; dashed lines correspond to the 

case of M = 500 kg while solid lines correspond to the 
case of the M = 1000 kg.  

When the graphics are observed, it can be said that 

the velocity of the moving load has a great effect on the 

dynamic response of the beam. At low velocities, it is 

seen that the effects of inertia, centripetal and Coriolis 

forces remain so small that they can be neglected com-
pared to the constant force (F = Mg) (Fig. 4, a). As the 

velocity increases, these effects become comparable with 

the constant force (Fig. 4, b). Neglecting these terms 

cause a considerable difference at the dynamic response 

of the system. In addition to this, in a vast interval of 

velocity, it is seen that the effect of centripetal and Corio-
lis forces on the normalized deflection of the free end is 

bigger than the effects of inertial forces (Fig. 4, c).  
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Fig. 2.  Variation of the normalized deflection at the free end  
with respect to normalized position of moving mass for various 
values of crack depth ratio (γ). L0 = 4 m, v = 10 m/s, 
M = 1000 kg 
 

 

Fig. 3.  Variation of the normalized deflection at the free end 
with respect to normalized position of moving mass for various 
values of crack position (L0). γ = 0.5,  v = 10 m/s,  M = 1000 kg 
 

The mass of the moving load has no important ef-

fect of the dynamic response of the beam at low veloci-

ties of the moving load (Fig. 5, a).  As the velocity in-
creases, the effect of the mass starts to becomes apparent 

(Fig. 5, b, c). It is clearly seen that the normalized deflec-

tions at the free end decrease with increasing values of 

the mass at high velocities of the moving load (Fig. 5, c). 

Since deformed cantilever beam is concave, the effects of 

centripetal and Coriolis forces are negative and these 
forces are functions of the moving mass. That is the rea-

son for the decrease in the deflection at the free end when 

the mass increases. 

It is seen in all figures that the velocity has a con-

siderable effect on the dynamic response of the beam. In 
Fig. 6, the normalized deflections at the free end versus 

normalized position of the moving load have been plotted 

for various values of the velocity of the moving load. The 

crack is assumed to be at the middle of the beam  

(L0 = 4 m, γ = 0.5) in Fig. 6. It is evident that when the 

velocity decreases the ratio between the dynamic and the 
static response of the beam approaches to 1. We have 

called this ratio as ‘normalized deflection’. When the 

velocity increases, the normalized deflection at the free 

end decreases.  The reason  for  this  behavior  is  that  the 

 

a) 
 

 

b)  
 

 

c) 

Fig. 4.  Variation of the normalized deflection at the free end 
with respect to normalized position of moving mass for differ-
ent values of the velocity of the moving load. L0 = 4 m, γ = 0.5, 
M = 1000 kg: a)  v = 5 m/s; b) v = 10 m/s; c) v = 20 m/s 

 

centripetal and Coriolis effects are upwards in a concave 
beam. In addition, at high velocities, the mass leaves the 

beam before the beam can not undergo remarkable de-

flections.  

While formulating the present study, we have also 

corrected several mistakes in the literature. For example, 

we have pointed out that the eigen-functions are orthogo-
nal, but not orthonormal, in general. We have proposed a 

normalization procedure to normalize them. The present 
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problem has been fully described and solved by giving all 

the details. Since some of the details were not given in 
some of the previous papers, it has been detected that the 

previous solution strategy has deficiency in many ways. It 

has been pointed out that the coefficients of the eigen-

functions cannot be found explicitly, but they must be 

stated in terms of A’s, as in Eq. (34). The coefficients A’s 

are obtained by mean of fact that eigen-functions must 
also become orthonormal. 

 

 

a) 
 

 

b) 
 

 

c) 

Fig. 5.  Variation of the normalized deflection at the free end  
with respect to normalized position of moving mass for differ-
ent values of the moving mass. L0 = 4 m, γ = 0.5: a)  v = 5 m/s; 
b) v = 10 m/s; c) v = 20 m/s 

 

Fig. 6.  Variation of the normalized deflections at the free end  
with respect to normalized position of moving mass for differ-
ent values of the velocity of the moving mass. L0 = 4 m,  γ = 0.5, 
M = 1000 m/s 

 

5. Conclusions 

Vibration analysis of a cracked cantilever beam under 
moving mass loads has been investigated in the present 

paper. Euler-Bernoulli beam theory has been used. Cen-

tripetal and Coriolis forces which become important in 

the case of long beams and mass load with high velocity 

have been inserted into the theory. The insertion of these 
terms into the theory makes the differential equation quite 

complicated. This complicated differential equation has 

been solved by iterative approach. The response of the 

system has been obtained in the form of Duhamel inte-

gral, divided into two parts depending upon the position 

of the crack.  
In the present work, some erroneous results given in 

some previous papers have been corrected and reformu-

lated. For example, eigen-functions are orthogonal, but 

not orthonormal in general. But, they have been assumed 

to be orthonormal, a result which is wrong. The present 

study involves the correct solution of this problem and 
adds novelty. 

In order to see the effects of centripetal force, Corio-

lis force and the crack existence, the results have been 

exemplified for various values of the parameters. It has 

been concluded that the response in the case of mass load 
appreciably differs from that of constant force F. In addi-

tion, it has been observed that the response of the system 

is appreciably affected by the inertial, centripetal and 

Coriolis forces. The velocity of the moving load affect 

these terms strongly. 
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ĮTRŪKUSIOS GEMBINĖS SIJOS VIRPESIAI VEIKIANT JUDANČIA MASĖS APKROVA 

M. Reis, Y. Pala 

S a n t r a u k a  

Straipsnyje nagrinėjami įtrūkusios gembinės sijos, kurią veikia judančios masės apkrova, virpesiai. Šiuo atveju veikia  
inercinės, įcentrinės ir Koriolio jėgos, kurios priklauso nuo judančios apkrovos masės ir judėjimo greičio. Įtrūkis sukelia 
vietinį sijos lankstumą, kuris priklauso nuo įtrūkio gylio, tokiu būdu keičia virpesių pobūdį ir sistemos reikšmes. Sistemos 
atsakas nustatomas taikant Duhamelo integralą. Diferencialinė lygtis, kurios dešinėje pusėje yra sudėtingos sąlygos, 
sprendžiama taikant iteracijas. Nustatyta, kad  įcentrinė ir Koriolio jėgos sumažina sijos deformacijas, nes deformuota sija 
išlieka išsigaubusi, kai per ją juda masės apkrova. Taip pat nustatyta, kad ankstesniuose sprendimuose judančios nekin-
tamos masės apkrovų atvejais buvo keletas klaidų. Kaip pavyzdžiai pateikiami rezultatai esant skirtingoms kintamųjų 
reikšmėms.  

Reikšminiai žodžiai: sija, įcentrinė jėga, Koriolio jėga, įtrūkis, judanti masė, virpesiai. 
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