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Abstract. The shear failure of reinforced concrete beams is one of the fundamental problems in civil engineering; how-
ever, the diagonal tension strength of reinforced concrete (RC) beams without stirrups is still in question. This paper fo-
cuses on the prediction of diagonal cracking strength of RC slender beams without stirrups. In slender beams, flexural 
cracks develop in the tension zone prior to a diagonal cracking. Using the basic principles of mechanics, but cracking in-
cluded, and theory of elasticity, a diagonal cracking strength equation is proposed for both normal and high strength con-
crete beams. The proposed equation, the requirements of six codes of practice and seven equations proposed by different 
researchers are compared to the experimental results of 282 beams available in the literature. It is found that the predic-
tions from the proposed equation are in good agreement with the experimental results.  
Keywords: compressive strength, reinforced concrete, cracking, shear strength, slender beam, diagonal tension. 

 
1. Introduction 
The results of experiments show that the shear failure of 
reinforced concrete (RC) slender beams without stirrups 
is always governed by diagonal tension failure mode 
rather than compression failure mode. During the last 40 
years, researchers have made several attempts to predict 
the shear strength of RC beams based on mainly experi-
mental results and statistical studies. With respect to the 
various empirical formulas, considerable differences exist 
as a result of the following factors: the uncertainty in 
assessing the influence of complex parameters in a simple 
formula; the scatter of the selected test results due to 
inappropriate tests being considered; the poor representa-
tion of some parameters in tests; and finally, the concrete 
tensile strength often not being evaluated from control 
specimens. These issues limit the validity of empirical 
formulas, and increase the necessity for rational models 
and theoretically justified relationships (ASCE-ACI445 
1999). It is believed that an analytical formula is more 
satisfactory than an empirical formula, as it provides 
physical insight into the phenomenon (Gastebled, May 
2001).  

To determine the minimum amount of stirrups and 
to obtain the shear strength of RC beams with stirrups, it 
is necessary to know the diagonal cracking shear strength 
of RC slender beams. In case of a slender beam with 
shear span-to-depth ratio a/d > 2.5, inclined tensile crack-
ing develops in the direction perpendicular to the princi-
pal tensile stress axis when the principal tensile stress 
within the shear span exceeds the tensile strength of con-
crete. Taylor (1960) has indicated that the diagonal crack-
ing stage is not clearly defined in the experimental beams 

where the crack formed is close to the applied load be-
cause the development of the inclined cracks is gradual. 
Since the diagonal cracking load is very sensitive to the 
judgment of the observer and the location of the initiating 
flexural crack, experimental values scatter significantly 
(Bazant, Kazemi 1991). Diagonal cracking shear strength 
is defined in Mphonde and Frantz (1984) tests as the 
shear load when the critical crack becomes inclined and 
crosses at mid-depth. The inclined shear strength, there-
fore, obviously is affected by the observer’s judgment 
and also is sensitive to the actual location of the initiating 
flexural crack.  

Mphonde and Frantz (1984) tests on beams without 
stirrups have shown that the ratio of the shear causing 
inclined cracking to the measured shear strength ranges 
from 0.74 to 0.97 and is very unpredictable. Therefore, it 
is difficult to determine the value of the diagonal tension 
stress and the cracking load in a RC beam because the 
distributions of shear and flexural stresses are not known 
precisely. Furthermore, the crack initiation load is not 
proportional to the failure load and it can be much small-
er or only slightly smaller depending on the beam size 
and other factors (Bazant, Kazemi 1991). The contribu-
tion of this study is to present an equation for predicting 
the diagonal cracking strength of RC slender beams with-
out stirrups. The proposed equation, the requirements of 
six codes of practice and seven equations proposed by 
different researchers for either cracking or ultimate shear 
strength are compared to the experimental diagonal 
cracking shear strengths available in the literature.  

To determine the minimum amount of stirrups and 
to obtain the shear strength of RC beams with stirrups, it 
is necessary to know the diagonal cracking strength of 
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RC slender beams. The requirements of several codes and 
methods of prediction of the shear strength are based on 
the experimental results of normal strength concrete. In 
design, using these equations may not be appropriate, and 
verifications and modifications may be required for the 
evaluation of shear strength of high strength concrete 
beams. In this study, using the basic principle of mechan-
ics and calibrating against the factors of the effective 
depth and slenderness ratio, an equation for predicting 
diagonal cracking strength is proposed for both normal 
and high strength concrete beams.  

 
2. Existing shear strength models 
A number of equations proposed by various codes and 
researchers are considered. These are ACI318 Building 
Code (2008), based on experimental results of numerous 
beams; Turkish Building Code (TS500 2000), based on 
the adaptation of ACI Code simplified equation; CSA 
Code (1994), based on the modified compression field 
theory; NZS (1995); EN 1992-1-1:2004 (2004); CEB-
FIP90 (1993) model code equation, introduced empirical-
ly; Zsutty’s equation (Zsutty 1971), deduced by multiple 
regression analysis; Okamura’s equation (Okamura, Hi-
gai 1980), developed empirical equation from experi-
mental data; Bazant’s equation (Bazant, Kim 1984), 
based on non-linear fractures mechanics considering the 
size effect; Kim’s equation (Kim, Park 1996), based on 
basic shear transfer mechanisms, a modified Bazant’s 
size effect law and test data; Collins’ equation (Collins, 
Kuchma 1999), resulting from an enhancement of the 
modified compression field theory based on a hypothesis 
that crack spacing causes size effect; Rebeiz’s equation 
(Rebeiz 1999), obtained from multiple regression analy-
sis; and Khuntia’s equation (Khuntia, Stojadinovic 2001), 
based on basic principles of mechanics and parametric 
study of experimental data. All the equations considered 
within the scope of this study are summarized in Table 1. 
These equations are applied to a database consisting of 
282 specimens so that the results of the equations can be 
compared to the test results.  

Based on the test results, Jelic et al. (1999) reported 
that dowel action cannot be considered as a viable com-
ponent in the shear mechanism of a cracked reinforced 
concrete beam section without stirrups. The main factor 
resisting the applied shear force is the shear resistance of 
the uncracked concrete. According to Zararis and Papa-
dakis (2001), and Kotsovos and Pavlovic (1998) the 
compression zone of intact concrete prevents shear-slip of 
the crack surfaces. Reinhardt and Walraven (1982) re-
ported that the tension zone damaged by the flexural 
cracks does not significantly contribute to the shear re-
sistance of the beams. Normally, dowel action is not very 
significant in members without stirrups, since the maxi-
mum shear in a dowel is limited by the tensile strength of 
the cover concrete supporting the dowel (Bauman, Rüsch 
1970). Therefore, the aggregate interlock along the crack 
surfaces and the dowel action of longitudinal reinforce-
ment do not significantly contribute to the shear strength 
of the beams (Kotsovos, Pavlovic 1998). According to 
Jelic et al. (1999), the dowel action of longitudinal rein-

forcement placed in one layer can be neglected for RC 
beams without stirrups. In the present study, dowel action 
is neglected for simplicity and conservatism.   
 
3. The prediction of diagonal cracking strength  
of beams without stirrups 
The shear failure of reinforced concrete members without 
stirrups initiates in the form of diagonal cracks, which 
later propagates through the beam web, when the princi-
pal tensile stress within the shear span exceeds the tensile 
strength of concrete. For a RC slender beam where a/d is 
greater than 2.5, the shear strength at section is primarily 
concerned with the effective shear depth of critical diag-
onal crack and the tensile strength of concrete. The effec-
tive shear depth, based on Khuntia’s equation (Khuntia, 
Stojadinovic 2001), is obtained using the depth of neutral 
axis and the compressive strain in concrete. The diagonal 
cracking strength equation can be obtained by using a 
number of simplifying assumptions, and is based on the 
basic principles of mechanics, but cracking included, and 
the theory of elasticity. The proposed equation is com-
pared with the test results of high-strength concrete 
(HSC) beams with compressive strength of 55cf ≥  
MPa, and normal-strength concrete (NSC) beams with 
lower cf  values reported in the literature.  

In 1902 Mörsch derived the shear stress distribution 
for a RC beam containing flexural cracks. Mörsch pre-
dicted that shear stress would reach its maximum value at 
the neutral axis and would then remain constant from the 
neutral axis down to the flexural steel (Cladera 2003). 
The value of this maximum shear stress would be: 
 ( )/o o wV b zτ = , (1) 
where: wb  is the web width; z is the flexural lever arm.  

According to Zink (2000), the stress distribution for 
oτ  shown in Fig. 1a is neither able to describe the shear 

cracking force in quality nor in quantity. New approaches 
(Khuntia, Stojadinovic 2001; Zink 2000) were proposed 
to adopt the influence of the components in the cracked 
flexural tension zone more accurately. Khuntia and 
Stojadinovic (2001) modeled the shear stress distribution 
as a parabola with an integral factor of 2/3 over the effec-
tive shear depth with the maximum value at the neutral 
axis (Fig. 1d). The shear capacity of beams without stir-
rups, oV , carried in the uncracked compressive zone, is 
determined by integrating the shear stress and is ex-
pressed as follows: 

 1
2
3o w tV b c f= , (2) 

where 1c  is the effective shear depth and tf  is the tensile 
strength of concrete.  

The shear capacity controlled by tension is normally 
less than that controlled by compression, regardless of the 
magnitude of flexural deformation. This is because the 
tensile strength of concrete is much less than the comp-
ressive strength (Park et al. 2006). According to Khuntia 
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Table 1. Existing shear strength models for slender beams without stirrups 
Investigator Shear strength models 

ACI318 (2008) ( )0.16 17 / 0.29c c u u cv f V d M f= + ρ ≤   or  0.17c cv f= ,  cf   in MPa  

TS500 (2000) ( )0.2275c cv f= ,  cf   in MPa  

CSA (1994) 
0.2c cv f= ,  cf   in MPa, (d ≤ 300 mm),  

260 0.1
1000c c cv f fd
 = ≥ +  ,  cf  in MPa, and d in mm(d >300 mm)  

NZS (1995) (0.07 10 )c cv f= + ρ ,  cf  in MPa, / 2a d ≥   

EN 1992-1-1: 
2004 (2004) 

( )1/3 3/2
, 0.18 100 0.035rd c c cv k f k f= ρ ≥ ,  cf  in MPa,  

2001 2.0k
d

= + ≤ , 0.02
w

A
b d

ρ = ≤ ,  d in mm 

CEB-FIP90 
(1993) ( ) 1/3

1/3200 30.15 1 100
/cr cv fd a d

   = + ρ        ,  cf   in MPa, and d in mm 

Zsutty (1971) 
1/3

2.2u c
dv f a

 = ρ   ,  cf   in MPa, ( )/ 2.5a d ≥  

Okamura and 
Higai (1980) 

( )1/3
1/4

100 1.400.2 0.75
/

c
c

fv a dd
ρ  = +   ,  cf   in MPa, and d in m 

Bazant and Kim 
(1984) 

3
5

1 5.08 /0.54 249 1 / (25 )( / )
a

u c
a

dv f d da d
  +ρ = ρ +     +  

, cf   in MPa, d in mm 

Kim and Park 
(1996) 

/3 3/8 13.5 0.4 0.18
1 0.008u c

dv f a d
α   = ρ + +   +   ,  cf   in MPa, and d in mm,   

2 ( / ) / 3a dα = −  for1.0 3.0a
d
≤ < ,  1α =  for 3.0a

d
≥  

Collins and 
Kuchma (1999) ( )

245
251275

16

c c
X

a

v f
S

d

=  +   + 

0.9XS d≈ ,  cf   in MPa, d and da in mm 

Rebeiz (1999) ( )0.4 2.7 0.4c c d
dv f Aa= + ρ − ,  cf   in MPa  

/dA a d=  for ( )/ 2.5a d <   and  2.5dA =  for ( )/ 2.5a d ≥ . 
Khuntia and 
Stojadinovic 

(2001) 

0.5
30.54 c

c c
u

V dv f M
 = ρ   , cf   in MPa, 1u

c

M a
V d d= −  

Note: cv  – the shear strength of RC members without stirrups; crv  – diagonal cracking shear strength; uv  – ultimate shear 
strength. Magnitudes of cv  and uv  are considered to be equal to crv  in calculating shear strength.  

 
and Stojadinovic (2001), the shear stress distribution is 
modeled as parabolic over the effective shear depth with 
the maximum value at the neutral axis such that the 
maximum shear stress over the effective cross section 
equals to 1/ (2 / 3 )o o wV b cτ = , where wb  is the width of 
section and c1 is the effective shear depth. The shear fai-
lure of RC members without stirrups initiate when the 
principal tensile stress within the shear span exceeds the 
tensile strength of concrete and a diagonal crack propaga-
tes through the beam web. Mathematically: 

 
1

2
3

o
o t

w

V f
b c

τ = = , (3) 

where tf  is the tensile strength of concrete and 

 1
2
3o t w o wV f b c v b d= =  (4) 
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Fig. 1. Shear stress and strain distribution in a RC beam with flexural cracks: a) typical crack pattern and shear 
stress distribution (adapted from Cladera (2003)); b) cross-section X-X; c) distribution of concrete stresses (Khun-
tia, Stojadinovic 2001); d) shear stress distribution (Khuntia, Stojadinovic 2001); e) longitudinal strain distribution 

 
is the shear force. The procedure proposed by Khuntia 
and Stojadinovic (2001) for the shear strength of RC 
members without stirrups, at the design section under the 
effect of the factored bending moment Mu and axial load 
Pu, calculates the effective shear depth c1, using the 
method of satisfaction of strain compatibility and equilib-
rium conditions: 

 1 (1 )cr
c

c c ε
= +

ε
, (5) 

where c is the depth of neutral axis, cε  is the compres-
sive strain in concrete, which is taken as 0.002, and crε  
is the cracking strain value in concrete, which is taken as 
the ratio of the tensile strength of concrete tf  to its mod-
ulus of elasticity cE :  

 t
cr

c

f
Eε = .  (6) 

Since concrete is relatively weak and brittle in ten-
sion, cracking is expected when significant tensile stress 
is induced in a RC member (ACI224 1992).  The tensile 
strength of plain concrete tf , ranges from about 0.25 to 
0.50 cf  (Nilson, Darwin 1997; Paulay, Priestley 1992; 
Carreira, Chu 1986). The tensile strength tf  of concrete 
has been taken as 2/30.3 cf  (EN 1992-1-1:2004 2004; 
CST 49 1968). In this study, the direct tensile strength is 
assumed as 2/30.3t cf f=  and the modulus of elasticity 

cE  is taken as 4700 cf  (ACI318 2008) for all levels of 
concrete strength. 

Substituting Eq. (5) and Eq. (6) into Eq. (4), the 
principal shear strength becomes:  
 ( )6132 0320120 /

c
/

co f.d
cf.v +


= , (7) 

where cf  is the compressive strength of concrete in MPa 
and c/d is the ratio of neutral axis depth to effective 
depth, which is the positive root of the second order equa-
tion given by Eq. (8). At any section of the member, the 
depth of the flexural crack is expected to increase with 

bending moment. Thus, the diagonal cracking strength 
would decrease with increasing bending moment (Khun-
tia, Stojadinovic 2001). The strain of the tensile rein-
forcement can be taken as ( ) /s c d c cε = ε − , where cε  is 
the concrete strain at extreme fiber at maximum stress, 
0.002. Using the equality of the concrete compression 
force, ( )' 2 / 3cc c wF f b c= , and the normal steel force, 

( ) /s w s cF b dE d c c= ρ ε − , and considering that 
52.10sE =  MPa, the depth of the neutral axis has been 

previously proposed as (Zararis, Papadakis 2001): 

 
2
600 600 0

c c

c c
d f d f

ρ ρ  + − =   . (8) 

Eq. (7) does not capture the effects of slenderness 
and size on the diagonal cracking strength, which were 
considered by many researchers and codes. The diagonal 
cracking strength of RC beams decreases with increasing 
member depth and slenderness. In order to take into ac-
count the effects of slenderness and size, Eq. (7) is calib-
rated to the test results available in the literature. 

 
4. Calibration by comparison with the effect  
of slenderness and size 
In order to obtain more accurate diagonal cracking 
strength, the principal shear strength equation is modified 
by the factors of the effective depth and slenderness ratio 
(a/d). Based on the principal shear strength vo carried by 
the compression zone, the influence of the slenderness 
and size can be considered with the factors ( / )k a d  and 
(1/ )k d . The diagonal cracking strength causing shear 

tension failure can be written as follows: 
 ( / ) (1/ )c ov v k a d k d= , (9) 
where ( / )k a d  and (1/ )k d  are the coefficient of slen-
derness and size effect, respectively.  

 
4.1. Slenderness effect on diagonal cracking strength 
The weak influence of a/d is neglected in some design 
formulas (ACI318 2008; TS500 2000; CSA 1994; NZS 
1995; EN 1992-1-1:2004 2004; Collins, Kuchma 1999; 
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Arslan 2005, 2008). Tension stiffening causes a minor 
influence of a/d, which is described with a coefficient 

( / ) k a d  in some other design formulas (CEB-FIP90 
1993; Zsutty 1971; Okamura, Higai 1980; Bazant, Kim 
1984; Kim, Park 1996; Rebeiz 1999; Khuntia, Stojadi-
novic 2001). CEB-FIP90 equation is proposed to deter-
mine the relationship between a/d and the diagonal crack-
ing strength, leading to the following expression for 
slender beams: ( )( )1/33 / /cv a d∝ . For a slenderness 
ratio ( )/ 3.0a d = , a complete crack formation can be 
observed when shear failure occurs. Therefore, the coef-
ficient of slenderness ratio is set to 1.0 for ( )/ 3.0a d = . 
The exponent in the formula has a relatively small effect 
on the coefficient of slenderness ratio. The cracking shear 
strength decreases 21% even a/d is increased to 6.0 from 
3.0. According to the Okamura and Higai (1980), the 
relationship between a/d and the cracking shear strength 
is set to ( )( )0.75 1.40 / /cv a d∝ + . The coefficient of 
slenderness ratio is set to 1.0 for ( )/ 5.6a d = . Zsutty’s 
equation (Zsutty 1971) shows that cv  is proportional to 

( )( )1/31/ /a d . According to Kim and Park (1996), the 
relationship between a/d and the cracking shear strength 
is set to ( )( )0.4 1/ /cv a d∝ +  for slender beams. The 
coefficient of slenderness ratio is set to 1.0 for 
( )/ 1.7a d = . 

 

 
Fig. 2. Effect of slenderness ratio on cracking shear strength 

 
A significant influence of tension stiffening can on-

ly be expected for values of a/d smaller than 4. For ratios 
of a/d higher than 4 there is no significant influence of 
tension stiffening because of the already completed crack 
formation in the critical area of the shear span (Zink 
2000). In this study, a regression analysis is undertaken to 
identify the influence of ( )4 / /a d on the diagonal crack-
ing strength of RC slender beams without stirrups using 
the results of existing 282 experimental data. The varia-
tion of the ratio of experimental cracking shear strength 
(vc,test) to the principal shear strength vo of slender beams 
can be expressed as follows:  

 
0.15, 4

/
c test

o

v
v a d

 =    . (10) 

The variation of 
,

/c test ov v  with the varying level of 
( )0.154 / ( / )a d  is illustrated in Fig. 2. A new design ex-
pression is proposed for the diagonal cracking strength 
based on the principal shear strength for slender beams by 
considering the slenderness effect.  
 
4.2. Size effect on diagonal cracking strength 
The influence of the effective depth d is neglected in 
some design formulas (ACI318 2008; TS500 2000; NZS 
1995; Zsutty 1971; Rebeiz 1999). However, in generally, 
size effect on the cracking shear strength is significant 
and is described with a coefficient k(1/d) in some other 
design formulas (CSA 1994; EN 1992-1-1:2004 2004; 
CEB-FIP90 1993; BS 8110 1997; Okamura, Higai 1980; 
Bazant, Kim 1984; Kim, Park 1996; Collins, Kuchma 
1999). The CSA Code (1994) includes a term to account 
for the size effect in its simplified shear design expression 
but does not take the reinforcing steel ratio, ρ, into ac-
count. This shows the concern of this code regarding the 
size effect phenomenon. When the effective depth d is 
quite large, the CSA Code (1994) equation considers an 
over strong asymptotic size effect 1

cv d−∝ , which is 
contrary to the point of view that the linear elastic frac-
ture mechanics size effect 1/2

cv d−∝  for very large 
beam depths (Bazant, Yu 2005).  

BS 8110 (1997) equation relates the cracking shear 
strength to the size effect as follows: 

 
0.25400

cv d
 ∝    . (11) 

Based on the regression analysis, cv  is taken as 
proportional to ( )0.25400 / d  in this study to identify the 
size effect, which is similar to BS 8110 equation. 

 
4.3. Proposed diagonal cracking strength equation  
for RC slender beams without stirrups 
Based on the principal shear strength vo carried in the 
compression zone, considering the influence of parame-
ters; the slenderness ratio (a/d) and size effect (1/d), the 
diagonal cracking strength of RC slender beams without 
stirrups can be expressed as follows: 

( ) ( )
0.15 0.25

2/3 1/6 4 4000.2 1 0.032
/c c c

cv f fd a d d
    = +          

. (12) 

Eq. (12) is proposed for RC beams with a shear span to 
depth ratio ( )/a d  equal to or greater than 2.5. 

 
5. Evaluation of proposed equation 
The diagonal cracking strength equation was applied to 
the 282 specimens that had been tested by 22 researchers. 
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These specimens were subjected to single- or two-point 
loads at mid-span. The specimens have a broad range of 
design parameters: 0.47 ≤ ρ ≤ 5.01 (%), 2.50 ≤ a/d ≤ 
8.52, 6.1 ≤ fc ≤ 53.9 MPa and 41 ≤ d ≤483 mm for NSC 
and 0.33≤ ρ ≤ 6.64 (%), 2.50 ≤ a/d ≤ 6.00, 56.5 ≤ fc ≤ 
91.8 MPa, and 184 ≤ d ≤ 822 mm for HSC. The effects of 
concrete compressive strength, slenderness ratio and 
flexural reinforcement ratio on the proposed diagonal 
cracking strength of RC slender beams without stirrups 
are discussed below.  

Fig. 3 compares the proposed diagonal cracking 
strength obtained from Eq. (12) with experimental results 
for NSC beams (Taylor 1960; Bazant, Kazemi 1991; 
Mphonde, Frantz 1984; Moody et al. 1954; Diaz de Cos-
sio, Siess 1960; Van den Berg 1962; Taylor, Brewer 
1963; Bresler, Scordelis 1963; Mathey, Watstein 1963; 
Mattock 1969; Krefeld, Thurston 1966; Cho 2003; Clade-
ra, Mari 2005) and HSC beams (Mphonde, Frantz 1984; 
Van den Berg 1962; Cho 2003; Cladera, Mari 2005;  
Ahmad et al. 1986; Elzanaty et al. 1986; Kwak et al. 
2002; Shah, Ahmad 2007; Sneed, Ramirez 2010). The 
mean values (MV) and the standard deviations (SD) of 
the ratio of the experimental cracking shear strength to 
the proposed diagonal cracking strength are 1.108 and 
0.118 for NSC, 1.012 and 0.153 for HSC, respectively. 

 

 
 

 
Fig. 3. Proposed diagonal cracking strength values using 
Eq. (12) versus experimental cracking shear strength values 

Figs 4–6 show the errors which can be induced by 
the discrepancies of a/d, ρ and fc. The ratio of the experi-
mental to the proposed shear strength is not significantly 
influenced by increasing a/d, ρ and fc. However, experi-
mental data are not homogeneous as shown in Figs 4–6.  

 

 
 

 
Fig. 4. Comparing experimental cracking shear strength values 
with proposed diagonal cracking strength of Eq. (12) for various 
slenderness ratios 

 

According to Leonhardt and Walter (1962), if the 
flexural reinforcement ratio is kept constant, the mode of 
failure of rectangular RC beams without stirrups depends 
on the slenderness ratio. If the reinforcement ratio is grea-
ter than approximately 1.8%, shear failure is more critical 
than flexural failure for slenderness ratios between 1 and 
7. Based on test results, ACI Building Code provisions 
are nonconservative for low values of the flexural rein-
forcement ratio, ρ, and, therefore, unsafe for beams 
without stirrups (Ahmad et al. 1986). According to 
TS500 (2000), the amount of the flexural reinforcement 
ratio is limited within the range of ρ ≤ 2.0%. However; 
the strength of members with low reinforcing ratios was 
rarely investigated in the past and is often overestimated 
in the present codes (ASCE-ACI445 1999). As shown in 
Fig. 5, the test results of the cracking shear strength of 
HSC slender beams with low reinforcing ratios are very 
limited (ρ < 1.0%), consequently further research is 
required to verify the proposed equations for HSC beams.  
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Fig. 5. Comparing experimental cracking shear strength values 
with proposed diagonal cracking strength of Eq. (12) for various 
flexural reinforcement ratios 

 
Fig. 6 shows the ratio of the experimental to the 

proposed diagonal cracking strength for various values of 
concrete compressive strength. The ratio of the experi-
mental to the proposed diagonal cracking strength is not 
influenced significantly by fc  for both NSC and HSC. 
Since the test data for HSC members are very limited, 
further research is required to verify the proposed equa-
tions for HSC beams.  

Table 2 summarizes the comparisons of the predic-
tions obtained from the proposed equation, ACI318 
Building Code (2008), TS500 (2000), CSA Code (1994), 
NZS (1995), EN 1992-1-1:2004 (2004), CEB-FIP90 
(1993), Zsutty’s equation (Zsutty 1971), Okamura’s 
equation (Okamura, Higai 1980), Bazant’s equation (Ba-
zant, Kim 1984), Kim’s equation (Kim, Park 1996), Col-
lins’ equation (Collins, Kuchma 1999), Rebeiz’s equation 
(Rebeiz 1999), and Khuntia’s equation (Khuntia, Stojadi-
novic 2001) with the test results available in the litera-
ture. The resulting coefficient of variation (COV) of the 
ratio of the experimental value (NSC) to the prediction 
from the proposed equation is 27% of those obtained for 
CSA Code prediction, 37% of those obtained for NZS 
Code prediction, 52% of those obtained for Bazant’s  
 

  

 
Fig. 6. Comparing experimental cracking shear strength values 
with proposed diagonal cracking strength of Eq. (12) for various 
compressive strength values 

 

equation, 58% of those obtained for ACI318 and TS500 
predictions, 59% of those obtained for Collins’ and 
Khuntia’s equations, 66% of those obtained for Rebeiz’s 
and Zsutty’s equations, 74% of those obtained for EN 
prediction, 80% of that obtained for Kim’s equation, 83% 
of that obtained for CEB-FIP prediction and 88% of that 
obtained for Okamura’s equation. 

The resulting COV of the ratio of the experimental 
value (NSC and HSC) to the prediction from the pro-
posed equation is 29% of those obtained for CSA Code 
prediction, 42% of those obtained for NZS Code predic-
tion, 49% of those obtained for ACI318 and TS500 Code 
predictions, 51% of those obtained for Collins’ equation, 
62% of those obtained for Bazant’s equation, 68% of 
those obtained for Rebeiz’s equation, 69% of those ob-
tained for Zsutty’s equation, 75% of those obtained for 
EN prediction, 81% of that obtained for Kim’s equation, 
83% of that obtained for CEB-FIP prediction and 88% of 
that obtained for Okamura’s equation. 
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Table 2. Verification of proposed Eq. (12) using entire database 

 fc ≤ 55 MPa (NSC) fc > 55 (HSC) NSC & HSC 
MV SD COV MV SD COV MV SD COV 

Exp. / 
Prop. 1.108 0.118 0.106 1.012 0.153 0.151 1.084 0.134 0.123 
Exp./ 
ACI318 1.345 0.246 0.183 1.011 0.366 0.362 1.261 0.316 0.250 
Exp. / 
TS500 1.005 0.184 0.183 0.755 0.273 0.362 0.942 0.236 0.250 
Exp. / 
CSA94 1.423 0.553 0.388 0.959 0.368 0.383 1.323 0.565 0.427 
Exp. / 
NZS 0.771 0.219 0.284 0.615 0.148 0.240 0.731 0.214 0.293 
Exp./ 
EN92 1.333 0.190 0.143 1.178 0.231 0.196 1.294 0.212 0.164 
Exp./ 
CEB-FIP 1.148 0.147 0.128 1.006 0.168 0.167 1.113 0.165 0.148 
Exp./ 
Zsutty’s 1.001 0.160 0.160 0.875 0.173 0.197 0.970 0.172 0.177 
Exp./ 
Okamura’s 0.948 0.114 0.120 0.833 0.135 0.162 0.919 0.129 0.141 
Exp./ 
Bazant’s 0.770 0.156 0.203 0.703 0.121 0.172 0.753 0.151 0.200 
Exp. / 
Kim’s 0.931 0.123 0.132 0.802 0.130 0.162 0.898 0.137 0.153 
Exp. / 
Collins’ 1.344 0.241 0.179 1.035 0.354 0.342 1.267 0.304 0.240 
Exp. / 
Rebeiz’s 1.113 0.179 0.161 0.959 0.192 0.201 1.074 0.194 0.181 
Exp. /  
Khuntia’s 1.146 0.205 0.179 1.159 0.234 0.202 1.149 0.212 0.185 
Exp. = Experimental   Prop. = Proposed 

 
6. Conclusions 
On the basis of results obtained in this study, the follow-
ing conclusions are drawn:  

1. It can be seen that the proposed diagonal crack-
ing strength equation (Eq. (12) for RC slender beams 
results in the lowest coefficient of variation (COV) for 
the ratio of experimental value to the predicted value for 
NSC and HSC beams. Hence Eq. (12) provides better 
results than six codes of practice and seven equations 
proposed by different researchers for the prediction of 
diagonal cracking strength of RC beams with NSC and 
HSC. However, further research is required to verify the 
proposed equation since the test data for HSC members is 
very limited.  

2. The mean value (MV) of the experimental crack-
ing shear strength to the proposed diagonal cracking 
strength is 1.108 for NSC and 1.012 for HSC beams. 
Therefore, it can explain that the contribution of dowel 
action to the diagonal cracking strength provides addi-
tional conservation.  

3. The predictions by the proposed equation for the 
shear strength of test beams are relatively better, whereas 
ACI318, CSA, EN 1992-1-1:2004, Collins’ equation is 
excessively conservative for most of the test results and 
the NZS and Bazant’s equations give unsafe results for 
slender beams.  

4. The ratio of the experimental to the proposed di-
agonal cracking strength is not significantly influenced by 

increasing a/d, ρ and fc, but it is important to note that test 
data are not homogeneous. 
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SKERSINE ARMATŪRA NEARMUOTŲ GELŽBETONINIŲ SIJŲ TEMPIAMASIS SUIRIMAS ĮSTRIŽAJAME PJŪVYJE 
G. Arslan 
S a n t r a u k a  
Gelžbetoninių sijų suirimas įstrižajame pjūvyje – viena pagrindinių problemų statybos inžinerijoje. Tačiau skersine ar-
matūra nearmuotų gelžbetoninių sijų įstrižasis tempiamasis stipris nėra visiškai ištirtas. Šiame straipsnyje nagrinėjamas 
siaurų, be skersinės armatūros gelžbetoninių sijų įstrižojo pjūvio pleišėjimas. Siaurose sijose plyšiai tempiamojoje zonoje 
atsiranda anksčiau negu įstrižajame pjūvyje. Taikant klasikinius mechanikos principus ir tamprumo teoriją, pasiūlyta nor-
malaus stiprio arba stipriojo betono sijų įstrižojo pjūvio atsparumo pleišėjimui apskaičiavimo lygtis. Siūloma lygtis, 
pagrįsta šešių projektavimo normų reikalavimais ir septyniomis kitų autorių lygtimis bei palyginta su literatūroje pateik-
tais 282 sijų eksperimentinių tyrimų rezultatais. Nustatyta, kad pagal siūlomą lygtį atlikti skaičiavimai gerai sutampa su 
eksperimentiniais rezultatais. 
Reikšminiai žodžiai: gniuždomasis stipris, gelžbetonis, supleišėjimas, įstrižojo pjūvio stipris, liauna sija, įstrižasis tem-
pimas.   
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