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Abstract. In this paper, buckling analysis of slender prismatic columns with a single non-propagating open edge crack 

subjected to axial loads has been presented utilizing the transfer matrix method and the artificial neural networks. A multi-

layer feedforward neural network learning by backpropagation algorithm has been employed in the study. The main focus 

of this work is the investigation of feasibility of using an artificial neural network to assess the critical buckling load of ax-

ially loaded compression rods. This is explored by comparing the performance of neural network models with the results 

of the matrix method for all considered support conditions. It can be seen from the results that the critical buckling load 

values obtained from the neural networks closely follow the values obtained from the matrix method for the whole data 

sets. The final results show that the proposed methodology may constitute an efficient tool for the estimation of elastic 

buckling loads of edge-cracked columns. Also, it can be seen from the results that the computational time reduces if the 

proposed method is used. 
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1. Introduction 

Columns and compression members are important struc-

tural elements used to carry and transfer axial or eccentric 

vertical loads in various engineering structures. In case of 

long columns and rods, the bearing capacity is usually 

limited and controlled by the buckling phenomenon. 

Buckling is defined as the change of equilibrium state of 

a column or rod from one configuration to another at a 

critical compressive load (Bazant, Cedolin 1991; Bažant 

2000; Aristizabal-Ochoa 2004). The solutions for elastic 

buckling analysis of intact columns under various loading 

and boundary conditions are well documented (Bazant, 

Cedolin 1991; Timoshenko, Gere 1961; Wang et al. 

2005). Columns and other structural elements may have 

real damages and weaknesses such as cracks. The cracks 

may develop from initial defects within the material, 

long-term service, impact, applied cyclic loads, etc. (Fan, 

Zheng 2003; Kishen, Kumar 2004). The presence of 

cracks changes the static and dynamic characteristics of 

the elements and structures, and cause failure at loads 

lower than their designed critical values (Jiki 2007). 

Therefore, the effects of cracks on the static and dynamic 

response of various structural elements are of great im-

portance especially in structural, mechanical, earthquake, 

and aerospace engineering.  

Many publications made on the stability of the 

cracked columns are available in the literature. Some 

works are cited in the following without going into detail. 

Investigations on the stability and fracture of cracked 

columns started with the work of Liebowitz et al. (1967). 

They conducted experimental studies on notched and 

unnotched columns subjected to axial compressive load-

ing. Okamura et al. (1969) studied the effects of reduced 

stiffness on the buckling of a slender column with a sin-

gle edge crack. Anifantis and Dimarogonas (1983) devel-

oped a general flexibility matrix to study the stability of 

columns with a single edge crack subjected to follower 

and vertical loads. Nikpour (1990) studied the buckling of 

cracked composite columns. Takahashi (1999) performed 

the stability and vibration analyses of non-uniform Timo-

shenko beams using the transfer matrix method (TMM). 

Li (2001) studied the buckling of multi-step columns with 

arbitrary number of cracks including the shear defor-

mation effects. Fan and Zheng (2003) investigated the 

effects of multiple cracks on the stability of Timoshenko 

beam-columns based on modified Fourier series. Kishen 

and Kumar (2004) studied the fracture behavior of eccen-

trically loaded cracked beam-columns using the finite 

element method. Gürel and Kısa (2005) investigated the 

buckling of slender prismatic columns with a single edge 

crack under concentric vertical load. Zhou and Huang 

(2006) investigated the effects of a single edge crack on 

the elastic buckling behavior of axially and eccentrically 

loaded rectangular cross-sectional columns. Gurel (2007) 

studied the buckling of slender prismatic circular cross-
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sectional columns with multiple non-propagating edge 

cracks. Arboleda-Monsalve et al. (2007) presented stabil-

ity and free vibration analyses of a crack-weakened Ti-

moshenko beam-column with generalized end conditions 

subjected to constant axial load. Jiki (2007) performed a 

buckling analysis for the pre-cracked beam-columns us-

ing the Liapunov’s second method. More recently, Goode 

et al. (2010) presented the analysis of the experimental 

data on concrete-filled steel tubes. Finally, Caddemi and 

Caliò’ (2008) have derived the exact solution of the uni-

form multi-cracked Euler-Bernoulli column, modeling by 

Dirac’s deltas. 

On the other hand, the use of artificial neural net-

works (ANNs) can be presented as an alternative method 

in estimating the critical buckling loads of columns and 

compression members. An ANN is a computational tool 

that attempts to simulate the architecture and internal oper-

ational features of human brain and neuron systems. Much 

of the success of ANN is due to its nonlinear and parallel 

processing characteristics. This technique has been applied 

in many disciplines including business, engineering, medi-

cine and science (Inel 2007). In civil engineering, the neu-

ral networks has been successfully applied to a number of 

areas such as constitutive modeling (e.g. Ghaboussi et al. 

1991), structural analysis and design (e.g. Inel 2007; Con-

solazio 2000), damage detection (e.g. Bilgehan 2011a; 

Suresh et al. 2004; Saridakis et al. 2008) structural dynam-

ics and control (e.g. Chen et al. 1995) and non-destructive 

testing methods of material (e.g. Bilgehan, Turgut 2010a, 

b; Bilgehan 2011b; Hoła, Schabowicz 2005). To the 

knowledge of the authors, no work has been reported in the 

literature that addresses the application of the neural net-

work approach for the estimation of critical buckling loads 

of cracked columns. This was the major motivation for the 

present study. 

The purpose of this study to investigate the potential 

application of ANNs for the critical buckling load estima-

tion of slender prismatic rectangular cross-sectional col-

umns weakened by a single non-propagating edge crack. 

In this context, neural network approach is utilized for the 

critical buckling load estimation by using the non-

dimensional crack depth and location values. The critical 

buckling load prediction is achieved through neural net-

work models, which consist of two inputs, one hidden 

and one output layers. 

The organization of the paper is as follows: Section 2 

illustrates formulation of the matrix method for the buck-

ling analysis of single cracked columns. The ANN method 

and architecture of the ANN model used in current study is 

explained in Section 3. In Section 4, application of the 

transfer matrix and neural network methods to the sample 

cracked columns and comparison of the results are present-

ed. Finally, conclusions are presented in Section 5. 

 

2. Transfer matrix method for the buckling analysis 

The matrix method is an efficient and attractive tool for the 

solution of the eigenvalue problem for one-dimensional 

structures with non-uniform mechanical properties. The 

formulation follows the steps defined in Gürel and Kısa 

(2005) and Gurel (2007).  

2.1. Problem formulation, governing equations  
and modal analysis 

A slender prismatic column/compression rod with a rec-

tangular cross section and having a non-propagating edge 

crack is shown in Fig. 1a. The end conditions of the col-

umn are not specified for making generalization. The coor-

dinate system is chosen such that the x axis is along the 

length of the column and y axis is along the height of the 

cross section of the column. The crack is located at a dis-

tance of xc from the upper end of the column. The physical 

model of the column is shown in Fig. 1b, in which the local 

flexibility due to the presence of the crack is considered. 

The cracked section is represented by a massless rotational 

spring with flexibility C, which is a function of the crack 

depth and height of the cross section of the column and can 

be written as (Shifrin, Ruotolo 1999): 

 C = 5.346hf(ξ), (1) 

where: h is the height of the column cross section and  

ξ = a/h, where a is the depth of the crack, as presented in 

Fig. 1a. f(ξ) is the dimensionless local flexibility comput-

ed from the strain energy function and is given by Shifrin 

and Ruotolo (1999) as: 

2 3 4 5 6

7 8 9 10

( ) 1.8624 3.95 16.375 37.226 76.81

126.9 172 143.97 66.56 .

f = − + − + −

+ − +

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ
 (2) 

It can be seen from Fig. 1b that the column is divid-

ed into two segments, segment 1 (0 ≤ x ≤ xc) and segment 

2 (xc ≤ x ≤ L), by the rotational spring. 

The governing differential equation for buckling of 

segment 1 can be written as (Timoshenko, Gere 1961): 
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where: k
2
 = P/EI, and P and EI are the axial compressive 

force and the flexural rigidity, respectively. In this case, 

the relationships among the displacement, slope, bending 

moment and shear force are: 
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The general solution of Eq. (3) is given by: 

 1 1 2 3 4( ) sin( ) cos( )y x A A x A kx A kx= + + + . (5) 

Using Eqs (4) and (5), the following relationship 

can be written: 
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Fig. 1.  A slender column with a non-propagating edge crack (a); its physical model (b) 
 
where: 

 
1 sin( ) cos( )
0 1 cos( ) sin( )[ ( )] 0 0 sin( ) cos( )
0 0 0

x x x
k x k kx

B x
P kx P kx

P

  − =   − 
. (7) 

The relationship between the parameters written 
above at the two ends of segment 1 can be expressed as: 

 
1 1

1 1
1

1 1

11

( ) (0)
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(0)( )

c

c

c
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x TM x M
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θ θ  (8) 

in which: 
 [ ][ ] 11[ ] ( ) (0) .cT B x B −

=  (9) 
[T1] is called the transfer matrix for segment 1, be-

cause this matrix transfers the quantities at the upper end 
(x = 0) to those at the lower end (x = xc) of segment 1. 
There is continuity among the displacements, bending 
moments, and shear forces at the common interface of 
segments 1 and 2, but there is a discontinuity between 
slopes at this point caused by the bending moment and 
rotation of the spring representing the cracked section. 
These conditions can be expressed as: 
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Eq. (10b) is written by imposing equilibrium be-
tween the transmitted bending moment and the rotation of 
the spring. 

Eqs (10a) and (10b) can be written in matrix form as: 
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Substitution of Eq. (8) into Eq. (11) yields: 
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in which: 
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The equation for segment 2 can be obtained by us-
ing Eqs (12) and (8): 
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where: 
 2 1[ ] [ ][ ].CT T T=  (15) 
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The matrix [T] has the following form: 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

[ ] .

T T T T

T T T T
T
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T T T T

 
 
 =
 
 
 

 (16) 

 

2.2. The eigenvalue equations and eigenvalues 

The eigenvalue equations can be easily established im-

posing the boundary conditions on the Eq. (14). These are 

outlined in the following four columns with a variety of 

two end conditions.  

(a) Fixed-free ended column: The boundary condi-

tions for a fixed-free ended column are M1(0) = 0, 

V1(0) = 0 at x = 0 and y2(L) = 0, θ2(L) = 0 at x = L. There-

fore Eq. (14) becomes: 

 

111 12 13 14

21 22 23 24 1

2 31 32 33 34

41 42 43 442

0 (0)

0 (0)

( ) 0

( ) 0

yT T T T
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    =               

θ
. (17a) 

Eq. (17a) reduces to the following form: 

 
111 12

21 22 1

(0)0

0 (0)

yT T

T T

   
=    

     θ
. (17b) 

For a nontrivial solution, by setting the determinant 

of the matrix in Eq. (17b) equal to zero, one obtains: 

 11 22 12 21 0T T T T− = . (18) 

It can be seen that the eigenvalue equation is ob-

tained from a 2 × 2 determinant. 

Following the same procedure, the eigenvalue equa-

tions for other boundary conditions are obtained as: 

(b) Pinned-pinned column: 

 12 34 14 32 0T T T T− = ; (19) 

(c) Fixed-pinned column: 

 12 24 14 22 0T T T T− = ; (20) 

(d) Fixed-fixed column: 

 13 24 14 23 0T T T T− = . (21) 

After determining the elements Tij of the matrix [T] 

and then using Eqs (18), (19), (20) and (21), the eigen-

value equations are obtained in explicit form as: 

(a) Fixed-free ended column: 

 cos( ) sin( )cos[(1 ) ] 0;kL Ck kL kL− − =β β  (22) 

(b) Pinned-pinned column: 

sin( ) sin( ) sin[(1 ) ] 0;kL Ck kL kL− − =β β  (23) 

(c) Fixed-pinned column: 

{ }
[( ) cos( ) sin( )]

sin( ) sin[(1 ) ] ( ) cos[(1 ) ] 0;

kL kL kL

Ck kL kL kL kL

− +

− − − =β β β
(24) 

(d) Fixed-fixed column: 

{ }
4sin( / 2)[sin( / 2) ( / 2) cos( / 2)]

sin( ) ( ) cos( ) cos[(1 ) ] 0.

kL kL kL kL

Ck kL kL kL kL

− +

− − =β β
 (25)

 

In Eqs (22) to (25) β = xc/L (Fig. 1a) and k
2
 = P/EI 

as stated earlier. By using a root-finder algorithm, the 

roots (eigenvalues) of the above equations can be ob-

tained. 

 

3. Artificial neural networks and application to  
the buckling analysis of the single cracked columns 

A neural network is a computational structure inspired by 

the study of biological neural processing. There are many 

different types of neural networks, from relatively simple 

to very complex, just as there are many theories on how 

biological neural processing works. A layered feed-

forward neural network, which is one of them, has layers, 

or subgroups of processing elements. A layer of pro-

cessing elements makes independent computations on 

data that it receives and passes the results to another lay-

er. The next layer may in turn make its independent com-

putations and pass on the results to yet another layer. 

Finally, a subgroup of one or more processing elements 

determines the output from the network. Each processing 

element makes its computation based upon a weighted 

sum of its inputs. The first layer is the input layer and the 

last the output layer. The layers that are placed between 

the first and the last layers are the hidden layers. The 

processing elements are seen as units that are similar to 

the neurons in a human brain, and hence, they are re-

ferred to as cells, neuromimes, or artificial neurons. A 

threshold function is sometimes used to qualify the output 

of a neuron in the output layer. Even though our subject 

matter deals with artificial neurons, they will be simply 

referred to as neurons. Synapses between neurons are 

referred to as connections, which are represented by edg-

es of a directed graph in which the nodes are the artificial 

neurons (V. B. Rao, H. Rao 1995). 

The neural networks have ability in performing a 

good amount of generalization from the patterns on 

which they are trained. Training consists of exposing the 

neural network to a set of known input–output patterns. 

The data are passed through the multi-layered perceptron 

feedforward neural network in a forward direction only. 

As the data moves forward, it is subjected to simple pro-

cessing within the neuron and along the links connecting 

neurons. The network performs successive iterations to 

adjust the weights of each neuron in order to obtain the 

target outputs according to a specific level of accuracy. 

The adjusting process of neuron weights is carried out to 

minimize the network error, which is defined as a differ-

ence between the computed and target output patterns. 

After the neural network is satisfactorily trained and test-

ed, it is able to generalize rules and will be able to deal 

with unseen input data to predict output within the do-

main covered by the training patterns (Kartam et al. 

1997; Rafiq et al. 2001; MathWorks 1999; Ashour, 

Alqedra 2005).  
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Among various network training methods, back-

propagation is the most successful and widely used train-

ing algorithms for multi-linear perceptrons. In backprop-

agation, the input is propagated from the input layer 

through the hidden layers to the output layer. The calcu-

lated network error is then backpropagated from the out-

put layer to the input layer. The aim of this process is to 

adjust weights so that the mean squared error is mini-

mized. This process is repeated until the error is mini-

mized to a preference level (Kartam et al. 1997; Flood, 

Kartam 1994). Simplified schema of an artificial neuron 

is shown in Fig. 2. 

The generalized delta rule is a widely used learning 

mechanism in backpropagation neural networks (Ra-

jagopalan et al. 1973). The implementation of such algo-

rithm updates the network weights in the direction in 

which the performance function decreases most rapidly, 

reduces the total network error in the direction of the 

steepest descent of error (Kewalramani, Gupta 2006). The 

network consists of layers of parallel processing neuron 

elements with each layer being fully connected to the 

proceeding layer by interconnection strengths, or weights, 

W (Kisi 2005). Fig. 3 illustrates a three-layer neural net-

work consisting of layers i, j and k; input layer, hidden 

layer and output layer, respectively, with the interconnec-

tion weights Wij and Wjk between layers of neurons. Initial 

estimated weight values are progressively corrected dur-

ing a training process that compares predicted outputs 

with known outputs, and backpropagates any error to 

determine the appropriate weight adjustments necessary 

to minimize the errors. The typical multi-layer feedfor-

ward bacpropagation neural networks are used for the 

buckling analysis of single cracked columns in the cur-

rent study. The problem can be defined as a nonlinear 

input-output relation among the influencing factors which 

are the crack depth, crack location and the support condi-

tions. An input vector consists of two components, name-

ly, non-dimensional crack depth and non-dimensional 

crack location; and an output vector as the critical buck-

ling load for each column. 

The backpropagation algorithm and construction of 

the neural network model are carried out in the consid-

ered ANN simulation. Each batch of data is divided into 

two sets; one for the network learning, training set, and 

the other for testing, testing set. The data set is normal-

ized before the analyses and the predictive capabilities of 

the feedforward backpropagation neural network are 

examined. Neural network architecture used in this study 

is presented in Fig. 4. 

 
4. Application of the matrix method and the neural 
networks model to the sample cracked columns/rods 
and comparison of the results 

Four compression rods having fixed-free, pinned-pinned, 

fixed-pinned and fixed-fixed support conditions are con-

sidered to observe the effects of the crack depth (a = ξh) 

and the crack location (xc = βL). The rods have the same 

cross-sectional dimensions of h = b = 0.03 m, and the 

same material with Young modulus of elasticity E = 

2×10
4
 kN/cm

2
, but different lengths of 0.65 m, 1.30 m, 

1.85 m and 2.60 m, respectively. All rods buckle in the 

elastic range with these properties. The buckling load to 

the Euler load ratio (Pcr/PE) versus crack location pa-

rameter (β = xc/L) curves, corresponding to the 0.15, 0.35 

and 0.50 values of the crack depth parameter (ξ = a/h), 

are drawn and shown in Fig. 5 (a) to (d). It is evident 

from the figures that for all rods, when the crack depth 

and thus crack depth parameter increases, the buckling 

load and thus the Pcr/PE ratio decreases. This is an ex-

pected result. The largest decrease is in the fixed-free 

ended rod, with a decrease of 20.50%, (Pcr/PE = 0.795), 

and the smallest decrease occurs in the fixed-fixed rod, 

with a decrease of 5.84%,  (Pcr/PE = 0.9416). 

Based on the support conditions, the location of crack 

has different effects. In a fixed-free ended rod, a crack at 

the fixed end causes the largest decrease in the buckling 

load, while in a pinned-pinned rod a crack located at mid-

length has the largest effect for a constant crack depth. 

When the crack shifts towards any of the supports in a 

pinned-pinned rod, its effect diminishes. For fixed-pinned 

and fixed-fixed rods a crack at xc = 0.35 L and xc = 0.50 L, 

respectively, causes the largest reduction in the buckling 

load. As it is well known from the fracture mechanics and 

the strength of materials, strain energy stored in an elastic 

body under a bending effect is directly related to the mag-

nitude of the bending moments. Therefore, as the calculat-

ed results show,  for all rod types,  a crack located in the 

 

 

Fig. 2. Simplified schema of an artificial neuron  
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Fig. 3. Typical artificial neural network architecture 

 

 

 

 

Fig. 4. Artificial neural network architecture used in this study 
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 a) b) 

 

 
 c) d) 

Fig. 5. Variation of the first critical buckling load to the Euler buckling load ratio (Pcr/PE) depend-

ing on the dimensionless crack depth (ξ) and the dimensionless crack location (β): (a) fixed-free;  

(b) pinned-pinned; (c) fixed-pinned; and (d) fixed-fixed supported rods 

 

section of maximum bending moments of the correspond-

ing intact rods causes maximum energy losses and conse-

quently the largest decrease in the buckling loads. Con-

versely, a crack located in the inflexion points, i.e. 

moment zero points of the corresponding intact rods has 

no effect on the critical buckling loads. 
Buckling load values obtained with the matrix meth-

od for each rod are taken as training values for neural net-

work models. For the considered fixed-free, pinned-

pinned, fixed-pinned and fixed-fixed supported rods; 33, 

33, 48 and 51 training buckling load values are used, re-

spectively. Different number of the training data used for 

each support condition is chosen to perform in the best way 

of the training stage. Then, the trained ANN models tested 

with 6 testing data for each rod. The methodology used 

here for adjusting the weights is the momentum backprop-

agation with a delta rule, as presented by Rumelhart et al. 

(1986). Throughout all ANN simulations, the learning rates 

are used for increasing the convergence velocity. The 

computer program code, including neural networks 

toolbox, is available in MATLAB software.  

Optimum hidden neuron numbers are obtained as 

five for all the considered support situations. The neural 

network toolbox needs some parameters to start simula-

tion. Required parameter and its selected values are given 

in Table 1. In this table, the first row denotes the nodes of 

each layer for the neural network models. Accordingly, 

an ANN structure (2:5:1) consists of two inputs, five 

hidden and one output nodes. The range and statistical 

details of datasets are listed in Table 2. 

 
Table 1. The final architecture of the ANN model in the elastic 

buckling analysis 

ANN structure and parameters 

Number of nodes in layers 2:5:1 

Training epoch number 5000 

Momentum constant 0.9 

Performance goal 0.00001 

Learning rate 0.4 
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Table 2. The ranges and statistical details of the model variables 

 Training Data Testing Data 

ξ β Pcr, kN ξ β Pcr, kN 

Minimum 0.15 0.00 65.8401 0.30 0.05 69.6293 

Maximum 0.50 1.00 83.6613 0.45 1.00 82.8033 

Average 0.33 0.50 80.8283 0.38 0.60 79.1705 

Standard Dev. 0.14 0.31 3.2418 0.08 0.30 3.2422 

 

The testing set is employed to evaluate the confi-

dence in the performance of the trained network. The 

prediction performances are compared using two global 

statistics; the coefficient of determination (R
2
) and the 

root mean squared error (RMSE), where the smaller the 

RMSE, the better are the estimates. RMSE and R
2
 values 

can be computed by the following standard formulas: 
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=
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∑

, (27) 

where: Pi , Ai and 
iA

~
 are the predicted, actual and aver-

aged actual output of the network, respectively, and N is 

the total number of training patterns (Bilgehan 2011a, 

2011b). The unit of measurement for RMSE is kN. 

The training performances of the neural network 

models in critical buckling load estimation for all support 

conditions are shown in Fig. 6(a)–(d). All data in these 

figures, falling to 1:1 line, indicates a successfully ac-

complished training phase.   
 

   
 a) b) 

 

   
 c) d) 

Fig. 6. The training performances of the models of: (a) fixed-free; (b) pinned-pinned; (c) fixed-pinned; and (d) 

fixed-fixed supported rods 



576 M. Bilgehan et al. Buckling load estimation of cracked columns using artificial neural network modeling technique 

Table 3. Comparison of performances of the models used based 

on statistical criteria in the critical buckling load esti-

mation 

Support condition of columns/rods 

under compression 

Statistical criteria 

R2 RMSE 

Fixed-free 0.957 1.25 

Pinned-pinned 0.961 0.87 

Fixed-pinned 0.982 0.47 

Fixed-fixed 0.996 0.13 

 

RMSE and R
2
 values of each model in the testing pe-

riod are given in Table 3. According to the table, the 

RMSE values range between 0.13 and 1.25; R
2
 values 

range between 0.957 and 0.996. These are really narrow 

ranges. It can be seen from the table that the model with 

fixed-fixed support condition has the smallest RMSE 

(0.13) and the highest R
2
 (0.996). This presentation of 

error type is more realistic and meaningful. In this way, a 

more visual insight to the whole data set’s performance 

can be obtained and analyzed.  

The comparison of the critical buckling loads ob-

tained from matrix method expressions (Eqs (22)–(25)) 

and estimated with neural network models are shown in 

Fig. 7. It can be seen from the graphs that the estimated 

values from neural networks closely follow the values 

from transfer matrix method. When the simulation results 

are further analyzed, it can be seen that the modeling 

results are reasonably in good agreement with the matrix 

method solutions for data sets. 

Computational time is another important criterion 

by which to compare performance of the models. Fig. 8 

shows the comparison of the total projected time and 

computational time between the TMM and ANN method. 

Total time includes time of setup of the problem formula-

tions and governing equations of the methods, writing of 

the related program codes, generating, training and test-

ing of data, and so on. The computation is performed in 

the computer with Intel Core Duo processor with 2 GHz 

speed and 2.99 GB RAM. From Fig. 8, it can be seen that 

the neural network method can clearly reduce the compu-

tational time of about 65% (total projected time) and 81% 

(only computational time). 

 
5. Conclusions and future works 

In this paper buckling analysis of slender prismatic col-

umns with a single non-propagating edge crack subjected 

to axial loads has been presented using the transfer matrix 

method and the neural networks. We have reported the 

details of a study on using multilayer feedforward ANN 

that learns by backpropagation algorithm for critical 

buckling load assessment for fixed-free, pinned-pinned, 

fixed-pinned and fixed-fixed supported, axially loaded 

compression rods. 
 

  

   
 a) b) 

 

   
 c) d) 

Fig. 7. Plotting of estimation performances for: (a) fixed-free; (b) pinned-pinned; (c) fixed-pinned; and (d) fixed-fixed supported rods 
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    a) b) 
Fig. 8. Comparison of (a) total projected time and (b) computational time 

 
The non-dimensional crack depth and the non-

dimensional crack location values were taken as input 
data; critical buckling loads of the rods determined by 
transfer matrix method were taken as output data in train-
ing and testing phases of the neural network models. The 
constructed ANN model provides a quick and dependable 
means of predicting the buckling loads. An artificial neu-
ral network model with gradient descent algorithm having 
a hidden layer architecture established in the current 
study is seen suitable for this aim. 

Some results are presented in the figures and tables 
to display both the combined effects of the boundary 
conditions, the depth and location of crack on the elastic 
buckling load and the efficiency of the neural network 
models. It can be seen from the figures and table that the 
neural network estimates closely follow the matrix meth-
od values. When the simulation results are further ana-
lyzed, it can be seen that the neural network modeling 
results are logically in good agreement with the transfer 
matrix solutions for whole data sets. This judgment has 
been supported by obtained values of RMSE and R2 
which are more realistic and meaningful error types. The 
transfer matrix method is a simple and efficient tool with 
which to analyze cracked columns. On the other hand, the 
buckling analysis of slender prismatic columns with 
TMM is required solutions of complex mathematical 
formulations. Nevertheless, the ANNs can be used effec-
tively to solve mathematical problems with the complex 
formulation. Once the weights have been optimized, the 
appropriate results are obtained easily in seconds without 
any significant loss of accuracy when untried inputs are 
entered to the system. However, this study showed that 
the ANNs take less computational time without any sig-
nificant loss of accuracy than the matrix method. 

Although the analysis of the present study is mainly 
for neural network solutions of slender columns, an ex-
tension to stocky columns can be carried out easily by 
considering the effects of shear deformations. Other pos-
sible extensions of the study are the investigation of non-
prismatic columns and the propagation and interaction of 
cracks studying with ANNs, which are left for future 
works. Furthermore, additional work must be conducted 
to improve efficiency of the techniques and it is hoped 
that other network topologies may lead to further improve 
performance. 

Notations 
The following notations are used in the present paper: 
 

β –  non-dimensional crack location; 
ξ – non-dimensional crack depth; 
E – Young modulus of elasticity, kN/cm2; 
Pcr – critical buckling load, kN; 
PE – Euler load, kN; 
Pi – predicted value; 
Ai – actual value;  

iA
~  – averaged actual value; 

N – number of data; 
Ujl – net input of neuron j in layer l; 
Xil–1 – input coming from neuron i in layer l–1; 
Yjl  – output of neuron j in layer l; 
θjl  – threshold value; 
Wjil – weight between neuron j in layer l and neuron i in 
previous layer;  
R2 – determination coefficient; 
h – height of the column cross section; 
a – depth of the crack, m; 
xc – location of the crack, m; 
L – length of rod, m. 
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