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Abstract. Rock bolting is one of the most important support systems used for rock structures. Rock bolts are widely used 
in underground excavations as they are suitable for a wide range of geological conditions and allow using progressive de-
sign methods; besides, they help economising in the use of materials and manpower. Thus, to provide the most effective 
support at minimum cost by means of rock bolting, it is essential to optimise the elements contributing to bolt design, in-
cluding their length, as well as bolt density and tension during installation. This paper considers the length of bolts for op-
timisation of the design phase, which is one of the most important parameters impacting the entire design procedure. Pre-
senting and comparing results of some statistical models, neural network modeling is introduced as powerful means in 
prediction of the optimal length of rock bolts. Subsequent to training and testing of a large number of 1-layer and 2-layer 
backpropagation neural networks, it was reported that the optimal model was the network with the architecture of 6-18-3-
1 as it demonstrated the minimum RMSE and MAE as well as the maximum R2. In comparison to statistical models 
(0.7182 for the value of R2 in the multiple linear regression model, 0.68 in the polynomial model and 0.7 in the dimen-
sionless model), the results obtained by the neural network modeling − i.e. the coefficient of determination R2  of 0.9259, 
the value of mean absolute error MAE of 0.068, and the root mean squared error RMSE of 0.078 − not only proved their 
superiority but also introduced the neural network modelling as a highly capable prediction tool in forecasting the optimal 
length of rock bolts. Furthermore, sensitivity analysis was used to obtain parameters that have the greatest and the least 
impact on the optimal bolt length: the effect of the overburden thickness, tensile strength, cohesion and Poisson’s ratio on 
the optimal bolt length was almost the same while the friction angle had the least influence. 
Keywords: optimal length of rock bolts, artificial neural networks, statistical methods, sensitivity analysis. 

 
1. Introduction 
Geotechnical and mining engineering cover a wide range 
of fields (Amšiejus et al. 2009; Žaržojus, Dundulis 2010; 
Zavadskas et al. 2010; Kelevišius et al. 2011; Hasanza-
dehshooiili et al. 2012; Sivilevičius et al. 2012). They are 
generally related to design and control of surface or sub-
surface structures. Furthermore, use of rock bolts in un-
derground constructions has been one of the most popular 
support methods applied by geotechnical and mining 
engineers (Barton et al. 1974; Unal 1983; Chua et al. 
1992; Cai et al. 2004a, b). As soon as the rock bolting 
method was developed in the 1920s, it was proposed as a 
systematic method for weak roof support by Weigel 
(1943). This method has numerous advantages in com-
parison to other methods. For instance, one of such ad-
vantages manifests through a more cost-efficient use of 
materials and manpower. Furthermore, this active support 
method is more effective and efficient as it utilises the 
rock to support itself by applying internal reinforcing 
stress. Besides, it can be used under different geological 
conditions (Barton et al. 1974; Luo 1999).  

However, the variety of geological conditions is in-
exhaustible (Sušinskas et al. 2011). Actually, due to the 
complexity of geological conditions and mechanisms of 
bolting technology and since most decisions are made 
based on previous experiences, the design of rock bolts 
could be attributed to an art form rather than a science 
(Peng, Tang 1984; Luo 1999). In order to select a suitable 
bolting system, design parameters − such as the bolt 
length, bolt density and bolt pretension during installa-
tion − are usually considered to be optimal.  

In this paper, the length of rock bolt, which is one of 
the most important design parameters, is considered to be 
optimal. 

As a matter of fact, from a theoretical viewpoint, a 
bolted beam is as strong as a solid beam made out of the 
same material. Thus, finding the optimal length of a bolt 
is equivalent to finding the minimum solid beam thick-
ness (Luo 1999). Besides, independent parameters that 
affect the strength of a solid beam include Young's modu-
lus, Poisson's ratio, overburden thickness, cohesion, fric-
tion angle and tensile strength (Luo 1999). 
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Thus, to produce a comprehensive study of the op-
timal length of rock bolts, professor Luo (1999) comput-
ed the minimum solid beam thickness during an experi-
ment that involved random sampling of each of the 
independent variables for each of the data series.  

Then, to efficiently and cost-effectively predict the 
optimal length of rock bolts, some statistical analyses − 
such as multiple linear regression analysis, polynomial 
regression analysis, dimensionless analysis and the opti-
mised statistical analysis − were undertaken (Luo 1999). 
Although numerous efforts have been made to predict the 
optimal bolt length, low value of the correlation coeffi-
cient obtained by statistical models reveals the urgent 
need for a substitute forecasting method. 

Also, to select the optimal bolting system, the math-
ematical programming theory and methods can be ap-
plied. Such techniques have been used to solve a similar 
problem, i.e. optimisation of beams in grillage structures 
(Kim et al. 2005; Belevičius et al. 2002). Also, solving 
optimisation problems, promising results have been 
achieved with Genetic Algorithms (GA) (Belevičius, 
Šešok 2008). Global optimisation of grillages using simu-
lated annealing and high performance computing is given 
in Šešok et al. (2010). Besides, the method of object-
oriented programming (OOP) for optimal design of steel 
frame structures had been suggested by Jankovski, At-
kočiūnas (2010). 

As mentioned earlier, the ultimate goal for the bolt 
design paradigm, achieving a minimum solid beam thick-
ness, is gained by optimising the bolt length, bolt density 
and bolt pretension during installation (Stankus, Guo 
1997). Bolt binding effects are accomplished using three 
basic mechanisms: suspension, beam building and key-
ing. In most situations, both suspension and beam build-
ing effects coexist. The keying effect mainly depends on 
active bolt tension. To determine the bolt length, pre-
tension and spacing required for the optimal beaming 
effect, the abovementioned global optimisation methods 
can be used. 

On the other hand, because of their multidisciplinary 
nature, artificial neural networks are commonly applied by 
the majority of researchers working in different branches 
of science (Goh et al. 1995; Maity, Saha 2004; Schabo-
wicz, Hoła 2008; Baalousha, Celik 2011). Besides, high 
capabilities of this tool in prediction of complicated func-
tions have been broadly proved (Abu Kiefa 1998; Mali-
nowski et al. 2006; Malinowski, Ziembicki 2006; Mang 
et al. 2009; Dikmen, Sonmez 2011). Thus, to attain a rug-
ged, cost-effective and timely prediction of the optimal bolt 
length, the applicability of ANNs has been investigated. 
For this purpose, using the data sets prepared by Luo 
(1999) and training numerous 1-layer and 2-layer back-
propagation networks, several networks were created and 
for all the built networks, the value of the correlation coef-
ficient, the root mean squared error, the mean absolute 
error and the fitting line’s slope were calculated. 

In order to show the superiority of the neural net-
work modelling over other statistical methods, values of 
the correlation coefficient for all of the built models were 
presented and compared. Moreover, the sensitivity analy-

sis was made using the cosine amplitude method to ob-
tain parameters that have the greatest and the least impact 
on the optimal bolt length (Yang, Zhang 1997). 

 
2. Input and output parameters 
To gain the minimal thickness of a solid beam or the 
optimal length of a rock bolt, roof bolts used for an un-
derground opening with a constant roof span amounting 
to 20 feet was considered (Luo 1999). Since parameters 
that impact on the strength of a solid beam primarily 
include Young's modulus, Poisson's ratio, overburden 
thickness, cohesion, friction angle and tensile strength, 
these six variables were considered as independent varia-
bles that impact on the optimal bolt length (Luo 1999). 
By means of a completely randomised design technique, 
each independent variable was sampled 50 times to con-
struct a comprehensive database consisting of 50 groups 
of independent variables. Then, for each group, the min-
imal thickness of a solid beam was computed as an output 
parameter (Luo 1999). Ranges of variation of six inde-
pendent sampled variables together with the correspond-
ing values of the optimal bolt length are shown in Table 1 
(Luo 1999). 
 

Table 1. Input and output parameters (Luo 1999) 
Type of 
data Parameter Symbol Range 
Input Young's modulus (Lb/Inch2) E 147941–

1160320 
Poisson's ratio PR 0.1–0.48 
Overburden thickness (feet) OB 266–1184 
Cohesion (Lb/Inch2) C 580–5686 
Friction angle (degree) FA 20–60 
Tensile strength (lbs/in2) TS 29–1204 

Output Optimal bolt length (feet) OL 0.033–
7.611 

 

 

 
3. Statistical analysis 
Based on obtained results, linear and polynomial multiple 
variable regression analyses as well as dimensionless mod-
eling and optimum modeling based on three other afore-
mentioned models were undertaken to gain a prediction of 
the optimal bolt length based on independent input varia-
bles. 
 

3.1. Linear multiple variable regression analysis 
Using the SAS programme, the multiple variable regres-
sion analysis was carried out to estimate the minimal solid 
beam thickness (Luo 1999). According to this analysis, the 
value of the minimal beam thickness or the optimal length 
of a rock bolt in terms of six aforementioned input parame-
ters could be calculated using Eq. 1 (Luo 1999):  

 
6( 1.26 10 ) ( ) 0.7721 ( )

0.0016 ( ) 0.0001 ( ) 0.0023 ( )
0.0402 ( ) 5.0537.

OL E PR
OB C TS
FA

−= − × × + × +

× − × − × −

× +

 (1) 

For this model, the correlation coefficient R2 

amounted to 0.7182, which is somewhat low (Luo 1999). 
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3.2. Polynomial multiple variable regression analysis 
Polynomial analysis was carried out in order to improve 
the quality of estimation produced using the linear regres-
sion model. Nevertheless, it did not improve the predic-
tion accuracy and the coefficient of correlation amounted 
to 68%, which was even less than the value in case of the 
linear model (Luo 1999). 

According to this modelling, the optimal bolt length 
in terms of inputs could be computed using Eq. 2 (Luo 
1999): 

 
0.02 0.4

0.5 0.05

0.27 0.2

30.32 ( ) 1.13 ( )
0.4126 ( ) 6.87 ( ) 6.43
( ) 16.00 ( ) 33.29.

OL E PR

OB C

TS FA

−

− −

− −

= × + × −

× + × + ×

+ × −

 (2) 

 
3.3. Dimensionless analysis 
Using a dimensionless analysis on independent input 
variables, Poisson’s ratio becomes redundant in predict-
ing the value of the optimal bolt length (Luo 1999), the 
value of which could be approximated using Eq. 3: 
 

)()()()(
)(

26.012.005.004.0

55.0

FATSCE
OBOL = . (3) 

The value of the correlation coefficient for this analy-
sis, just as for other previously mentioned statistical meth-
ods, was somewhat low as well and amounted to 70%. 

 
3.4. Optimised statistical analysis 
As it was shown earlier, use of the above described statis-
tical methods leads to an approximation of the optimal 
length of a rock bolt. Considering each of the results es-
timated by these analyses as separate independent varia-
bles and assigning a certain weight to each of them, the 
optimised model can be achieved through optimisation of 
the newly obtained mixed model (Luo 1999). 

Thus, the optimised model would look as described 
below: 
 

),2679.0(2679.0)(
3941.0)(3452.0

essDimensionlPolynomial

LinearOptimized

OL
OLOL
×+

×+×=  (4) 
where: ( ):OLLinear result of the linear model; 
( ):OLLinear result of the polynomial model; 
( ):OLLinear result of the dimensionless model. 

Although this modeling improved the accuracy of 
prediction and increased the value of the correlation coef-
ficient to 78% (Luo 1999), it has not reached the desired 
level to be acceptable. Subsequently, the need for a high-
ly capable prediction tool that could be used to effectively 
and efficiently predict the value of the optimal bolt length 
became obvious. 

 
4. Artificial neural networks 
Artificial neural networks are a branch of the field known 
as Artificial Intelligence. These powerful tools were first-

ly introduced by McCulloch and Pitts (1988) for calcula-
tion of logic functions. Yet, now they are broadly applied 
by a considerable number of researchers to model a target 
function based on available datasets (Khandelwal, Singh 
2006; Young-Su, Byung-Tak 2006; Monjezi et al. 2010). 
In this method, a real experimental database is used to 
acquire relationships between involved parameters. The 
greater is the database of results, the more accurate is the 
prediction (Heshmati et al. 2009; Dikmen, Sonmez 2011; 
Khosrowshahi 2011). 

The main role of artificial neural networks is to pre-
dict outputs based on inputs and the rules, which are 
learnt during the training phase. 

In the attempt to prove that neural networks are able 
to recognise patterns, Rosenblatt (1958) built a perception 
network. One of the main benefits of neural networks in 
comparison to the statistical methods is the absence of a 
need to have prior knowledge about the nature of the 
problem, which is to be solved (Funahashi 1989). Be-
sides, multilayer perception (MLP) networks are believed 
to be the best type of neural networks, which can be 
broadly used to predict any continuous function (Yasrebi, 
Emami 2008). This kind of network is composed of three 
types of layers: the input, the hidden and the output layer. 
In a MLP network, the number of layers depends on the 
type and complexity of a problem. However, at least one 
each − the input, the hidden and the output layers − are 
required (Yasrebi, Emami 2008). Each of these layers 
contains elements named neurons. These neurons are 
connected to each other; however, neurons in a layer 
cannot be connected to other neurons in the same layer. 
Subsequently, they can only be connected to neurons in 
other layers. Such nodes are connected by links. Each of 
these nodes has a specific weight vector, which is multi-
plied into the processed information. Transformation of 
the sum of the weighted input signals to each neuron is 
carried out by activation functions (Monjezi et al. 2010). 

As the hidden layer uses nonlinear activation func-
tions such as the logistic function, the model becomes 
genuinely nonlinear (Sarle 1994). A MLP can also have 
multiple inputs and outputs, as shown in Fig. 1. 

In order to predict outputs, neural networks need to 
be trained using prepared datasets. Firstly, these datasets 
 

 
Fig. 1. Multilayer perceptron neural network (Sarle 1994) 
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are fed into the network and then, by detecting the simi-
larities, network gets trained; and while a new dataset is 
available, the network can predict the corresponding out-
puts based on what it has learnt during the training phase 
(Sarle 1994). 

To create a true network, three following major 
components should be accurately defined and assigned, 
i.e. the transfer function, the learning law and the network 
architecture (Simpson 1990). 

 
4.1. Training the network 
One of the most and widely suggested training algo-
rithms, which have been implemented by a variety of 
researchers for learning purposes, is backpropagation also 
known as BP (Neaupane, Adhikari 2006). This technique 
is composed of two passes: the forward pass and the 
backpropagation pass. In a forward pass, the network 
predicts the outputs assigning a preliminary value for 
connections between neurons. Then, in a backpropagation 
pass, the error − the computational difference between the 
calculated output and that of the target pattern, which is 
calculated in the forward pass − is backpropagated to 
update the weights. This procedure continues to reach the 
pre-defined threshold (Yang, Rosenbaum 2002). 

It should be noted that in order to build the model, 
before the training phase begins, the contributing parame-
ters – inputs and outputs – should be normalised on the 
scale of 0–1. Eq. 5 can be used to normalise the data and 
make it dimensionless (Monjezi et al. 2010). 
 Scaled Value = (unscaled value − min. value)/ 
 (max. value − min. value).  (5) 
 

 
Fig. 2. Nonlinear TANSIG transfer function (Demuth et al. 
1996) 

 Once data was normalised, 85% of the entire data 
were randomly chosen for training and cross-validation 
purposes. The remaining data was kept for testing of the 
built model. Besides, subsequent to a large number of trials 
on different networks, the nonlinear tangent sigmoid func-
tion TANSIG, which shows the minimal error, was consid-
ered as the transfer function. Fig. 2 shows the nonlinear 

TANSIG transfer function. The TANSIG transfer function 
formula is presented in Eq. 6 (Demuth et al. 1996): 
 x x

x x

e e

e e

e ef
e e

−

−

−
=

+
, (6) 

where xe  is the weighted sum of the inputs for a pro-
cessing unit (Demuth et al. 1996). 

Other controlling problems, which should be avoid-
ed during the network training, include under-fitting and 
over-fitting. Over-fitting occurs as a result of using too 
many training epochs, which can be conducive to memo-
rising the outputs. Under-fitting is a consequence of using 
insufficient number of training epochs, which results in 
model's inaccuracy (Maulenkamp, Grima 1999). 

 
4.2. Network architecture 
To gain the best model architecture, lots of 1-layer and  
2-layer MLP networks were created. For all the built 
models, the value of root mean squared error, RMSE, and 
the mean absolute error, MAE, also, coefficient of corre-
lation, R2, were calculated and compared. The applied 
formulas for calculating RMSE and MAE are presented 
as Eqs 7 and 8, respectively (Monjezi et al. 2010): 

 
( )

n
TORMSE ii−

=

2 ;  (7) 

 OTMAE ii −= ,  (8) 
where T i  and O i  represent computed and predicted 
outputs, respectively. Also, n  is the number of data sets. 

The values of RMSE and MAE as well as the corre-
lation coefficient together with the slope of fitting line for 
different network architectures are given in Table 2. 

As Table 2 suggests, the optimal model is the net-
work with the architecture of 6-18-3-1, as it has the min-
imum RMSE and MAE as well as the maximum R2 with 
a slope of 1.0002 for the fitting line A. 

To better describe the topology of the optimal net-
work, its schematic architecture is demonstrated in Fig. 3. 

 
Table 2. The value of RMSE, MAE, R2 and the slope of fitting 

line for different model’s architecture 
Architecture RMSE MAE R2 A 
6-9-7-1 0.2212 0.1597 0.520 0.1717 
6-3-8-1 0.1892 0.1286 0.588 0.3288 
6-10-1 0.1445 0.1111 0.510 0.3143 
6-5-1 0.1499 0.1224 0.585 0.3418 
6-4-1 0.1220 0.0885 0.552 0.4483 
6-9-1 0.1209 0.1052 0.635 0.4233 
6-7-1 0.1065 0.0975 0.426 0.4206 
6-12-3-1 0.1061 0.0921 0.545 0.8932 
6-13-1 0.0897 0.0784 0.734 0.9193 
6-4-13-1 0.0872 0.0768 0.687 0.4185 
6-18-5-1 0.0880 0.0659 0.893 0.4744 
6-4-9-1 0.0866 0.0643 0.738 0.6019 
6-18-3-1 0.0781 0.0682 0.926 1.0002 
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Fig. 3. Schematic architecture of the optimal network  
4.3. Model performance 
To evaluate the optimal model's performance for testing 
of data series, the normalised predicted values of the 
optimal bolt length versus its normalised computed val-
ues are depicted in Fig. 4. 

 

 
Fig. 4. The performance of the optimal model, 6-18-3-1 

 
Also, as it is shown in Fig. 5, the value of R2 for the 

network with the topology of 6-18-3-1 is 0.926, which 
proves the superiority of artificial neural network model-
ling over other aforementioned statistical methods in 
prediction of optimal bolt length. 

 

 
Fig. 5. Correlation between computed and predicted optimal 
bolt length for the optimal model, 6-18-3-1  

In addition to high correlation with the computed 
optimal bolt length, which is confirmed by high value of 
the correlation coefficient, the values calculated for 
RMSE, 0.0781, and MAE, 0.0682, show high capability 
and performance of applied ANN model. 

 
5. Sensitivity analysis 
Knowledge of the most influencing parameters and the 
parameters with the least effect on the optimal rock bolt 
length considerably impacts the entire design procedure 
and makes it more cost-effective as well as timely. 

Thus, the sensitivity analysis was made using the 
cosine amplitude method (CAM). 

This method is used to achieve the express similari-
ty relations between the input parameter and the goal 
function (Yang, Zhang 1997). In this method, each input 
parameter is expressed as one of X  array elements, as 
demonstrated in Eq. 9 (Khandelwal, Singh 2006): 
 { }xxxxxX ni ,...,...,,, 321= , (9) 
where each of its elements is a vector with the length of 
m  and is presented in Eq. 10: 
 { }xxxxx imiiii ,...,, 321= . (10) 

Then, the strength of the relationship between ix  
and jx  can be calculated using Eq. 11 (Khandelwal, 
Singh 2006): 
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2
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Using these procedures, the most and the least sensi-
tive parameters on the optimal rock bolt length were at-
tained. The calculated strength of the relationship be-
tween input parameters and the optimal length of a rock 
bolt is shown in Fig. 6. According to the Fig. 6, the influ-
ence of Poisson’s ratio, overburden thickness, cohesion 
and tensile strength on the optimal bolt length is approx-
imately the same. 

On the other hand, it was found that the friction an-
gle has the least influence in determining the optimal 
length of a rock bolt. 

 

 
Fig. 6. Strength of the relationship between input parameters 
and the optimal length of a bolt 
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6. Conclusions 
An artificial neural network was introduced as a capable 
tool for prediction of the optimal length of a rock bolt. 

It was discovered that the optimal model is a multi-
layer perception network with the architecture of 6-18-3-1. 

High value of the correlation coefficient for the op-
timal created network, namely 0.926, as well as accepta-
ble values of RMSE, 0.0781, and MAE, 0.0681, proved 
the superiority of the artificial neural network modelling 
over the conventional statistical methods in prediction of 
the optimal bolt length. Besides, the 6-18-3-1 network 
trained by the feed forward backpropagation method was 
introduced as a capable tool in forecasting of the optimal 
length of a rock bolt. 

Moreover, by means of sensitivity analysis based on 
the cosine amplitude method, the friction angle was re-
ported as the least impacting parameter for the optimal 
bolt length. Besides, the influences of Poisson's ratio, 
overburden thickness, cohesion and tensile strength on 
the value of the optimal bolt length are almost the same. 

However, the effect of the overburden thickness is 
slightly higher than others. Moreover, it plays a more 
important role in prediction of the optimal length of rock 
bolts. 
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