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Abstract. This paper presents a study of a hybrid grid shell, which is made of quadrangular meshes diagonally stiffened 
by pre-tensioned thin cables. The construction of the hybrid structure by translating a spatial curve against another spatial 
curve is firstly described. Then the elasto-plastic buckling analyses of the perfect hybrid structure and the corresponding 
single-layer lattice shell are carried out, and the influence of the asymmetric load on the failure loads is discussed based on 
a finite element model. Furthermore, the different shapes and sizes of imperfections are considered in this study. Two 
schemes of imposing imperfections are chosen: the first several eigenvalue buckling modes and the deformed shape of the 
loaded structure obtained from a geometrical non-linear analysis are chosen as the imperfection shape. Finally, the effects 
of different structural parameters, such as the rise-to-span ratio, beam section dimension, area and pre-stress of cables and 
boundary conditions, on the failure loads are investigated.  
Keywords: hybrid structure, grid shell, stability, elasto-plastic, failure load. 

 
1. Introduction 
As is well known, shells still play an important role in the 
progress of bearing structures, particularly the single-
layer reticulated shell which carries its loads mainly by 
compressive forces. Therefore stability analysis is an 
intricate and important problem in designing reticulated 
shells. The single-layer reticulated shells can be regarded 
as a mixture of slab structure and continuum shell thus 
showing the stability failure of both types and even com-
binatorial modes (Bulenda, Knippers 2001). 

The non-linear buckling analysis procedures for sin-
gle-layer reticulated shells based upon non-linear finite 
element (FE) analysis have been developed to trace the 
equilibrium path by many researchers (Forman, Hutchin-
son 1970; Meek, Tan 1984; Borri, Spinelli 1998; Gosowski 
2003; Gioncu 1995, 2003; Nie 2003). The structural beha-
viour of the shell structures during the whole loading pro-
cess can be revealed by the load-deflection curves, by 
which the buckling load can be predicted. The elastic stabi-
lity of the hybrid grid shell has been well studied by Bu-
lenda and Knippers (2001). However, the analysis of elas-
to-plastic stability is much more complicated than the 
elastic analysis, since the elasto-plastic analysis involves 
both geometrical and material non-linearities. The elasto-
plastic stability of the single-layer reticulated shells has 
attracted more and more attentions of researchers recently 
(Suzuki et al. 1992; Nee, Haldar 1988; Luo 1991; Kato 
et al. 2000; Fan et al. 2010a, b).  

Usually, triangular or quadrilateral meshes can be 
used in shell lattice structures. With the development of 
modern building industry, the appeal of glass roofs grows 
because of its aesthetical advantage of being translucent. 
Shell structures with quadrangular mesh are one of the 
best candidates for the transparent glass roofs. However, 
when opting for a quadrilateral mesh, it should be noted 
that the mesh is much less stiff in the plane compared to 
the triangular one. Moreover, the stability of shells beco-
mes most dependent on the joint rigidity. These serious 
shortfalls in structural performance outweigh the apparent 
benefits in reducing the number and length of members 
used and might limit the structure to applications with 
short spans and low loading. 

Cables are light and can provide well-defined 
transmission of forces. They can also been inserted into a 
structural system with a rational layout of members so as 
to make the best use of individual material properties 
(Hosozawa et al. 1999). To achieve high performance of 
the lattice shell, its quadrangular mesh should be stiffened 
by diagonal cables (Schlaich, Schober 1996, 1997, 1999, 
2002; Schlaich 2004), as shown in Fig. 1. Note, cables 
under compression will not become slack when pre-
stressed before applying external loads.  

Due to its attractive mechanical properties, the hyb-
rid grid shell has been widely used, e.g. the Word Trade 
Center Dresden and Atrium roof of Quartier 203 in Berlin 
(Schlaich, Schober 1999), the Roof of the Museum of 
Hamburgische  Geschichte,  and  the  glass  roof  of  New 
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Fig. 1. The hybrid grid shell 

 
Guangzhou Railway station in China. The geometrical 
non-linear finite element analysis which considers imper-
fections of different shapes and scales was performed to 
study the stability of a hybrid grid shell (Bulenda,  Knip-
pers 2001). The principle of the cable pre-stress was in-
vestigated by Schlaich (2004) based on a four-bar linkage 
diagonally stiffened by cables. Glymph et al. (2004) stu-
died the constructability of a hybrid shell using planar 
quadrilateral glass facets for the Jerusalem Museum of 
Tolerance project. They described a simple but robust 
geometric method for achieving the structure by incorpo-
rating the necessary geometric principles into a computa-
tional parametric framework using the CATIA Version 5 
system. Del Guerra and Froli (2009) proposed to roof two 
internal courtyards of the main building of the Enginee-
ring Faculty at the University of Pisa by means of thin 
flat lattice shells stiffened by a grid of steel cables. The 
form-finding process, construction techniques, and some 
case studies were concluded by Paoli (2007). He also 
investigated the development of high performance 
software and the using of new materials.  

Although the structural form is used in some projects, 
there is little research work reported about the structural 
behavior of the hybrid grid shells. With the fast develop-
ment of computer technology and the availability of ad-
vanced FE software, it is now possible to conduct a comp-
rehensive study on the stability of the hybrid grid shell 
through geometrical and material non-linear analyses. This 
paper shows how to perform a geometrical and material 
non-linear finite element analysis by using ANSYS to 
investigate the stability of the hybrid grid shell. The imper-
fection sensitivity including the pattern and scale of imper-
fections will be investigated. Additionally, the effects of 
other factors such as the geometrical and structural para-
meters and the asymmetrical distribution of loads will also 
be taken into consideration in this paper. 

 
2. Design model 
Quadrangular mesh constructions require fewer machin-
ing operations on the glass and fewer mullions if the 
quadrilateral facets of the surface structure are maintained 
planar. Therefore, translation surfaces are given in 
Glymph et al. (2004) to guarantee the geometric planarity 
of facets in a quadrangular mesh system. Translating a 
spatial curve against another spatial curve will create a 
spatial surface consisting solely of planar quadrangular 
mesh. In this paper, to fulfill the equal length require-

ment, two identical parabolas are chosen to generate the 
surface. The included angle between the two planes is set 
to 60°. Finally, the surface is delimitated horizontally by 
intersecting a plane π and thus gives a hybrid grid shell. 
The generation of the shell is illustrated in Fig. 2. 
 

 
Fig. 2. Generation of the surface 

 
The design example that is used in this study is 

shown in Fig. 3. The major axis span and rise of the shell 
structure are 38 m and 6 m, respectively. All nodes at the 
perimeter are fixed to the support. Many types of connec-
tions are commonly used in space structure construction 
such as welded hollow ball connections and bolt ball 
connections. The joints are assumed to be rigid in this 
study. The length of the principal single-layer lattice 
member is 2.0 m, which is made of steel with a Young’s 
modulus of 206 GPa, and the box cross-section is 
60 mm× 30 mm× 2 mm (height × width × thickness). The 
diameter of cables is 10 mm and the Young’s modulus is 
180 GPa. The initial stress of cables is 100 MPa. 

 

 
Fig. 3. The design model of the hybrid grid shell 

 
The symmetrical load case g+s (dead load +snow 

load) has been taken into account in all computations. 
The dead load g consists of a self-weight of 0.5 kN/m2 for 
glass. The self-weight of all beams and cables are calcu-
lated by the software. The snow load is applied to the top 
surface of the structure in the vertical direction with a 
magnitude of 0.5 kN/m2. SURF 154, which may be used 
for various load and surface effect applications in the 
software ANSYS, was used to add dead and snow loads 
in the vertical direction. 

The Finite Element Analysis software ANSYS is 
employed in all structural analyses. The geometrical non-
linearity was considered by the input “NLGEOM, ON”. 
The constitutive model of the steel was perfectly elasto-
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plastic, with the yield strength of 345 MPa. Tension-only 
element LINK10 is used to model cables and BEAM 189 
is chosen to simulate steel beams.  

 
3. Stability behavior of hybrid grid shells 
The elasto-plastic stability analyses of the hybrid grid shell 
and the corresponding single-layer lattice shell are carried 
out using ANSYS. The Newton-Raphson method is used 
to obtain the total load-displacement equilibrium path. The 
load factor-displacement curves for the hybrid grid shell 
and the corresponding single-layer lattice shell are illus-
trated in Fig. 4. The load is plotted against the displace-
ment of a node in the area of maximum deformation.  
 

 
Fig. 4. Load factor vs. displacement for different structural 
systems 

 
It is clear from the figure that cables do increase the 

stability behavior of grid shells. The buckling capacity of 
the hybrid grid shell is higher than that of the single-layer 
lattice shell. The critical buckling load factors, which are 
defined as the ratio of the critical buckling load to the 
design load given in Section 2, obtained from Fig. 4 are 
5.976 and 0.636 for the two structures, respectively. It 
can also be found that the maximum displacement of the 
lattice shell is about twice that of the hybrid structure.  

 
4. Influence of asymmetrical loads 
Asymmetrical load case is an important factor that affects 
the elasto-plastic buckling capacity of hybrid grid shells. 
One type of asymmetrical load is the half-span load which 
can be resulted during construction or from snow. The 
asymmetrical load case g+s/2 (g – dead load and s – snow 
load, uniformly distributed over half of the span) is consid-
ered in this study. The symmetrical load case is denoted as 
Load 1, and the asymmetrical load case Load 2. 

Fig. 5 shows the load factor versus displacement 
curves for typical nodes under the asymmetrical load 
case. The critical buckling load factor obtained from 
Fig. 5 is 6.301, which is slightly higher than that for 
symmetrical loads. It can be concluded that. This is be-
cause the asymmetrical distribution of load poses limited 
effect on the buckling load obtained from the geometrical 
and material non-linear analysis and the total asymmetri-
cal loads are smaller than the symmetrical loads. 

 
Fig. 5. Load factor vs. displacement for different loads 

 
5. Geometric imperfections 
Shell structures are very sensitive to geometric imperfec-
tions which are inevitable during fabrication. There are 
several types of imperfections in all practical structures: 
imperfections of the system (e.g. non-rigid joints); struc-
tural imperfections (tolerances of the cross-section area, 
non-homogeneous materials, etc.), loading imperfections, 
and geometrical imperfections (Bulenda, Knippers 2001). 
According to the Eurocode 3 (2007) and the Chinese code 
JGJ61 (2003), the geometrical imperfection should be 
taken into account in the non-linear analysis in order to 
model the structure more realistically.  

Several methods are available to analyze geometri-
cal imperfections, e.g. the random imperfection mode 
method (Yamada 2001), the consistent imperfection mo-
de method (Chen, Shen 1993). In the former method, 
samples distributed with randomly generated imperfec-
tions are studied. The sample with the smallest buckling 
capacity is identified, and the corresponding buckling 
capacity is treated as the approximated critical capacity of 
the system. For the latter method, the imperfection distri-
bution is assumed to be consistent with deflected shapes, 
such as eigenvalue buckling modes. The consistent im-
perfection mode method is used in this paper. Then the 
shape and the scale of the geometric imperfection will be 
discussed. 

 
5.1. Shape of the imperfection 
Normally, the first eigenvalue buckling mode is chosen as 
the imperfection shape. This is also called the fundamen-
tal mode imperfection method (JGJ61 2003) or the 
eigenmode imperfection method (EN 1993-1-6 2007). 
Generally, the buckling capacity that is calculated by the 
fundamental mode imperfection method is lower than 
those given by higher eigenvalue buckling modes. How-
ever, for a pre-stressed space structure, Zhang et al. 
(2006) stated that the buckling capacity based on other 
eigenvalue buckling modes may be the lowest. On the 
other hand, Bulenda and Knippers (2001) suggested using 
the final buckling shape as a geometrical imperfection.  

Thus, we have set up the following shapes of imper-
fections for hybrid grid shells: (1) the first several eigen-
value buckling modes; (2) the displacement shape of the 
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loaded structure obtained from a geometrical non-linear 
analysis. Both imperfections are easy to compute and 
therefore can be often used by engineers.  

Eigenvalue buckling modes can be obtained by the 
eigenvalue buckling analysis. The analysis predicts the 
theoretical buckling capacity (the bifurcation load) of an 
ideal linear elastic structure. Although imperfections and 
material non-linearities often prevent most practical 
structures from achieving the theoretical elastic buckling 
capacity, the eigenvalue buckling analysis is still a very 
useful tool to estimate the critical load and buckling mo-
des for single-layer reticulated shells. The buckling re-
sults are summarized in Fig. 6. It can be found that the 
asymmetrical distribution of load poses limited effect on 
the critical load of the hybrid structure. Some buckling 
modes of the structure under both loads are shown in 
Fig. 7. It is clear from the figure that the first three buck-
ling modes are local modes. The instability of the hybrid 
structure under the asymmetric load case occurs in the 
half span. 

 

 
Fig. 6. Critical load factors of hybrid grid shells 

 
For the second method of imposing imperfection, 

using the large deformation and elastic analysis will give 
deformed shapes of the hybrid grid shell under two load 
cases shown in Fig. 8. The deformed shapes will be then 
imported as imperfections in the elasto-plastic analyses.  

 
5.2. Scale of the imperfection 
The scaling of the imperfection is as important as its 
shape. Generally, the span of the structure is taken as a 
reference scale for the imperfection size (EN 1993-1-6 
2007). According to the specifications of the Chinese 
lattice shell (JGJ61 2003), the maximum geometric im-
perfection that is caused by construction should be re-
stricted within span/300.  

As expected, the buckling capacity of the structure 
decreases when the maximum nodal displacement due to 
the geometric imperfection increases. However, for a 
hybrid structure, the buckling capacity when imposing an 
imperfection with the maximum nodal displacement of 
span/300 may not be the lowest (Zhang et al. 2006). The-
refore, we need to vary the imperfection scale in order to 
assess the imperfection sensitivity of the structure. 
 

   
 First mode Second mode 
 

   
 Third mode Tenth mode 

a) Symmetric load case 

 

   
 First mode Second mode 
 

   
 Third mode Tenth mode 

b) Asymmetric load case 
Fig. 7. Buckling modes of hybrid structure 
 
 

   
 a) Symmetrical loads b) Asymmetrical loads 
Fig. 8. Deformed shape of the hybrid grid shell in geometrical 
non-linear buckling 
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5.3. Results of different imperfection shapes 
For modeling of the geometrical imperfections in 
ANSYS package, we applied them in the form of geomet-
ric (stress-free) modifications on the model. For this rea-
son, we obtained the imperfection model firstly and then 
by using the “Update Geom” order, we give values to the 
magnificent factor. In fact by the resulted displacement of 
different buckling resolution, a new model with geomet-
rical imperfection was obtained. 

Figs 9 and 10 show the load-displacement curves for 
different hybrid grid shells, including the perfect structure 
as well as the structures imposed on six different imperfect 
shapes. The load is plotted against a nodal displacement in 
the area of maximum deformation. The maximum imper-
fections of all shapes have been scaled to span/300. For the 
model in this study, the major axis span is 32 m, and thus 
the maximum geometric imperfection is 106.7 mm.  

The load-displacement curves for the structure with 
imperfections based on eigenmodes or deformed shapes 
of the loading cases show the similar trend with the per-
fect structure. It is clear from the figure that the failure 
load of the hybrid structure under both loads is rapidly 
reduced in the presence of geometric imperfections. The 

 

 
Fig. 9. Load-displacement curves for imperfect structures, 
loading case g+s 
 

 
Fig. 10. Load-displacement curves for imperfect structures, 
loading case g+s/2 

lowest buckling load is predicted with the tenth eigenvalue 
buckling mode. In this case the failure loads are 1.334 and 
1.954 times the design loads for the symmetric and asym-
metric load case, respectively, yielding 77% and 70% re-
duction in strength. Therefore, our comparison shows large 
influence of different shapes of imperfections on the failure 
load under both loads. The tenth eigenvalue buckling mode 
shows the largest reduction of the failure load compared to 
imperfection based on other buckling shapes. 

Taking into account of the complexity of implemen-
tation and the previous results, the tenth  eigenmode im-
perfection can be straightforwardly obtained by a linear-
elastic eigenvalue buckling analysis and is shown as the 
most critical imperfection shape of the imperfection sha-
pes considered in this paper. This imperfection shape is 
thus employed in all the following analyses. 

 
5.4. Results of different imperfection scales  
An elasto-plastic buckling analysis is carried out for the 
hybrid grid shell with geometric imperfection imposed. 
The failure loads corresponding to different scales of the 
tenth eigenmode are computed. Fig. 11 shows the imper-
fection sensitivity of the hybrid structure. It can be seen 
from the figure that the failure loads of the hybrid structure 
decrease when the positive imperfection scale increases or 
the negative imperfection scale decreases, i.e. when the 
structure is increasing its nodal deformation due to imper-
fection. The largest reduction rate is found around the per-
fect structure. Here, imposing a very small imperfection on 
the perfect system will lead to a big change of the failure 
load. Thus, the hybrid structure should be regarded as 
highly sensitive to imperfections. It should be noted that 
from the symmetry of the figure when the structure is un-
der both load cases, the failure load reduces when the abso-
lute value of imperfection scale increases. 
 

 
Fig. 11. Imperfection sensitivity 

 
6. Parametric study of the buckling capacity 
6.1. Influence of the rise-to-span ratio 
The elasto-plastic analyses have been carried out based 
on sample structures with different rises (keeping the 
span constant). The failure loads are shown in Fig. 12. 
The rise-to-span ratio, which is defined as the ratio of the 
rise to the major axis span, corresponds to 0.16, 0.22, and 
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0.30, respectively. For the structure under the symmet-
rical load g+s, an increase in rise-to-span ratio will result 
in an increase in the failure load. A similar trend can be 
found when the structure is under the asymmetrical load 
g+s/2. Therefore, the rise-to-span ratio is a key factor of 
the stability of the hybrid grid shell.  

 

 
Fig. 12. Failure loads with different rise-to-span ratios 
 
6.2. Influence of the cross-sections of steel beams 
When the geometry of the structure is identified, the 
cross-section of steel beams is an important factor that 
affects the buckling capacity of the hybrid grid shell. 
Fig. 13 shows the variations of the failure load under both 
load cases with respect to the axial stiffness and the flex-
ural stiffness of steel beams. It is clear from the figure 
that the beam section influences the failure load signifi-
cantly. The failure load increases with an increase of the 
axial stiffness and flexural stiffness of beams. When the 
beam axial stiffness and flexural stiffness are reduced by 
about 35% and 70% from the basic model, the failure 
loads decrease by 55% and 45% for symmetrical and 
asymmetrical loads, respectively. Setting the beam axial 
stiffness and flexural stiffness to 2.0 and 3.5 times as 
those of the standard model, it doubles the failure loads 
for each load case, respectively. Therefore, the results 
show the beam section improves the stability perfor-
mance of the hybrid grid shell notably. 

 

 
Fig. 13. Failure loads with different cross-sections of steel 
beams 

 

In order to derive a relationship between the ratio of 
the bending and axial stiffness and the buckling behavior, 
the cross-sections are set to 42 mm× 21.4 mm× 3 mm, 
49.2 mm× 24.6 mm× 2.5 mm, 60 mm× 30 mm× 2 mm, 
and 73.8 mm× 36.9 mm× 1.6 mm, respectively. The axial 
stiffness (areas of the cross-sections) is almost the same. 
However, the bending stiffness is different. Fig. 14 shows 
the relation between the failure load and the ben-
ding/axial stiffness ratio. It is clear from the figure that 
the failure load increases with an increase of the ratio of 
the bending and axial stiffness. However, the trend be-
comes slow when the ratio is larger. 

 

 
Fig. 14. Failure loads with different ratios of bending and axial 
stiffness 

 

 
Fig. 15. Failure loads with different areas of cables 
 
6.3. Influence of cables 
The pre-stress and area of cables are also important fac-
tors that affect the elasto-plastic buckling behavior of the 
hybrid grid shell. The failure load against the diameter of 
cables at the specified cable pre-stress of 100 MPa is 
shown in Fig. 15. The diameters of cables correspond to 
6 mm, 8 mm, 10 mm, 15 mm, 18 mm and 21 mm in 
Fig. 15, respectively. For the structure under the symmet-
rical load g+s, if the cable diameter is smaller than 
18 mm, an increase in the cable diameter will result in an 
increase in the failure load. If the cable diameter is great-
er than 18 mm, a higher cable area gives a lower failure 
load. A similar trend can be found when the structure is 
under asymmetrical load g+s/2. Thus, it is interesting to 
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note that there exits an optimal value of cable diameters 
for a specific hybrid grid shell. 

To study the effect of different pre-stress values di-
rectly, the initial stresses are set to 50 MPa, 80 MPa, 
100 MPa and 150 MPa, respectively. The failure load 
under both load cases versus the pre-stress of cables is 
shown in Fig. 16. It can be seen that the failure load inc-
reases with the increasing of the cable pre-stress. For the 
structure under asymmetrical loads, the differences in 
failure loads are very small. For the pre-stresses conside-
red in Fig. 16, the range of the variation of failure loads is 
within 10%. However, for the structure under symmetri-
cal loads, when the pre-stress increase from 50 MPa to 
100 MPa, the failure load increases significantly by 55%.  

 

 
Fig. 16. Failure loads with different cable pre-stress 

 
Therefore the influence of the cable pre-stress on the 

failure load is significant. It is essential to choose a pro-
per cable diameter and prestress for a hybrid grid shell. 

 
6.4. Influence of boundary conditions 
In all aforementioned cases, the supports of hybrid grid 
shells are regarded as fixed. The elasto-plastic stability of 
hybrid grid shells with pinned supports is discussed in 
this section. The load-displacement curves with fixed and 
pinned supports under symmetrical and asymmetrical 
loads are shown in Fig. 17.  

 

  
Fig. 17. Load-deflection curves of the hybrid structure with 
different support conditions 

Fig. 17 indicates that there is a small difference of 
failure loads between fixed and pinned support shells. 
The failure load factor of the structure with pinned su-
pports is 5.29 and 6.24 for the two load cases, respective-
ly. Note the difference of the failure load with pinned 
supports between the two load cases is little. As a result, 
the effect of support conditions on the elasto-plastic stabi-
lity is slight in the design of the hybrid grid shells. 

 
7. Conclusions 
The buckling capacity of the hybrid grid shell was inves-
tigated in this paper. By taking into consideration geo-
metrical and material non-linearity using elasto-plastic 
analyses, the behavior of hybrid structures and the corre-
sponding single-layer lattice shell was found significantly 
different. Then the effects of different geometrical, struc-
tural, and load parameters on the failure loads were stud-
ied. By comparing the results of analyses, conclusions 
can be drawn as follows: 

1. The effect of cables on the stability of the structu-
re is significant. The buckling capacity of the hybrid grid 
shell is much higher than that of the single-layer lattice 
shell.  

2. The stability of a hybrid grid shell is non-
sensitive to the asymmetrical distribution of load. 

3. The hybrid structure is highly imperfection sensi-
tive and the reduction of the failure load due to imperfec-
tions can be considerable. Furthermore, when imposing 
imperfections, the proper shape and scale of the imperfec-
tion will effectively affect the performance of the structu-
re. The results show that the tenth eigenmode is the most 
critical imperfection shape to the example structure given 
in this paper. Furthermore, the largest reduction rate of 
failure load is found for the perfect structure. Thus, a very 
small imperfection on the perfect system will lead to a 
big change of the failure load.  

4. The analysis results show that under a particular 
span, the buckling capacity increases with the rise-to-
span ratio. Moreover, increasing the cross-section of steel 
beams notably improves the stability performance of the 
structure. The failure load of the hybrid grid shell initially 
increases with the increase of the cable diameter and then 
decreases afterwards. Therefore, there exists an optimal 
cable diameter resulting in a relatively high buckling 
capacity for a specific cable pre-stress. Furthermore, the 
influence of the cable pre-stress on the failure load is also 
significant. A proper cable diameter and prestress for a 
hybrid grid shell are required during the design. 

5. The effect of the boundary conditions on the fai-
lure load is found limited. 

Demand for glass roof system with longer span is 
increasing, and further research is required to improve the 
structural form in terms of static, dynamic, and stability 
capacity. The above conclusions are drawn from the work 
of this paper that has not considered the eccentricity and 
semi-rigidity of joints. Further investigations addressing 
these details are needed in future. 
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