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Abstract. The forced vibrations of a curved-in-plane nonprismatic beam with a variable cross section and any curvature, 
generated by a load moving at a variable velocity are analyzed. Approximation with Chebyshev series and a generalized 
eigentransformation were used to solve the system of the partial differential equations describing the considered problem. 
The derived equations in their final form enable one to determine displacement and rotation functions for any beam. In or-
der to verify the derived formulas the eigenproblem solution (used in the eigentransformation method) was compared with 
the one obtained by the finite element method. 
Keywords: curved beam, nonprismatic beam, out-of-plane vibrations, moving load. 

 
1. Introduction 
The vibration of curved-in-plane beams is an important 
problem considering that such beams are often used in 
civil and mechanical engineering applications. The solu-
tion of the curved-in-plane beam problem is especially 
complicated when the system parameters, e.g. curvature 
and material and geometrical characteristics, are variable. 
In such a case, the coupled partial differential equations 
with two unknown functions, describing the problem 
cannot be separated in a simple way. 

Even though the curved-in-plane beam problem has 
been investigated by many researchers, the literature on 
the dynamics of such system is not so voluminous as that 
on the vibration of arches. The free vibration of curved-
in-plane prismatic beams was studied by Tufekci and 
Dogruer (2006), Lee et al. (2008), Kawakami et al. 
(1995) and Lee and Chao (2000). In paper of Tufekci and 
Dogruer (2006) the circular prismatic beam vibration 
problem was examined taking into consideration the ef-
fects of cross-sectional shear and rotational inertia. The 
first five eigenfrequencies of the system were determined 
using analytical methods. A similar model was adopted in 
Lee et al. (2008) where the eigenproblem was solved for 
differently supported beams with variable curvature (par-
abolic, elliptical and sinusoidal). The Runge-Kutta meth-
od was used to solve the derived differential equations. In 
Kawakami et al. (1995) the eigenproblem was solved 
using the discrete Green function. In the paper by Lee and 
Chao (2000) dealing with the vibration of a circular gird-
er with a variable cross section, the power series method 
was employed. The differential quadrature element meth-
od (DQEM) was used to solve the eigenproblem in Chen 
(2008) and Li et al. (2008). The vibration of a thin-walled 
circular girder with a stepwise variable cross section was 

studied in Piovan et al. (2000). The analysis was limited 
to eigenfrequencies and eigenforms. Paper of Challamel 
et al. (2010) is an example in which the finite element 
method (FEM) was employed. The authors defined a 
finite element with 10 and 12 degrees of freedom and 
then used it to determine the eigenfrequencies of a curved 
composite beam. 

The problem of the aperiodic vibration of a beam 
with any curvature and a variable cross section was 
solved using the Frobenius method combined with the 
dynamic stiffness method and the Laplace transformation 
in Huang et al. (1998). The inverse Laplace transform 
was determined using the Durbin method. 

The vibration of curved-in-plane beams under a 
moving load is the subject of papers by Yang et al. 
(2001), Huang et al. (2000) and Wu and Chiang (2003). 
In paper of Yang et al. (2001) the vibration of a prismatic 
girder, generated by a concentrated harmonically variable 
load moving at a constant speed, were analyzed. The 
problem was solved analytically using the approximation 
method. Trigonometric Fourier series were used in the 
approximation. The solution was limited to the first term 
of the series. The results were compared with the ones 
yielded by FEM. Huang et al. (2000) studied the 
eigenproblem and aperiodic vibrations of a parabolic 
girder with a variable cross section, produced by a load 
moving at a constant rate. The dynamic stiffness matrix 
method was used to solve the problem. The solutions 
(within an element) were approximated by Taylor series. 
In research of Wu and Chiang (2003) a finite element 
with six degrees of freedom was defined and used to 
solve the considered problem. The results were compared 
with the results obtained by Yang et al. (2001). 

In the present paper the problem of vibrations gen-
erated by a load moving at a variable speed is solved. 
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Since the eigentransformation method was used in the 
solution also the eigenproblem was solved. The obtained 
solutions apply to girders with arbitrarily variable param-
eters, such as curvature and material and geometrical 
characteristics. 

No highly complex loads, such as inertia loads 
(moving sprung and unsprung masses or their complex 
combinations) are considered in this paper since its prin-
cipal aim was to present a method for solving 
nonprismatic girders. The vibration problem has been 
extensively investigated for prismatic girders, for exam-
ple by Fryba (1972), Szcześniak (1991) and Śniady 
(1976). The algorithm presented here can, of course, be 
used (after some modifications) to analyze the more 
complex problems mentioned above. 

The considered problem was solved using the meth-
od employed by the author in his earlier papers to solve 
the problem of the eigenvibrations of the Euler beam 
1999 and the Timoshenko beam 2006. The method uses 
Chebyshev series to approximate the differential equa-
tions and it is based on the method of the approximate 
solution of ordinary differential equations, described in 
Paszkowski (1975). It should be noted that the final solu-
tion for the analyzed form of the differential equation has 
a universal character and can be used to solve a system 
with any geometrical and material parameters. 

The algorithm was employed to solve a numerical 
example, i.e. the problem of a curved-in-plane beam with 
a linearly variable cross section, whose axis is described 
by a chain curve. Four cases of load, differing in their 
loading rate were considered. Since the eigentransfor-
mation method was used in the solution of the problem, 
also the eigenfrequencies of the system were determined. 
In order to verify the derived formulas, the frequencies 
were compared with the ones determined by FEM. 

The proposed method can be used to analyze real 
nonprismatic bar structures. In the case of reinforced 
concrete structures, it may be difficult to determine the 
variable substitute geometric and strength characteristics 
of their cross sections. The theoretical and experimental 
determination of the characteristics is the subject of pa-

pers by, among others, Bywalski and Kamiński (2011) 
and Kamiński and Pawlak (2011). In the authors’ opinion 
the proposed method can also be used to solve more 
complex problems related to wave phenomena in hetero-
geneous nonprismatic bar systems, e.g. presented by 
M. Major and I. Major (2010) the problem of wave prop-
agation in a laminar nonprismatic bar. The method will 
be applied to solve such problem in the next papers by the 
authors. 

 
2. Formulation of problem 
The vibrations of a curved-in-plane nonprismatic beam 
described in terms of the Bernoulli-Euler theory are con-
sidered. Loads: ),,(),,( tSMtSQ yz  ),( tSM x move on 
the beam at variable velocity )(tV  (Fig. 1). The beam’s 
axis is a flat curve lying in plane XY, having length a2 . 
It is also assumed that the distribution of the beam’s ge-
ometrical and material parameters is symmetric relative 
to plane XY. 
 

 
Fig. 1. Scheme of the system  

Under the above assumptions the equations describ-
ing the out-of-plane vibrations of the beam have the form: 
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and the internal forces are defined by the formulas: 
– the bending moments: 

 
2

20

1 ,y
y y

M wm EIP a f s
κϑ

  ∂ = = − +   ∂  

�

�  (2) 

– the torsional moment: 
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1 .x
x s

M wm GJP a f s s
 ∂ ∂  = = +  ∂ ∂  

�

�
ϑκ . (3) 

The quantities in Eqs (1)–(3) are: ),(),( tSts ϑϑ =  – 
the angle of torsion of the cross section relative to axis X ; 

atSWtsw ),(),( =  – dimensionless displacements (de-
termined in right-handed local coordinate sys-
tem aYyaXx == , ) perpendicular to the girder’s 
plane; aSs =  – a dimensionless parameter describing 
girder axis 1,1−∈s ; )()( SΚas =κ  – the dimension-
less curvature of the girder; dimensionless material and 
geometrical characteristics: 0ρρρ =  – density per unit 
length, m

s
m
s JaJ 2

0ρ=  – a solid polar moment of inertia, 
0EIGIGI yy =  – torsional rigidity, 0EIEIEI yy =  – 

flexural rigidity ( sGJ  is a dimensional characteristic 
corresponding to sGJ , etc.); aqPQ zz 0= , 

amaPM xx 0=  – dimensionless load; and constants: 

 
2 4

0 0 0 0, ,f P a EI g a EI= = ρ  (4) 
where parameters 000 ,, PEIρ  are reference quantities. 
In the case of a curved bar, the cross section’s generalized 
(dimensional) moment of inertia yI  occurring in the 
above is expressed by: 

 

4 2

1 ( )y
A

a zI dxdys yκ
=

−
∫ . (5) 

The symbols representing local axes, displacements, 
external forces and internal forces are shown in Fig. 2. 
 

 
Fig. 2. Local coordinate system, external forces, displacements 
and internal forces 

3. Solution of problem 
The solutions of system of differential Eqs (1) are 
sought in the form of the following Chebyshev series: 
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where: ...][][][2
1][ 210

0

' +++=∑∞
=

fafafafa
l

l ; )(T xl  is 
the l-th Chebyshev polynomial of the first kind. 

The method presented in Appendix A and in the 
Ruta’s papers (Ruta 1999, 2006) will be used to solve 
the problem. When reduced to a matrix form, system of 
Eqs (1) is expressed by the formula: 
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where matrix functions ;4,3,2,1,0,)(ˆ =msmP  and 
)(ˆ

4 sR  vector ),(ˆ tsP  are expressed by the formulas (where 
simplified notation ppp ssfsf ∂∂= )()()(  is used): 
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Then matrix functions mQ  and mS  (see formulas 
(A.3)) are determined ( mS  is calculated similarly as 
mQ by replacing functions mP̂  in formula (A.3) with 

functions mR̂ ). Having substituted the coefficients of 
expansion of functions mQ , mS  and (9) into Cheby-
shev series into Eq. (A.2) one gets the infinite system of 
ordinary differential equations: 
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At this solution stage, elements 2,1,);,( =jilkk ji  
of Eq. (10) in the above system contain the coefficients of 
expansion of functions: ,,,

2
yyy EIEIEI κκ  

sss GJGJGJ 2
,, κκ  as well as the coefficients of expan-

sion of their first and second derivatives. After complex 
transformations are performed using the relation (Pasz-
kowski 1975): 
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1 1
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cients of Eq. (10) assume the final form: 
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The coefficients in formulas (12)–(14) are the coef-
ficients of expansion of the following functions into Che-
byshev series: 
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 The first four blocks of system of Eqs (10) – 
3,2,1,0=k  are satisfied identitywise. The blocks’ 

equations are replaced with equations describing the 
boundary conditions. When formulating equations stem-
ming from the boundary conditions on the beam’s end 
( 1∓=s ) one uses the expansions of function (6), formu-
las (2)–(3) for internal forces and the following formulas 
for calculating the Chebyshev polynomials in points 

1∓=s  (Paszkowski 1975): 
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The equations in the case of girder clamping are ex-

pressed by the formulas (for the girder’s left and right 
end, respectively): 
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In the case of girder hinged fixing, the equations are 
expressed by the formulas (for the girder’s left and right 
end, respectively): 

− hinged fixing with rotation possible only around 
axis y, the first two equations are identical with 
Eqs (16), the third equation follows from condition 

0),1(,0),1( ==− tmtm xx  and it has the form: 
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− hinged fixing with possible rotation around axes x 
and y: 
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the other two equations are Eqs (16) and (17). 
The modified system of Eqs (10) limited to finite 

system 2( 1)N m= +  of equations and with its terms 
rearranged is expressed by the formula: 
 ( ) ( ) ( )t g t t+ =Kq Bq F�� , (19) 
where: [ ]T)()()( ttt ϑwq = ; T

10 ],...,,[ mwww=w ; 
T

210 ],...,,,[ mϑϑϑϑ=ϑ . The system is then trans-
formed by multiplying its left side by 1−K . Subsequently, 
matrix BK 1−  is reduced to Jordan’s 
form 11 )( −−

= SBKSJ . Since the solution of the 
eigenproblem for the considered system: 
 1( )g − −λ =K B I q 0 , (20) 
leads to single eigenvalues λ , the transformation matrix 
assumes the form 1−

=WS , where W  is an eigenmatrix 
obtained by solving eigenproblem (20), and matrix { } [ ]nλλλλ ...,,,diag 21==J  becomes a diagonal ma-
trix. By substituting )()()( 1 ttt rWrSq ==

−  into 
Eq. (19), multiplying the latter’s left side by 1−

=WS , 
introducing a damping term into Eq. (19) and performing 
simple transformations, one reduces system (19) to the 
following system of separated equations: 
{ } { } 1 1( ) 2 ( ) ( ) ( ).− −+ + = =r r r W K F f�� �λ τ α λ τ τ τ  (21) 
Parameter 0

4
0 ρτ aEItgt ==  in Eq. (21) repre-

sents dimensionless time. 
In order to reduce the computing time and reject the 

vibration forms loaded with errors (the eigenforms corre-
sponding to higher vibration frequencies), the incorrect 
(or insignificant) eigenforms are rejected. In this case, 

Nk <  eigenforms are taken into account, and matrices 
W  and 1−W  then become rectangular matrices with 
dimensions respectively kN ×   and  Nk ×  (Kleiber 
1995), and vector T

21 ],...,,[ krrr=r . 
When the load function has the form 

)(1)( τδτ =jf , solution )(τjh  of a single equation of 
separated system of Eqs (21) (the Green function) is ex-
pressed by the formula: 
 ( ) ,sinexp

1
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2
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j

j
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−
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where: 21 , 1j j j j j′= = −ω λ ω ω α . When the load is 
described by an arbitrary function, the solution is deter-
mined by calculating the convolution load with the Green 
function: 
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Having calculated all the components of vector )(tr , 
one calculates the sought vector [ ]T( ) ( ) , ( )t t t= =q w ϑ  

( )tWr . 
 

4. Numerical example 
The above algorithm was used to solve the following 
problem. A curved-in-plane nonprismatic beam in the 
form of a Catenary arch is loaded with a uniformly dis-
tributed load moving at a variable velocity. The beam’s 
ends are connected with a foundation: hinged in point 

aS −=  and clamped in point aS = . The parametric 
equations of the Catenary arch as a function of arc length 
are: 
 2 2arcsinh ,X A S A Y F A A S= = + − + , (24) 
where: ( )1cosh −= ALAF  is the height and L2  is the 
arch span (Fig. 3).  

 

 
Fig. 3. Hinged-clamped Catenary arch  

The beam’s curvature is expressed by the equation 
22)( SAASK += . When solving the problem in

its dimensionless form it was assumed that the beam’s 
cross section is a rectangle with constant width b and 
linearly variable height ( ))(T)(T)( 10 aSaSbSh η+= , 
where 4.0=η  and aaS ,−∈ , and furthermore 

5.1=LH . The other parameters assume the following 
values: )0(,)0( 00 EIEI == ρρ . Because of the adopted 
method, first the eigenproblem was solved and the ob-
tained eigenfrequencies were compared with the ones 
yielded by FEM (in which the system was divided into 
forty 3D beam elements with a linearly variable cross 
section) in order to verify the algorithm. The values of the 
first 10 eigenfrequencies obtained by the two methods are 
shown in Fig. 4. In order to check the convergence of the 
proposed method, the eigenproblem was also solved for 
different approximation base sizes: 20,30, 40,50.m =  
The obtained results are presented in Tables 1 and 2. 

 
Table 1. Non-dimensional vibration frequencies 

2
0 0a EI= Ωω ρ  of H-C Catenary arch 

 FEM This paper 
ω1 3.35137 3.35160 
ω2 10.7146 10.7165 
ω3 23.3796 23.3832 
ω4 41.0290 41.0375 
ω5 63.4671 63.4836 
ω6 90.6378 90.6664 
ω7 122.532 122.579 
ω8 159.143 159.211 
ω9 200.467 200.569 
ω10 221.779 222.909 

 
 

 
Fig. 4. Diagrams of eigenforms for H-C Catenary arch Form denotations: p+1             ; p+2           ; p+3              ; where p = 0, 3 or 6 
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Table 2. Non-dimensional vibration frequencies  00
2 EIa ρω Ω=  of  H-C Catenary arch  

for different approximation base sizes 
 ω1 ω2 ω3 ω4 ω5 

m = 20 3.35351 10.7207 ,23.3723 41.0299 63.5431 
m = 30 3.35160 10.7165 23.3832 41.0375 63.4836 
m = 40 3.35153 10.7164 23.3842 41.0379 63.4830 
m = 50 3.35160 10.7165 23.3834 41.0376 63.4839 

 ω6 ω7 ω8 ω9 ω10 
m = 20 90.6465 122.424 160.423 199.576 222.914 
m = 30 90.6664 122.579 159.211 200.569 222.909 
m = 40 90.6660 122.578 159.215 200.579 222.919 
m = 50 90.6661 122.577 159.215 200.581 222.911 
 

Then the obtained eigenforms were used to solve the 
forced vibration problem. The dimensionless function 
defining the considered moving load (Fig. 5) is expressed 
by the formula: 

( )(
( ))

H min(1, ( ))
H max( 1, ( ) )( , )

when 1 ( ) 1
0 when ( ) 1 ,

z

q s x
s d xq x
- s d

s d

 − − − − −=  ≤ < + ≥ +

τ

τ
τ

τ

τ

(25) 

where d  is the load length and )(τs  defines the position 
of the load’s front.  

 

 
Fig. 5. Form of moving load  
This (dimensionless) function is expressed by the formu-
la: 

 
0

( )( ) 1 ,
c

vs d
v

= − + ∫
τ
τ

τ τ  (26) 

where: 0
2

0 ρaEIvc = is a reference velocity and  
)()()( gVtVv ττ ==  ( )(tV  is a dimensional velocity). 

Dimensionless load 1000=q . In the example, four cases 
differing in the distribution of moving load velocity were 
analyzed. Diagrams of relative velocity cvv )(τ  for the 
particular cases are shown in Fig. 6a while the corre-
sponding diagrams of function )(τs  are shown in Fig. 6b. 

For the time-variable spatial distribution of the load 
the coefficients of expansion of function ),( τxqz  are 
functions dependent on τ . Using the following relations: 

 
Fig. 6. Diagrams of:  a) relative velocity )(τv  and b) function 

)(τs  for considered load cases 
 

0 0 0

0 0

2
1 0 0

2[H( )] 2 arccos ,π

2[H( )] sin( arccos )π
2 U ( ) 1 , 1, 2 ,3, ... ,π

k

k

a s s s

a s s k s
k

s s k
k −

− = −

− = − =

− − =

 (27) 

the coefficients of expansion of function ),( τxqz  were 
determined: 

(
)

0

2
1

2
1

2( ) arccos(min(1, ( )))π
arccos (max( 1, ( ) )) ,

2( ) U (min(1, ( ))) 1 min(1, ( ))π
U (max( 1, ( ) )) 1 (max( 1, ( ) ) ,

1,2,3, ... .

k k

k

q q s
s d

q q s sk
s d s d

k

−

−

= −
− − −

= − −
− − − − − − 

=

τ τ

τ

τ τ τ

τ τ

 (28) 

where )(U sk  is a Chebyshev polynomial of the first 
kind. Fig. 7 shows the results in the form of displacement 
function ),( τsw  for the case when 11 ≤≤− s  and τ  as-
sumes such values for which the front of the moving load  
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Fig. 7. Diagrams of beam displacements ( , )iw s τ  at instants 
when load front is in respective points is :  a) 1 0.5 2s d− + ;  
b) 2 0.0 2s d= + ; c) 3 0.5 2s d= + ; d) 4 1.0 2s d= +  for 
considered load cases differing in velocity distribution. Denota-
tions as in Fig. 6  

 

 
Fig. 8. Diagrams of displacements ),( τjsw  for different beam 
points: a) 5.01 −=s ; b) 0.01 =s ;  c) 5.01 =s  for considered 
load cases differing in velocity distribution. Denotations as in 
Fig. 6 

is respectively in points ( ) 0.5 2, 0.0 2, 0.5s d d= − + + +τ  
2, 1.0 2.d d+  Fig. 8 shows diagrams of displacements 

),( τjsw of the beam’s particular points 0.5;js = −  0.0;  
0.5  for aττ 20 ≤≤ , where aτ  is the time of travel of 

the load on the girder, i.e. the time in which the front of 
the load covers distance ddl +=−−+= 0.2)0.1(0.1 . 
 
5. Conclusions 
The system’s eigenfrequencies obtained in the example 
(Table 1) are in good agreement with the ones yielded by 
the finite element method. Table 2 shows that the solu-
tions quickly converge towards the final result. It appears 
that for approximation base m = 30, 40, 50 the obtained 
solutions are slightly more accurate than the ones ob-
tained for m = 20. 

Problems like the one considered in this paper can 
be effectively solved and the computing time significant-
ly reduced by transforming the matrix of system-of-
equations coefficients to Jordan’s form. In many cases 
this transformation reduces the coefficients matrix to a 
diagonal form. 

Using the system of equations in its final form de-
rived here one can directly solve the vibration problem 
for a girder with any parameters. It is enough to substitute 
appropriate coefficients of the expansions of the beam 
parameter functions into Chebyshev series into the for-
mulas for the coefficients of system of equations (12)–
(14). One should also remember to modify the equations 
for the boundary conditions. It should be noted that the 
proposed solution method can be directly used to solve 
the problem of aperiodic vibrations (not necessarily gen-
erated by a moving load. The numerical example shows 
that a rather small approximation base is needed to obtain 
accurate solutions. 

 
Appendix A. Approximation method of solving 
differential equations with variable coefficients 
A generalization of the theorem about ordinary differen-
tial equations (Paszkowski 1975) is used to solve the 
system of differential equations in this paper. The gener-
alization consists in the application of the method of the 
approximate solution of a linear differential equation with 
variable coefficients to systems of linear differential 
equations (Paszkowski 1975): 
 

0
ˆ ˆ( ) ( ) ( ) ,

n

m

x x x−

=

=∑ (n m)mP f P  (A.1) 

where: coefficients )(ˆ xmP  are square matrices of degree 
N, and  )(xf  and  )(ˆ xP  are  N-element vectors. 

In a special case, when system of Eqs (A.1) is a 4th-
order ( 4=n ) system, the sought coefficients ][fla  of 
the Chebyshev expansion of vector function f satisfy the 
following infinite system of algebraic equations: 
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