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Abstract. The delay of vast building projects is still a common problem. This situation is extraordinarily severe to steel 
reinforced concrete (SRC) building projects that keep going to promote a new structure system in Taiwan’s construction 
industry. The aim of this study is to develop a feasible contract duration model based upon few SRC building cases. A 
logical approach is employed to select and assure the “good” regression model identified when project characteristics 
were known and external uncertainties were reasonably estimated. Different necessary diagnostics had been adopted to 
examine the aptness of the model before inference. The cross-validation is used to validate the appropriateness of the vari-
ables selected and magnitudes of the regression coefficients. The mean of the square prediction errors (MSPR) is selected 
to measure the predictive ability of the model proposed, and the result shows that the predictive ability of the selected re-
gression model could be adequate. Finally, several cases are taken to test the predictive accuracy of the model proposed, 
and the result shows that the actually necessary construction duration is considerably closed to the duration predicted by 
the mode. It is concluded that the predictive duration model proposed could be applicable to the SRC construction projects 
with a reasonable reliability.  
Keywords: building project, construction, duration prediction, regression, heteroskedasticity, validation. 
 

1. Introduction 

People in Taiwan experienced an unprecedented catastro-
phe, an earthquake measuring 7.3 on the Richter scale, on 
September 21, 1999. Damage caused by the Chi-Chi 
Earthquake included thousands of deaths and severely 
wounded, with 44,338 houses completely destroyed, 
41,336 houses severely damaged, and a total of US $9.2 
billion worth of damage. As a result, builders and archi-
tects of modern buildings which collapsed were detained 
and accused by authorities. After the impact of the Earth-
quake, a conservative structural frame system, members 
of frame with Steel Reinforced Concrete (SRC) with 
better security, has gradually started to be adopted in the 
construction industry. In these SRC building contracts, 
clients had set aside additional duration for construction, 
but construction delay still generally occurred. The con-
tract duration needed for SRC building does not included 
the duration of Steel structure construction and the dura-
tion of RC construction. Hence, difficulties and com-
plexities of SRC building in the construction phase al-
ways give rise to delay. This leads to building cost far 
more expensive than tradition RC and Steel structure 
unless the owners take into account durability and build-
ing safety. Therefore, SRC structures are not popular in 
Taiwan today, with only few cases up to writing this re-

search although promotion of new SRC structures in 
Taiwan’s construction industry is still ongoing. However, 
there is no national specification on the appropriate con-
struction duration for SRC structure, causing problems 
regarding construction duration for owners and construc-
tors. This leads to cases of falling behind contract sched-
ule and give rises to disputations. 

The construction duration has been observed as one 
of the main criteria for assessing the performance of buil-
ding projects in the construction industry (Bromilow 1969; 
Dissanayaka, Kumaraswamy 1999; Kaka, Price 1991; 
Love et al. 2005; Ng et al. 2001; Ogunsemi, Jagboro 2006; 
Walker 1995). A project will be considered successful if it 
is completed on time, is within budget, and meets the spe-
cified quality standards (Chan, Kumaraswamy 1996, 
1997). Understandably, schedule overrun brings about 
project cost overrun. Although the industry participants are 
aware of the importance of duration in the construction 
phase of projects, it was observed that significant part of 
the contracts had not met the stipulated period. Since 
1960’s, according to Bromilow’s research report, only 
12.5% of building contracts were completed within the 
scheduled completed dates and the overall average actual 
time is more than 40% longer than the original schedule 
(Bromilow 1969). After four decades, the inability to 
complete on time is still a prevailing problem. Al-Khalil 
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and Al-Ghafly (1999) reported that completed public pro-
jects overrun approached 70% of the original schedule 
through a comparison of the outcomes for projects with 
their original schedules. Odusami and Olusanya (2000) 
concluded that projects executed an average delay of 51% 
of a planned duration for most projects in the metropolis. 
Blyth et al. (2004) stated that 50% of contracts were comp-
leted after stipulated durations longer than schedules. Iyer 
and Jha (2006) observed that over 40% of construction 
projects were behind original schedule and delay lasted for 
months. Completed projects lasting much longer than the 
original schedule results in various disadvantages such as: 
additional cost, reduced contractor’s profit, loss of reputa-
tion, and delay of client’s operating plan. Many provoking 
disputes emanated from the various reasons of construction 
delay (Ng et al. 2001). The construction duration overrun 
is problematic in the construction industry and generates 
much concern. These statues of delay are still universal in 
the performance of building projects (Aibinu, Odeyinka 
2006).  

Several methods exist for estimating the contract 
duration of building construction projects such as the 
period expected by client, the special consideration, the 
time requirement for the project work to be done, and the 
time taken as recorded through historical project informa-
tion (Kumaraswamy, Chan 1995; Love et al. 2005). In 
practice, most methods estimating project duration in the 
industry depends on the subjective skill and cognition of 
the estimators and planners, rather than on objective as-
sessment. 

Khosrowshahi and Kaka (1996) stated that forcing 
the project into a desired time mold can lead to adverse 
consequences, giving rise to a chain reaction which affects 
the performance of the organization in other areas. Unde-
restimation of the project duration raises additional events 
of penalty, disputes, etc. for the contractors and clients. On 
the other hand, overestimation of the project duration may 
lose organizational competitiveness in the industry. Both of 
these could have undesirable effects on project performan-
ce and achievement of project objectives. 

Accurate and reasonable contract duration may 
avoid higher bid cost, and decrease the possibility of 
disputes between contractors and clients. It is also useful 
to the contractor in assessing the risks of meeting the 
client’s requirement. The aim of this study is to develop a 
feasible and suitable project contract duration model ba-
sed on the historical data set, enabling clients and cont-
ractors to estimate better accurate construction duration. 

 
2. Literature review  
There were a wide variety of approaches in dealing with 
the factors affecting construction durations. Several pre-
dicting models have been developed from these factors. 
Bromilow (1969) built a relation between the duration 
and cost of building contracts known as the Bromilow’s 
time-cost (BTC) model. The BTC model revealed that the 
time taken to construct a project is only highly correlated 
with the construction size as measured by the final cost. 
Ng et al. (2001) revisited the BTC model with more new 

project data due to improved productivity, checked on its 
appropriateness for various data subgroups including 
those of a project type, and compared it with previous 
models developed at different time periods. Results show 
that different parameter estimates are needed for different 
project types. 

Researches pointed out that the BTC model potential-
ly falls short by not considering factors other than cost 
when establishing the construction time for a given project 
(Ng et al.  2001; Walker 1995; Nkado 1992, 1995), further 
developing the construction time model by categorizing the 
activities during the construction phase into work groups: 
substructure; superstructure; cladding/envelope; finishes; 
M&E services; and their sequential start-start times. The 
durations of these activity groups can be predicted from 11 
variables: gross floor area; area of ground floor; 
approximate excavated volume; building height; number of 
stories; end use; cladding type; presence of atrium; buil-
ding location; intensity of services and site accessibility. It 
was claimed that the model could provide an objective 
basis for evaluating the implications of the clients’ stipula-
ted completed times at early stages of design.  

Khosrowshahi and Kaka (1996) assumed that a pro-
ject can be defined in terms of a series of variables that 
characterize the project. They identified the most influen-
tial variables and combined a number of these variables 
such as scope; floor; start-months; horizontal-across; 
build-ability; frame; project-operation; units; abnormality 
and log cost to develop and propose a model to estimate 
project duration. Based on these variables, Chan and 
Kumaraswamy (1999a, b) carried out several investiga-
tions in the public housing building construction process 
to identity a set of significant variables influencing const-
ruction duration of projects. The durations of the primary 
work packages, i.e., piling; pile caps/raft; superstructure; 
E&M services; finishes and their respective sequential 
start-start log times; were modeled in terms of the identi-
fied sets of critical factors by multiple linear regression 
exercises, concluding that the model developed was ap-
plicable to the public housing industry. Love et al. (2005) 
analyzed certain significant variables, i.e., project dura-
tion; project type; procurement method; tender type; 
gross floor area (GFA) and the number of stories, propo-
sing an alternative model to replace the BTC model. They 
concluded that the GFA and the number of stories in a 
building were key determinants of time performance in 
forecasting construction duration in the project. Blyth et 
al. (2004) developed a predicting duration model based 
on project characteristics by combining the twenty one 
most influential project variables. They concluded that 
the predicting model can achieve the 7% maximum in 
predicting over duration. However, Kaka and Price 
(1991) revealed that private building varied significantly 
and fitted poorly in this model, suggesting that further 
classification of projects may be required to enhance the 
accuracy of the relevant variables relationship. Ogensemi 
and Jagboro (2006) opinioned that the BTC model is a 
non-linear type form, and introduced a breakpoint 
between two linear models, forming a piecewise linear 
model to improve the accuracy of the BTC model. In a 
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questionnaire employed to determine factors affecting the 
performance of construction project, climate condition at 
site had been identified as the most important factor by 
owners; consultants and contractors because it affected 
the productivity and time performance of project (En-
shassi et al. 2009). Zavadskas et al. (2010) assumed that 
risk could make cost and time overrun in the construction 
projects. They divided project risks into three groups: 
external; project and internal risk, where weather is con-
sidered as external risk. According to the aforementioned 
existing literature, there are a number of variables which 
may act individually or in combination to influence pro-
ject duration. Therefore, it is worthy to further study how 
suitability of SRC building projects on construction dura-
tion. The extent of the effect of those variables is depen-
dent on the nature of the project and external uncertain-
ties. Since construction projects are distinguished 
diversiform categories such as building, civil and others, 
the homogeneity of data should be divergent from one 
another. The study would focus on private SRC building 
projects to build up a reasonable construction duration 
model. 

 
3. Methodology of the model development  
Multiple linear regression analysis is a widely used statis-
tical procedure for determining the relationship among 
relevant variables (Blyth et al. 2004; Chan, Kumaraswa-
my 1997, 1999a, b; Love et al. 2005). It is difficult to 
acquire only one best significant combination from the 
vast and potential independent variables in the objective 
approach. The identification of potential proper variables 
requires some intuition and practical experimental expe-
rience. Due to the variation in the uses of regression 
models, no particular subset of explanatory regression 
variables is the best. A descriptive use of a regression 
model typically will emphasize precise estimation of the 
regression coefficients, whereas a predictive use will 
focus on the prediction errors (Neter et al. 1996; Siegel 
2003). In general a regression model includes the selec-
tion of explanatory diagnostics for examining the appro-
priateness of a fitted regression model, the remedial 
measures when the model conditions are not met, and 
validation of the regression model. 

In this study two types of variables are incorporated 
into the construction prediction model. One is categorized 
into project characteristics which had some influence on 
the construction duration performance extracted from the 
discussions of previous researchers. The other is uncer-
tain external factors which cannot be foreseen by the 
clients or contractors during construction. Several factors 
investigated, together with practical common recognition 
in construction industry, have been used in this predicting 
duration models, with project characteristics including 
construction cost, duration, and size of project etc., 
whereas the uncertain variables are defined as the 
external condition and internal condition. 

Variables in models need to be properly defined. 
The contract duration is defined as the date from the ag-
reed construction commencement date to the planned 

completion date. The actual construction duration for a 
project is considered to start when the date of contract 
commencement takes effect and end on the date of practi-
cal completion on site. The main reason for considering 
the agreed construction commencement date is that pro-
ject activities are not usually continuous from project 
inception to contract commencement due to preparing or 
awaiting some unexpected events. However, the opera-
tion of the contract has become effective. On the other 
hand, contract initial cost is taken as the tender price or 
construction budget, whereas the actual cost is the final 
cost in the construction phase. The contract final cost 
could be different from the contract initial cost when 
variation during construction phase is taking into consi-
deration. Except for the aforesaid possible variables, the 
identification of other potentially proper variables 
requires an intuition and practical approach. 

When projects are executed at different periods, it 
would be necessary to adjust for fluctuating factors to 
avoid the disparities and consider the discounted values 
of project cost in relation to a particular year; the 2006 
contract price indices are employed as the common-base 
set of data.  

A total amount of fifty-six building projects with a 
total value exceeding US $212,977,449 dollars were col-
lected for analysis. The procurement of all these projects 
uses the traditional design-bid build concept. This databa-
se represents new building in Taiwan completed in the 
period between 2000 and 2006. The contract cost for the 
project ranges from $842,356 dollars to $11,969,230 
dollars, having a mean (M) of $3,803,169 dollars and 
standard deviation (SD) of $ 2,477,694 dollars. The buil-
dings ranged from 2,251 m2 to 51,904 m2 gross floor area 
(GFA), 2 to 14 stories high, and took 197 to 1080 days to 
construct. Results showed that only a few contracts were 
completed on or before the date originally expected. The 
time performance for the steel reinforced concrete (SRC) 
building projects was far worse than expected. 

The premises of building projects carried out in this 
research are: 

1) All of the contractors are competent and effica-
cious in setting up the construction process as well as 
work within the same norm. 

2) Mass materials such as steel, windows etc. are 
provided under the condition that there are no delays 
occur by the supplier chosen by the client. 

3) All buildings have the same structure system 
(SRC) and most building materials are similar in likeli-
hood. 

In multiple linear regression analysis, one important 
objective is the identification of the best combination of 
variables in acquiring better significant combinations 
from the vast and potential independent variables within 
the objective. There are some techniques in SPSS (10.0) 
software package which are used as the alternative to the 
best solution. In the study, the forced entry technique is 
adapted to conduct the multiple regression analysis. It 
will be found that different combinations might produce 
different results during the process of developing the 
statistical models. A significant level of 10% is set to test. 
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There is a significant predicting relationship between the 
project construction duration and a relatively small nu-
mber of measurable parameters of a project and its envi-
ronment. These steps identified the suitable combination 
of the constituent variables of the model as follows: 

1) The determination of the dependent variable to 
dig into the possible predictor (independent) variables 
from the data set. 

2) The observation of the histogram of the data to 
test the normality in the distribution; if not, the variables 
are transformed into a suitable form such as the logarithm 
scale. 

3) The observation of the scatter plot to examine the 
linearity in the distribution of the data; if not, one or two 
variables need to be transformed into a suitable form such 
as a logarithm form, resulting in a linear relationship for 
the linear regression technique to be used accordingly. 

4) The regression of predicting an equation model to 
identify the variables which pass the statistical testing and 
can reasonably explain the variation within the data. 

5) Omitting or adding the model variables. 
6) Repeating steps 4 and 5 until the following crite-

ria are satisfied: 
− all important and possible variables are included 
in the model; 

− F and t statistical values pass the hypothesis test-
ing value;  

− R2 or adjusted 2R  has reached a saturation level. 
The construction model frame mentioned previously 

can be exhibited as Fig. 1. 
 

4. Building the regression model 
In this study, the aim of the research is to build a feasible 
and applicable contract stipulated duration model using 
the prediction regression algorithm for clients and con-
tractors. We present a strategy for the model-building 
process which involves several phases. The first phase is 
to identify a subset that includes three explanatory varia-
bles quested from the characteristics of the building con-
struction contract to build a fitted regression model. The 
first phase regression model is fitted with the following 
results: 2R = 0.908, F = 172.057. This should be content-
ly acceptable for the fitted results. In the next steps, the 

regression model formed in first phase is applied to fit the 
actual duration; the result is considered “not good” as the 
stipulated duration results obtained were: 2R = 0.658, 
F = 33.321. When the explanatory variable (contract cost) 
is substituted with actual cost, the result is only “slightly 
better” than the former with 2R = 0.698, F = 43.416. 
After a hard trial effort, other characteristics have no 
effect in heightening the value of 2R  and F. It is imputed 
that some unknown factors deeply influence the efficacy 
of the fitted regression model. In accordance with litera-
ture, it is judged that the construction-duration perfor-
mance could be influenced by a pool of uncertain external 
or internal factors in the construction phase. Subsequent-
ly, two factors, number of change orders and rainy days, 
are formulated and incorporated one after another into the 
third phase regression model. The number of change 
order was taken as the average of change orders of all 
cases during the construction phase while rainy days were 
estimated as the average of rainy days which cease con-
struction in the same duration (e.g. the same commence 
month and completing month that the case was taken) of 
by-gone three years. This process leads to the selection 
and identification of the ultimate regression model, fitted 
with the following “good” results: 2R = 0.920, F = 
115.315. The procedures of operation are illustrated in 
Table 1. 

The final regression model based on the 56 cases is: 

0.920,R  56,n                                  
(0.0034)      (0.0590)         (0.0039)       (0.00064)    (0.0579)   (0.1107)      

 0.01169X0.663X0.02177X0.00092X0.218X  1.238Ŷ

2

54321i

==

+++−+=

  (1) 
where: iŶ  is log (predictive construction duration); X1 is 
log (contract initial cost); X2 is GFA / expected contract 
duration; X3 is number of stories; X4 is modified contract 
duration (estimated rainy days + expected contract dura-
tion) / expected contract duration; X5 is change order; 
(…) is standard error of the estimated coefficient; 2R  is 
adjusted R2; n is number of case. 

 

 
 

 
Fig. 1. Construction Model Frame 

 



Journal of Civil Engineering and Management  2011, 17(4): 529–539 

 

533

Table 1. The Cooperation for Potential Explanatory Variables of 4 Different Phases 
PHASE 1st 2nd 3rd 4th 
constant 1.651 

(23.240) 
1.730 

(11.507) 
  1.119 

(13.767) 
1.238 

(11.591) 
X1 log(contract initial cost) 

0.388 
(8.033) 

0.499 
(4.390) 

1.053 
(10.352) 

0.218 
(3.762) 

X2 (GFA/ expected contract duration) 
–0.00343 
(–6.506) 

–0.002990 
(–2.675) 

–0.00203 
(–3.317) 

–0.000918 
(–1.431) 

X3 Stories 
0.02895 
(8.616) 

0.01870 
(2.630) 

0.02699 
(6.868) 

0.02177 
(5.622) 

X4 (modified contract duration (estimated rainy days + 
expected contract duration) / expected contract duration) 

  0.709 
(11.205) 

0.663 
(11.234) 

X5 Change orders  
   1.169E–02 

(3.455) 
R 0.953 0.811 0.949 0.959 
2R  0.908 0.658 0.901 0.920 

F 172.057 33.321 116.236 115.315 
﹡The actual construction duration is substituted by the expected contract duration during the 1st phase. 
﹡The (…) is t value of the parameter. 

 
Table 2. Model Selection Criteria Plot 

Regression Model R2 2R  MSE AIC  
X1 X2 X3 X5 0.719 0.697 9.130E–02 –263.327  
X1 X2 X3 X6 0.658 0.632 0.10063 –252.425  
X1 X2 X4 X5 0.870 0.860 6.213E–02 –306.434  
X1 X2 X4 X6 0.836 0.823 6.969E–02 –293.572  
X1 X3 X4 X5 0.917 0.910 4.962E–02 –331.620  
X1 X3 X4 X6 0.889 0.881 5.730E–02 –315.494  
X1 X3 X5 X6 0.718 0.696 9.138E–02 –263.222  
X1 X4 X5 X6 0.859 0.847 6.475E–02 –301.811  
X2 X3 X4 X5 0.898 0.890 5.508E–02 –319.914  
X2 X3 X4 X6 0.846 0.834 6.751E–02 –297.139  
X2 X3 X5 X6 0.683 0.658 9.699E–02 –256.551  
X1 X2 X3 X4 X5 0.920 0.912 4.912E–02 –331.868 selected 
X1 X2 X3 X4 X6 0.901 0.891 5.465E–02 –319.903  
X1 X2 X3 X5 X6 0.719 0.691 9.212E–02 –261.425  
X2 X3 X4 X5 X6 0.898 0.888 5.560E–02 –317.986  
X1 X2 X3 X4 X5 X6 0.921 0.911 4.933E–02 –330.522  

  
5. Criteria for model selection 
For variables reduction, it is necessary to identify a small 
group of “good” regression models according to some 
specified criteria. Those criteria could provide time-
saving algorithms for identifying the “best” subset. Dur-
ing the comparison of the regression models, more than 
one criterion is considered in evaluating the possible 
subsets of independent (X) variables. In this study, those 
different criteria for comparing the regression models 
that would be used with the regression selection proce-
dure are R2, adjusted 2R , AIC (Akaike Information 
Criterion) and mean square error (MSE). 

The potential X variables included six explanatory 
variables, leading to 26 possible subset regression models 
that could be formed in the selection procedure. Table 2 

illustrated an abridgement of all different possible su-
bsets by the all-possible-regression approach (Neter et al. 
1996). In the “best” subsets algorithms, four criteria po-
ints to the same “best” subset, subset (X1, X2, X3, X4, 
X5), which may be regarded as the tentative regression 
model. The selection of the final regression model de-
pends greatly upon diagnostic results. Residual plots and 
diagnostic checks are performed mainly to identify influ-
ential outlying observation, multicollinearity, heteroske-
dasticity, etc., and to examine the appropriateness of the 
fitted regression model.   

 
6. Diagnostics 
When a regression model is built, it is important to exa-
mine the aptness of the data model before inferences are 
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made. In this study, some graphic methods for studying 
the appropriateness of the model build, such as linearity 
of the regression function or normality of the error terms 
and the like, as well as several formal statistical tests will 
be discussed.  

Scatter Plot Matrix and Correlation Matrix. A scat-
ter plot matrix facilitates the study of the relationships 
among the variables by the scatter plots within a row or a 
column. Scatter plots of the response variable and against 
each predictor variable can help determine the nature and 
strength of the bivariate relationships between each of 
the predictor variables and the response variables. The 
scatter plot can also find gaps and outliers in the data 
points. 

Table 3 and Fig. 2 show that some of the predictor 
variables are correlated with each other. The degree of 
linear association among the predictor variables is mode-
rate or relatively low. 

 
Table 3. Scatter Plot Matrix and Correlation Matrix (Correla-

tions) 
 Y X1 X2 X3 X4 X5 

Pearson 
Correlation 
       Y 

X1 
X2 
X3 
X4 
X5 

 

1.000 
0.688 
0.265 
0.719 
0.546 
0.750 

 

0.688 
1.000 
0.746 
0.624 
0.126 
0.488 

 

0.265 
0.746 
1.000 
0.207 
0.060 
–0.014 

 

0.719 
0.624 
0.207 
1.000 
–0.027 
0.683 

 

0.546 
0.126 
0.060 
–0.027 
1.000 
0.185 

 

0.750 
0.488 

–0.014 
0.683 
0.185 
1.000 

 
 

 
Fig. 2. Scatter plot matrix among variables 

 
Residual. The following plots of residuals are taken 

from several informal diagnostic plots of residuals to 
provide information on any types of departures from the 
linear regression model.  

1) The residual plot against the fitted value in Fig. 3 
shows no evidence of serious departures from the model. 

 
Fig. 3. Residual Plot 

 
2) The normal probability plot of residuals in Fig. 4 

illustrates a slight departure from linearity. However, the 
problem of normality was not considered a serious im-
pact on inferences to be made from the regression. 

 

 
Fig. 4. Normal P-P Regression Standardized Residual Plot 

 
Test for Heteroskedasticity. The homoskedasticity 

assumption for multiple linear regression states that the 
variances of the unobservable error conditional on the 
explanatory variables is constant. When homoskedastici-
ty fails, the standard errors are no longer valid for const-
ructing confidence intervals and t statistics. Similarly, F 
statistics are no longer F distributed and Lagrange mul-
tiplier (LM) statistic no longer has an asymptotic chi-
square distribution (Wooldridge 2002). That is, the statis-
tics used to test the hypothesis for assumptions are not 
valid in the presence of heteroskedasticity. Many tests 
for heteroskedasticity have been suggested over the 
years. In this study, the Breusch-Pagan test is applied to 
test for heteroskedasticity (Wooldridge 2002). We assu-
med that the ideal assumption of homoskedasticity holds, 
and we required the data to tell us otherwise. The steps 
for testing for heteroskedasticity are abbreviated. Regres-
sing the squared OLS (ordinary least squares) residuals 
on the independent variables, produced R-squared 
= 0.082; thus, LM = 4.592, and the p-value = 0.287. The 
p-value (the smallest significance level for test) exceeds 
the desired significance level. Therefore, we fail to reject 
the null hypothesis of homoskedasticity in the model 
proposed at 10% level. We may conclude that heteroske-
dasticity is not a problem to the study model. 
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Identifying Outlying Observations. The outlying or 
extreme cases may involve large residuals and have dra-
matic effects on the fitted least square regression func-
tion. There is a need to identify the outlying cases care-
fully and decide whether they were to be retained or 
eliminated. A case may be regarded as outlying with 
respect to its Y value, its X value, or both. Not all outly-
ing cases have a strong influence on the fitted function. 
The following steps were performed to determine if the 
regression model under consideration is heavily influen-
ced by one or a few cases in the data set. 

Identifying Outlying Y Observations. Frequently, 
the detection of outlying Y observation is based on an 
examination of the residuals. In the study, we utilize the 
mean of studentized deleted residual for the diagnosis of 
outlying Y observation (Neter et al. 1996). A formal test 
performed by means of the Bonferroni test procedure to 
determine whether the case with the largest absolute 
studentized deleted residual is an outlier. If the regres-
sion model is appropriate, no case is an outlier due to a 
change in the model; each studentized deleted residual 
will follow the t distribution. The studentized deleted 
residual in Fig. 5a shows that cases 21 and 27 have the 
largest absolute studentized deleted residual. Case 27 
which has the largest absolute studentized deleted resi-
dual is an outlier resulting from a change in the model. 
Using the Bonferroni simultaneous test procedure with a 
family significance level of α = 0.10: t(1-α/2n;n-p-1) = 
t(0.9992;50) = 3.506, where n is number of cases, p is 
number of parameters. 

Since t(27) = (2.474;3.506), we may conclude that 
case 27 is not an outlier. The other case 21 is also found 
to be not outlier. 

Identifying Outlying X Observations. The leverage 
value is a useful indicator in a multivariable setting deci-
ding whether or not a case is an outlier with respect to 
the X value. The leverage values greater than 2p/n( = 
0.214) are considered as outlying cases with regard to 
their X values (Neter et al. 1996). The leverage value in 
Fig. 5b shows that cases 53 and 55 have the lar-
gest value, between 0.325 and 0.394. Although these 
values exceed 0.214, they do not exceed 0.5, and hence 
could indicate a moderate leverage. We shall need to 
ascertain how influential those cases are in the fitting of 
the regression function. The following three measures of 
influence are widely used in practice, each based on the 
omission on a single case to measure its influence. 

1) Influence on Single Fitted Value:  
The guideline for identifying influential cases indi-

cates that a case is influential if the absolute value of 
DFFITS exceeds 1 for small to medium data sets (Neter 
et al. 1996). Fig. 5c shows that those DFFITS values of 
case 27, 49, 51, 53 and 56 were much lower than 1. We 
may conclude that those cases were not influential to 
require remedial action. 

2) Influence on All Fitted Value – Cook’s distance: 
The Cook’s distance measure considers the influen-

ce of any one case on all fitted values. The Cook’s D 
value in Fig. 5d depicts that case 49 has the largest dis-
tance value, D = 0.1596, and is lower than the critical 
value of 0.904. It may be concluded that case 49 does not 
influence the regression fit. 

3) Influence on the Regression Coefficients – 
DFBETAS: 

The guideline for identifying influential cases indi-
cates whether the absolute value of DFBETAS exceeds 1 
for small to medium data sets or not (Neter et al. 1996). 
All values of DFBETAS were much lower than 1. We 
may claim that there were no influential factors which 
require remedial action. 

All three influence measures (DFFITS, Cook’s dis-
tance, and DFBETAS) have been ascertained to have no 
influential cases on the fitting of the regression function. 

Multicollinearity Diagnostics – VIF. The VIF is a 
formal method of detecting the presence of multicolli-
nearity which is widely used. The largest VIF value 
among all X variables is often used as an indicator of the 
severity of multicollinearity. A maximum VIF value in 
excess of 10 is frequently taken as an indication that 
multicollinearity may unduly influence the least squares 
estimates. From Table 4, it is observed that all values of 
parameters are lower than 10, point ingout that there is 
no serious multicollinearity in the model. 

 
Table 4.  VIF Value of model parameters 

 X1 X2 X3 X4 X5 
VIF 6.422 3.930 2.906 2.536 1.112 

 
7. Model validation  
Validation of the regression model involves the appropri-
ateness of the variables selected, the magnitudes of the 
regression coefficients, the predictive ability of the model, 
and the like. Cross-validation is used to validate a regres-
sion model by splitting the data into two sets. The number 
of cases for a model-building set should be at least 6–10 
times the number of variables in the pool of predictor 
variables (Neter et al. 1996), the other is for a model-
validation set. In present study, the entire data collected is 
not enough to make an equal split for the five independent 
variables selected to develop the regression model. There-
fore it was determined that the validation data set is small-
er than the model-building data set. The collected thirty-
cases set was used for estimating the regression model, 
and the twenty-six cases set was developed to validate the 
stability of the model. The result can be compared for 
consistency with the regression coefficients between the 
two models illustrated in Table 5. 

 

Table 5. Comparing for the Regression Coefficients of Two Models 
cases R2 2R  β0 β1 Β2 β3 β4 β5 

30 0.945 0.934 1.186 0.262 –0.00133 0.02029 0.650 0.01098 
26 0.869 0.837 1.260 0.186 –0.00511 0.02217 0.684 0.01297 
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a) Studentized Deleted Residual 

 
 
 

 
b) Centered Leverage Value 

 
 
 

 
c) DFFITS 

 
 
 

 
d) Cook's Distance 

Fig. 5. Outlying Observation Case Plot 
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8. The Predictive ability of the regression model  
Furthermore Neter et al. (1996) declared that a mean of 
measuring the predictive ability of the regression model 
selected is to use this model to predict each data set, fol-
lowed by calculating the mean of the squared prediction 
errors, as denoted by MSPR, which stands for mean 
squared prediction error: 

 n
)Y(Y ii

n
i

2
1 ˆΣMSPR −

=
= ,  (2) 

where iY  is the value of the response variable in the ith 
validation case; iŶ  is the predicted value for the ith vali-
dation case based on the model-building data set; n is the 
number of cases in the validation data set. 

If the mean squared prediction error MSPR is fairly 
close to MSE based on the regression fit to the model-
building data set, it shows that the error mean square 
MSE for the selected regression model is not seriously 
biased and gives an appropriate indication of the predicti-
ve ability of the model (Neter et al. 1996). It was found 
that the MSPR = 0.002572 is quite close to MSE = 
0.002610, highlighting that the predictive ability of the 
selected regression model could be adequate in the future. 

 
9. Discussion of the results  
Some limitation on the applicability of this proposed 
model arises from the size of samples and the range of 
building functions that it encompasses. The sample size 
of 56 sets a limitation, but the adjusted R-squared of 
0.920 indicates that the sample size was sufficient to 
produce a significant model for prediction construction 
duration. The coefficient of GFA per Contract duration is 
negative, which indicates that construction duration tends 
to decrease with GFA per Contract duration for the pro-
ject sample. The outcome also had been acquired by Love 
et al. (2005). On the other hand, coefficients of other 
explanatory variables are positive, which indicates that 
project construction duration tends to increase. 

During construction stage, change order of projects 
might greatly affect the duration of projects; the more 
change orders, the more influences. At the model buil-
ding stage of this research, expected change order adopt 
the average number of change order in construction stage 
of all 56 cases. For SRC buildings in Taiwan, they are 
still at early stage of development. Due to characteristics 
of SRC buildings in construction process, it is far more 
complicated than traditional RC structure, and leads to 
more change orders. The average number of change or-
ders is up to 2.7 times and is shown on the equations of 
model building from this research. As for the estimation 
of duration by the model proposed in this study, it might 
be operated and judged through the contents of construc-
tion design and tender. In the situation of no change or-
der, the number of change order might be set as zero. 

The reason why rainy day is considered in the pre-
diction model of this research is due to the lack of atten-
tion in literature. However, the condition of climate do 
affects the productivity performance of construction pro-

jects. Rainy days do influence the implementation of 
schedule. There are two rainy seasons in Taiwan which 
are plum raining and typhoon seasons. When construction 
projects encounter these two seasons, it would be difficult 
to push construction on schedule. Therefore, this factor is 
considered as a variable and single out. 

The modified contract duration shown in equation 1 
is formed by estimated rainy days plus construction days 
during expected construction period of contract. The 
estimated rainy day is based on average rainy days of the 
past three years in the same beginning and finished date. 
For example, the expected construction duration of one 
SRC building is ten months from February 1 of 2009 to 
November 31 of 2009, the estimated rainy day is adopted 
as average rainy days from 2006 to 2008 in the same 
beginning and finished date. 

Fig. 6 illustrated the accuracy of the model with low 
deviation and residual. The result showed that the model 
possesses effective ability to predict construction duration 
of SRC building project. 

 

 
Fig. 6. Predicting Construction Duration vs. Actual Construc-
tion Duration 

 
In order to further confirm the predictive ability of 

the model proposed in practical application, other diffe-
rent but similar 11 SRC construction projects not in the 
data set used for modeling, as they finished after the sam-
pling, were taken to test. The information of their basic 
data and the outcomes of prediction are shown as follows: 
contract initial cost of US $843,750–US $20,090,750, 
expected contract duration days of  300–900, a gross 
floor areas of 1,579–60,380 m2, stories of 3–15, change 
orders of 1–9, and actual construction days of 292–1060. 
The error percentage of the forecasting construction dura-
tion came –7.37% to 3.30%. The results showed effecti-
veness of the model in this study to forecast construction 
duration for SRC structure. Furthermore, it also elucida-
ted that a case had unreasonable contract duration as un-
derestimated by the client, whereas the actually necessary 
construction duration was considerably close to the dura-
tion predicted by the model proposed. The model could 
be an objective and reliable tool to client and contractor 
for estimating the actual necessary duration and further 
evaluating contract duration of SRC building. 
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10. Conclusions  
In this study, a set of 56 SRC construction cases were used 
to develop a construction-duration prediction model for SRC 
buildings. This research identifies the significant factors that 
could be derived from building project characteristics and 
uncertain factors. A logical approach is employed to select 
the “good” regression model when the contract cost, the 
gross floor area and stories are known, while the numbers of 
change orders and rainy days are rationally estimated. Nec-
essary diagnostics are adopted to examine the aptness of the 
model before inference. The cross-validation is used to test 
the appropriateness of the variables selected and magnitudes 
of the regression coefficients. The MSPR is also selected to 
measure the predictive ability of the model proposed, with 
result showing that the adequately predictive ability of the 
model. Furthermore, additional 11 newly finished cases are 
taken to test the predictive accuracy of the model individual-
ly, and the result shows that the actually necessary construc-
tion duration is considerably closed to the predictive dura-
tion. According to our forgoing derived process, it is 
sufficiently easy for clients to determine a suitable and ap-
plicable contract duration of SRC building. It can provide 
contractors an objective basis for assessing the completion 
duration to decide what policy to implement for the SRC 
construction project. This model also can facilitate a rapid 
appraisal of design change and weather factors on the timely 
performance of building projects. In other words, it could 
allow clients and contractors to pre-determine some ar-
rangement for alleviating the influence of external and inter-
nal uncertainty. Overall, it is concluded that the process of 
development is a pragmatic approach, and the prediction 
model is an indispensable, fast, cost-efficient, and relatively 
easy forecasting tool to be utilized in practical construction 
management. 
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STATYBŲ PROJEKTO REALIZAVIMO TRUKMĖS MODELIO, PAGRĮSTO ISTORINIAIS DUOMENIMIS, 
KŪRIMAS  
M.-C. Lin, H. P. Tserng, S.-P. Ho, D.-L. Young 
S a n t r a u k a  
Vėlavimas realizuojant stambius statybų projektus tebėra dažna problema. Ši situacija ypač rimta dirbant su gelžbetoninių 
statybų projektais, kuriais populiarinama naujų konstrukcijų sistema Taivanio statybų sektoriuje. Šiuo tyrimu siekiama 
sukurti tinkamą sutarties trukmės modelį, pagrįstą keliais gelžbetoninės statybos atvejais. Atrenkant ir užtikrinant, kad 
būtų sudarytas „geras“ regresijos modelis, kai projekto savybės žinomos, o išoriniai neapibrėžtumai pakankamai įvertinti, 
taikytas loginis metodas. Prieš darant išvadas modelio tinkamumas buvo išnagrinėtas naudojant skirtingas būtinos diag-
nostikos priemones. Naudojant kryžminį patikrinimą pagrindžiamas pasirinktų kintamųjų tinkamumas ir regresijos koefi-
cientų vertės. Siekiant įvertinti siūlomo modelio tinkamumą prognozuoti, apskaičiuotos vidutinės kvadratinės 
prognozavimo paklaidos (angl. Mean of the Square Prediction Errors, MSPR). Rezultatas rodo, kad pasirinktasis regresi-
jos modelis prognozuoja gana gerai. Pagaliau pasirinkus kelis atvejus išbandomas siūlomo modelio prognozių tikslumas. 
Rezultatas rodo, kad faktinė būtina statybų trukmė gana artima modelio prognozuojamai trukmei. Daroma išvada, kad 
siūlomą trukmės prognozių modelį galima taikyti gelžbetoninės statybos projektuose, o jo rezultatai bus gana patikimi.  
Reikšminiai žodžiai: statybų projektas, statybos, trukmės prognozės, regresija, heteroskedastiškumas, pagrindimas. 
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