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Abstract. This paper deals with a theoretical and a numerical analysis of local stability of web of tapered beams subjected 
to a pure bending moment. A standard FEM code COSMOS/M has been used for a numerical estimation of a critical load 
multiplier. It has been assumed that the critical stress of the web of tapered beam could be calculated in an analogous way 
as for uniform member just with an additional correction factor w.bα . A large number of simulations carried out within a 
wide range of the ratios of second moments of area allowed to determine the proper values of that factor. In the paper 
there was investigated the influence of steel grade, relative slenderness and beam’s ends cross-section moments of inertia 
ratio to the local stability of web of the tapered beam subjected to pure bending. 
Keywords: local stability of web, tapered beam subjected to pure bending, finite element method, critical stress of the 
web, warping. 

 
1. Introduction 

During the last years, light steel structures have been 
extensively used as being the most effective in practical 
application. The main advantages of such kind of struc-
tures are the effective usage of materials and quick erec-
tion as well as their good exploitation characteristics. 
Over the past two decades, solution of the buildings with 
tapered frames, manufactured from high-tensile steel, 
have become a standard. The use of automatic welding 
techniques minimizes the cost of such tapered members. 
Their contours are quite close to the bending moment 
diagram form, so the bearing capacity of cross sections is 
effectively utilized. With this type of frames the web 
depth-to-thickness ratio can exceed 200. There is no need 
in many additional stiffeners in this case. 

Analysis of such kind of frames is rather complica-
ted and not widely investigated in the literature. For 
example, there are no recommendations in Eurocode 3 
(2006) how to calculate such structural members. A thin-
walled beam subjected to bending moment can loose 
stability in lateral torsional buckling mode. 

Stability of tapered elements was investigated in re-
ferences Bazeos, Karabalis (2006), Becque, Rasmussen 
(2009), Raftoyiannis, Ermopoulos (2005), Saffari et al.  
(2008), Salem et al. (2009), Šapalas et al. (2000, 2002, 
2004, 2005). Authors of which proposed to calculate 
tapered columns as uniform members, using additional 
factors, so that failure was only due to overall buckling 
and yielding. This treatment is appropriate for solid sec-
tion members, and for members whose cross-sections are 
composed of comparatively thick-plate elements, inclu-
ding many hot-rolled steel sections.  

 

 
Fig. 1. Ultimate strength of plates 

 
However, in some cases the member cross-section is 

composed of more slenderplate elements. These slender-
plate elements may buckle locally and the member may 
fail prematurely. A slender-plate element does not fail by 
elastic buckling, but exhibits significant post-buckling 
behaviour. Because of this, the plate's resistance to local 
failure depends not only on its slenderness, but also on its 
yield strength and residual stresses, as shown in Fig. 1. 
The resistance of a plate element of intermediate slender-
ness is also influenced significantly by its geometrical 
imperfections, while the resistance of a stocky-plate ele-
ment depends primarily on its yield stress and strain-
hardening moduli of elasticity, as indicated in Fig. 1.  

Some authors investigated local stability of tapered 
members Moon et al. (2009), Zhang, Tong (2008). 
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2. Stability theory of plate elements 

2.1. Plate elements in bending  

The thin flat plate of length , width d , and thickness L t  
shown in Fig. 2 is simply supported along all four edges. 
The plate is loaded by bending stress distributions which 
vary linearly across its width. 
 

 
Fig. 2. Buckle patern of a plate in bending 

 
When the maximum stress reaches the elastic buck-

ling value  the plate can buckle out of its original 
plane as shown in Fig. 2. The elastic buckling stress can 
be expressed in the form: 
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σk  – buckling coeficient depends on  ratio and the 
number of buckles along the plate.  
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Local stability of web of the uniform cross-section 
beam without local stresses  according to Lithu-
anian design code should be checked by formula: 
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Edxw ,,σ  – elastic buckling stresses calculated using for-
mula: 
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Rdcrw ,,σ  – critical buckling stresses calculated using 
formula: 
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Efth dyww // ,⋅=λ  – relative slenderness of web; 

 – critical buckling factor depending on geometrical 
characteristics of the cross-section of the beam taken 
according to the factor : 
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8.0=β  – factor for I section beams. 
 

2.2. Stability of web of tapered beam 

In this paper the beam subjected to pure bending (Fig. 3) 
was investigated. 

 
Fig. 3. Tapered beam subjected to pure bending 
 

According to Academician Dinnik (1955) tapered 
member can be described using beam’s ends cross-
section moments of inertia ratio (nondimensional): 
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Solving the equation (2) the critical bending mo-
ment  value for an unifom cross-section beam can 
be obtained. Critical bending moment of tapered beam 
can be calculated according to the formula: 

2,crM

 . (7) 2,. crwbtap MM ⋅α=

In the paper there was investigated the influence of 
steel grade, relative slenderness and beam’s ends cross-
section moments of inertia ratio to the local stability of 
web of the tapered beam subjected to pure bending. 

The dimensions of beam were chosen: lengh of be-
am – m5=L ; width of flange of the beam – 

m2.0=fb ; thickness of flange m01.0=ft . Beam’s 
bigger end cross-section height m5.02 =h .  

Beam’s ends cross-section moments of inertia ratio 
vary: 
 0.1;8.0;6.0;4.0;2.0;05.0=k . 

Beam’s ends cross-section moments of inertia ratio 
varies using difrent beam’s smallest cross-section height 
(Table 1). 

 

Table 1. Beam’s smallest cross-section height 

k 0.05 0.2 0.4 0.6 0.8 1.0 
h1 

(m) 0.0625 0.238 0.328 0.40 0.452 0.5 

 
Thickness of the web was taken so that relative slen-

derness varies from 3.5 to 6.0 (Table 2). 
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Table2. Thickness of web 

Thickness of web tw (m) depending on steel Relative slen-
derness of 

web wλ  
S235 S275 S355 

3.5 0.00458 0.00497 0.00553 
4.0 0.004 0.00434 0.00484 
4.5 0.00356 0.00386 0.0043 
5.0 0.00321 0.00348 0.00387 
5.5 0.00292 0.00316 0.00352 
6.0 0.00267 0.0029 0.00323 

 
According to this data there was calculated critical 

bending moment  (Fig. 4) as for uniform member 
for various steel classes and relative slenderness of web. 

2,crM

 

 
Fig. 4. Critical bending moment depending on relative  
slenderness of web and steel class 

 
3. Stability analysis by the finite element method 

3.1. Concepts of the stability analysis 

The FEM has long been recognised as one of the most 
effective techniques for analysing common thin-walled 
structures and their structural members under arbitrary 
loading and boundary conditions Andrade et al. (2007), 
Das et al. (2009), Yau (2006), Li (2002), Ozgumus, Kaya 
(2007), Ronagha et al. (2000), Samofalov et al. (2004), 
Šešok, Belevičius (2008).   

The most general critical condition, at which stabili-
ty of a structure impends, is obtained considering second 
variation of the total potential energy. By applying a 
standard finite element approach, the system of geometri-
cally non-linear equations can be symbolically written in 
the following form: 
 ( )     ,  0 uFA = ,   (8) 

A  – a differential operator, in the most general case non-
linear in load  and displacement . This equation can 
be presented by incremental form: 

F u

 [ ] [ ] [ ]( )                    FuKKK Δ=Δ++ uglin ,   (9) 

[ ]linK  – a linear elastic stiffness matrix,  is an  

geometric stiffness matrix, 

[ gK  ]
[ ]uK   is an initial displace-

ment stiffness matrix, uΔ  is a vector of displacement in-
crements and FΔ  is the increment of the external loading. 

In the presented research, the stability problem is 
limited by linearized formulation of the lateral buckling, 
when only small strains and finite rotations have to be 
considered, i.e. [ ] 0 u =K . It is assumed that the load 
state is described by external load vector  and a scalar 
load-intensity factor 

F
crλ . The second variation of the 

total potential energy provides a mathematical model of 
the stability problem expressed as well known in mathe-
matics as eigenvalue problem: 

[ ] [ ]( )              0rKK =+ crgcrlin λ , (10) 

[ ]g K crλ – a geometric stiffness matrix, while  is the 
stability load factor and  is the vector of buckling 
mode shapes. The number of given values for the load 
factor and shape modes depends on the number of the 
equations, consisted in system (10). The most interesting 
research in civil engineering is the first value and corre-
sponding shape mode, while other results are more im-
portant for theoretical analysis. 

crr

For modelling the typical triangle shell element 
from the code COSMOS/M was applied (Fig. 5). These 
finite elements are defined by 18 DOF. Each of nodes of 
such FE is described by three linear displacements 

 and three rotations zyx uuu and , zyx ϕϕϕ  and   , . 

 
Fig. 5. Shell FE with its DOF 

 
The above-mentioned finite elements have been 

used for the buckling analysis of beam.  
 

3.2. Numerical solution of the local stability of web of 
the tapered beam 

The beam has been modelled by using an assumption, that 
its cross sections are subjected to bending moments only, 
end-sections “A” and “B” have been supported in the 
cross-sectional direction and one of the ends had the axial 
node, which cannot move in the longitudinal direction. 
Many of solutions with a wide range of the ratios of cross-
sectional characteristics have been carried out. At the big-
ger end the beam has been subjected to the critical bending 
moment 2,crM  (Fig. 6), given as for an uniform member 
by using the bigger end geometrical characteristics. 
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Fig. 6. Geometry and external loading by the bending moment 
of the tapered beam  

  

w.bαFig. 9. Correction factor  depending on a second moment 
of area ratio. Relative slenderness of web – 4.0  

 
 

 
Fig. 7. Local buckling shape mode of the tapered beam, accor-
ding solution by the FEM code COSMOS/M 

 
There were carried out a large number of simula-

tions within a wide range of variations of the moment of 
inertia of the beam cross-section. Firstly, the beam has 
been loaded by bending moment  

2,crM , solved as for the 
uniform member. Secondly, by using an original program 
COSMOS/M (Fig. 7) the correction factor  has been 
calculated.  

w.bαFig. 10.  Correction factor  depending on a second  
moment of area ratio. Relative slenderness of web – 4.5  

w.bα  
 

From these simulations many values of the correction 
factor  for the pin-ended beam subjected to pure ben-
ding have been calculated (Fig. 8–17). By using computer 
simulations there have been determined, that values of 
correction factor  found for pin-ended beam can also 
be used for other types of the beam support conditions. 

w.bα

w.bα

 

 

w.bαFig. 11. Correction factor  depending on a second moment 
of area ratio. Relative slenderness of web – 5.0  

 

 
Fig. 8. Correction factor  depending on a second moment 
of area ratio. Relative slenderness of web – 3.5  

w.bα
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w.bαFig. 15. Correction factor  depending on relative  
slenderness. Second moment of area ratio – 0.4  

 
Fig. 12. Correction factor  depending on a second  
moment of area ratio. Relative slenderness of web – 5.5  

w.bα
 

  

 
 

w.bαFig. 16. Correction factor  depending on relative  
slenderness. Second moment of area ratio – 0.6  Fig. 13. Correction factor  depending on a second  

moment of area ratio. Relative slenderness of web – 6.0  
w.bα

  

 
Fig. 14. Correction factor  depending on relative  
slenderness. Second moment of area ratio – 0.2  

w.bα  

w.bαFig. 17. Correction factor  depending on relative  
slenderness. Second moment of area ratio – 0.8   
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4. Conclusions Raftoyiannis, I. G.; Ermopoulos, J. Ch. 2005. Stability of tape-
red and stepped steel columns with initial imperfections, 
Engineering Structures 27(8): 1248–1257.  1. From the numerical experiments the correction 

factor for calculation local stability of the web of tapered 
beam subjected to pure bending was obtained. 

 doi:10.1016/j.engstruct.2005.03.009
Ronagha, H. R.; Bradfordb, M. A.; Attardb, M. M. 2000. Non-

linear analysis of thin-walled members of variable cross-
section. Part II: Application, Computers & Structures 77:  
301−313. 

2. After the analysis of the obtained results there 
was determined, that this factor depends only on the  
beams ends cross-section moments of inertia ratio. doi:10.1016/S0045-7949(99)00224-2

3. When the relative slenderness is increasing the 
resistance of beam’s web stability is also increasing. 
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GRYNAI LENKIAMOS TRAPECINĖS SIJOS SIENELĖS VIETINIS PASTOVUMAS  
V. Šapalas 
S a n t r a u k a 
Straipsnyje aprašyti teoriniai ir skaitmeniniai grynai lenkiamų trapecinių sijų sienelės vietinio pastovumo tyrimai. Kritinis 
apkrovos daugiklis gautas baigtinių elementų metodo programa COSMOS/M. Atlikus teorinius tyrimus nustatyta, kad 
trapecinės sijos sienelės vietinį pastovumą galima apskaičiuoti kaip pastovaus skerspjūvio sijai naudojant papildomą koe-
ficientą . Atlikus skaitinius eksperimentus kintant sijos galų skerspjūvio inercijos momentų santykiui, gautos tikslios 
šio koeficiento reikšmės. Straipsnyje nagrinėta plieno klasės, sijos sienelės sąlyginio liaunio ir sijos galų skerspjūvio iner-
cijos momentų santykio įtaka grynai lenkiamai trapecinei sijai. 

wb.α

Reikšminiai žodžiai: vietinis sienelės pastovumas, grynai lenkiama trapecinė sija, baigtinių elementų metodas, kritiniai 
sienelės įtempiai. 
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