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Abstract. An application of fragility functions to the assessment of potential damage due to an accidental action is ana-
lysed. The assessment is carried out as an estimation of the probability of a foreseeable damage event (damage probabil-
ity). This probability is expressed as a mean value of a fragility function developed for the damage event under study. A 
Bayesian prior (posterior) distribution specified for this mean value is used as an estimate of the damage probability. The 
prior distribution is derived by transforming prior knowledge through the fragility function and “mapping” this knowledge 
on the scale of probability values. The technique of Bayesian bootstrap resampling is applied to update the prior distribu-
tion. The new information used for the updating consists of a relatively small number of experimental observations of the 
accidental action. To facilitate the updating, these observations are transformed into a fictitious statistical sample of fragil-
ity function values. The updating is first carried out with a fragility function which expresses aleatory uncertainty only. 
Then it is proposed how to perform the updating with the fragility function which quantifies both aleatory and epistemic 
uncertainty. This is done by discretising continuous distributions of the epistemic uncertainty related to values (parame-
ters) of the fragility function. The proposed approach allows to utilise different sources of information for the damage as-
sessment. A potential field of application of this approach is risk studies of hazardous industrial facilities. 
Keywords: accidental action, damage, fragility function, uncertainty, bootstrap, Bayesian approach. 

 
1. Introduction 
The need to design structures which can withstand envi-
ronmental and man-made hazards arises in many areas of 
structural engineering. An occurrence of hazard is called 
the accidental situation, that is, a situation, in which the 
structure can be damaged by accidental actions (ENV 
1998, ISO 1998). The design for an accidental action may 
face uncertainties related to both characteristics of this 
action and response of structure to it. These uncertainties 
can be handled by means of a quantitative risk assessment 
(QRA). QRA can be seen as a methodology for system-
atic and consistent quantification and propagation of un-
certainties related to rare and hazardous phenomena. 
QRA distinguishes between aleatory (stochastic) and 
epistemic (state-of-knowledge) uncertainties (e.g. Aven, 
Pörn 1998). 

The design of structures for accidental actions in-
cludes the concept of fragility (Casciati, Faravelli 1991). 
Fragility is expressed quantitatively as a probability of 
structural failure (damage) conditional on a specific in-
tensity of accidental action. A result of fragility analysis 
is a fragility function. Such a function is used mainly for 
earthquake risk assessment (e.g. Ellingwood 1998, 2001; 
Park et al. 1998). However, the concept of fragility func-
tion can also be adapted to predicting damage due to 
accidental actions of any kind. 

In its simplest form, a fragility function quantifies 
the aleatory uncertainty. However, the incomplete knowl-
edge of the behaviour of the structure subjected to a spe-
cific accidental action can cause that this function will be 
uncertain in the epistemic sense. An assessment of poten-
tial damage due to accidental action may require to han-
dle aleatory and epistemic uncertainties related to both 
action and fragility function. These uncertainties can be 
quantified in line with the classical Bayesian approach to 
QRA (Aven, Pörn 1998; Vaidogas 2006, 2007b). 

In this paper, the assessment of damage is under-
stood as an estimation of probability of foreseeable dam-
age event (briefly, damage probability). It is shown that 
an estimate of this probability can be expressed in the 
form of Bayesian prior (posterior) distribution. Two types 
of fragility function are used to specify the prior distribu-
tion: the function which expresses aleatory uncertainty 
only (crisp fragility function) and a function, the values 
of which are uncertain in the epistemic sense (uncertain 
fragility function). 

The paper considers the case where the new data 
used for the updating of the prior distribution has the 
form of a small-size statistical sample. Elements of this 
sample are observations of potential accidental action 
recorded in experiment. They must be highly relevant to 
the specific situation of exposure to the action (briefly, 
exposure situation). The key idea of the paper is to trans-
form the new data into values of a fragility function 
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developed for the damage event under study. This trans-
formation allows to estimate the damage probability with 
the small-size sample. The estimation is expressed as a 
problem of Bayesian statistical inference about a mean 
value of a fictitious population consisting of fragility 
function values. 

 
2. Fragility functions in damage assessment 
2.1. Damage probability as a mean of fragility 
Possible damage due an accidental action can be repre-
sented by a finite set of nd random events Di (i = 1, 2, … , 
nd), each standing for a foreseeable and specific damage 
phenomenon (structural failure). Probabilities (frequen-
cies) of Dis can be grouped into a risk profile related to a 
particular accidental action and a specific exposure situa-
tion (Vaidogas 2005a, 2007; Jankovski, Atkočiūnas 2008; 
Vaidogas, Juocevičius 2008a; Zavadskas, Vaidogas 
2008). 

The probability of Di can be expressed in the form 
of a mean value: 
 ))|(()(d)|()|(

all
Yyy

y
Y iii DPEFDPAADP == ∫ , (1) 

where AA is the random event of occurrence of an acci-
dental action; Y is the random vector of action character-
istics; y and FY(y) are the value of Y and its joint distribu-
tion function, respectively; P(Di | y) is the fragility 
function relating y to the probability of Di. Arguments of 
the fragility function, y, are called the demand variables 
(e.g. Der Kiureghian 1999; Sasani et al. 2002; Vaidogas, 
Juocevičius 2008b). 

The fragility function P(Di | y) can be expressed as 
some function pi(⋅) which takes on probability values: 
 )|()( yy ii DPp = . (2) 
This function allows to introduce a random variable 
 )|()( YY~

ii DPpP == . (3) 
A mean value of P~ , subsequently denoted by µ, is equal 
to the damage probability: 
 )|()( AADPPE i==

~µ . (4) 
The main problem of an estimation of µ lies in the 

difficulty of selecting the distribution function FY(y). 
Information on many accidental actions can be scarce; 
direct experimental data on a specific action can be un-
available at all. Further problem encumbering the estima-
tion of µ can be uncertainties related to values of the 
fragility function )|( yiDP . 

 
2.2. Crisp and uncertain fragility functions 
The simplest fragility function )|( yiDP  expresses the 
aleatory uncertainty related to the event of interest (e.g. 
Fabbrocino et al. 2005, Lee, Rosowski 2006; Li, Elling-
wood 2007). Such a function does not contain subjec-
tively assigned information in the form of epistemic un-
certainty measures (is purely objective). Most authors, 
however, use fragility functions containing subjective 
(judgmental) elements which can be treated as measures 

of epistemic uncertainty (Ellingwood 1998, 2001; 
Ghoicel et al. 1998; Liel et al. 2008; Ravindra 1995). 

Der Kiureghian (1999) and Sasani et al. (2002) pro-
posed to develop a fragility function by means of Bayes-
ian limit state models. Such a function can be developed 
for Di if it is backed by one or several limit state func-
tions gi(z, y | θ), where z is the vector of variables describ-
ing the capacity of structural member and θ denotes the 
vector of model parameters. With a fixed (crisp) θ, the 
fragility function expresses aleatory uncertainty only and 
is defined as 
 P(Di | y) = P(gi(Z, y | θ) ≤ 0), (5) 
where Z is the random vector quantifying aleatory uncer-
tainty in z. A possible epistemic uncertainty in θ can be 
modelled by a random vector Θ with a joint probability 
density function (or, briefly, density) π(θ). This density is 
treated as a prior distribution and can be updated using 
the standard expression 
 π(θ | data) ∝ L(data | θ) π(θ), (6) 
where L(data | θ) is the likelihood function. 

With the random Θ, the fragility function P(Di | y) 
becomes a random variable. Such a function will be 
called the uncertain fragility function and denoted by 
 Fi(y | Θ) ≡ P(Di | y,Θ) = P(gi(Z, y | Θ) ≤ 0). (7) 

The following consideration seeks to answer the 
question, how to estimate the damage probability 

)|( AADP i  with the crisp and uncertain fragility func-
tions, namely, with P(Di | y) and P(Di | y,Θ). 

 
3. Bayesian estimation of damage probability  
with crisp fragility function 
3.1. Fragility function & prior knowledge 
Eqs (3) and (4) imply that the damage probability 

)|( AADP i  is an uncertain distribution parameter  µ 
amenable to Bayesian inference. A prior density π(µ) of 
µ can be specified by utilizing the knowledge which is 
more or less relevant to the exposure situation under in-
vestigation. Such knowledge is often available to the 
engineer. 

The prior knowledge, which is specific to a particular 
accidental action, may be expressed in the form of a 
mathematical model ϕ(⋅). This model relates characteristics 
of exposure situation to characteristics of accidental action: 
 y = ϕ(x | ξ), (8) 
where x is the vector describing characteristics of the 
exposure situation, in which an accidental action can 
occur; ξ is the vector of parameters of ϕ(⋅). Examples of 
ϕ(⋅) are models used for predicting the pressure signal of 
an explosion in a given exposure situation (e.g. 
Casal 2008). 

Components of ξ may be uncertain in the epistemic 
sense. The exposure situation represented by x may be 
uncertain in the aleatory sense. This uncertainty can be 
modelled by a random vector X with an aleatory distribu-
tion function FX(x). 
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A part of the prior knowledge should be represented 
by the fragility function pi(y). Thus pi(⋅) together with the 
model ϕ(⋅) form the main part of the prior knowledge 
(Blocks 1 and 2, Fig. 1). 

 
3.2. New information on accidental action 
The need to apply Bayesian inference to the estimation of 
the damage probability )|( AADP i  may stem mainly 
from a partial irrelevance of the prior knowledge to a 
particular exposure situation. The configuration of a 
structure exposed to an accidental action as well as the 
accident capable of inducing this action may be unique by 
a large margin. They may fit in the prior knowledge only 
partially. The source of the partial irrelevance may lie in 
the structure of the model ϕ(⋅) and/or data used to fit the 
distribution function FX(x) and estimate the parameters ξ 
of ϕ(⋅). 

The partial irrelevance of the prior knowledge ex-
pressed by ϕ(⋅) may require to combine this knowledge 
with the new data which is highly relevant to the expo-
sure situation under analysis (Block 3, Fig. 1). In line 
with the Bayesian approach, the new data must be repre-
sented by the sample 
 }, ...,, ...,,{ 21 nj yyyy ′′′′=′y . (9) 
This sample can be recorded in a series of n experiments. 
Each of them should imitate a potential accident and dif-
fer from remaining ones in the sense of random sampling 
(e.g. Barnet 1991). The sample y′  should posses the 
property called by statisticians the “representativeness”. 

In theory, the size n of y′  can be such that the 
model ϕ(⋅) will no longer be needed. With the large n, the 
action model FY(y) can be fitted to y′  and the probability 

)|( AADP i  calculated by means of Eq (1). In practice, 
however, the cost of the experiments can cause that the 
 

size n of y′  will be too small to apply the classical statis-
tical approach to the selection of FY(y). In the opposite 
case where the model ϕ(⋅) is sufficiently accurate and 
relevant to exposure situation, FY(y) can be selected by a 
simulation-based propagation of aleatory and epistemic 
uncertainties through ϕ(⋅) (Vaidogas 2005b, 2007a, b). In 
the latter case, the estimation of )|( AADP i  will be pos-
sible without the sample y′ . Thus the estimation of 

)|( AADP i  by applying both ϕ(⋅) and y′  can be seen as 
an intermediate problem located between two extreme 
problems: estimation solely by means of a large-size 
sample y′  and estimation based mainly on the applica-
tion of ϕ(⋅). 

The experiments producing the sample y′  may be 
unique and carried only once. Therefore it is probable 
that the Bayesian updating with y′  will be a single act, 
rather than a more or less constant process. 

Given y′  and the crisp fragility function P(Di | y), 
one can simplify the estimation of )|( AADP i  by intro-
ducing the following fictitious sample (Block 4, Fig. 1): 
 p = {p1, p2, … , pj, …, pn}. (10) 
The jth element of p is calculated by 
 )|()( jijij DPpp yy ′=′= . (11)  
A simple, one-dimensional visualization of the samples 
y′  and p is shown in Fig. 2. 

The introduction of p turns the initial estimation of 
)|( AADP i  with the multi-dimensional sample y′  into a 

one-dimensional problem of statistical inference. Ele-
ments of p can be treated as realisations of the random 
variable P~ , the mean value of which, µ, is equal to 

)|( AADP i  (Eqs (3) and (4)). Consequently, p can be 
applied as new information to the updating of a prior 
density π(µ). 
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Fig. 1. The algorithm for the Bayesian estimation of the damage probability P(Di | AA) by means of the crisp and uncertain  
fragility functions P(Di | y) and P(Di | y,Θ) 
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3.3. Specifying the prior density with crisp fragility 
function 
Epistemic uncertainties related to the parameters of the 
model ϕ(x | ξ) can be expressed by introducing a random 
vector Ξ with a distribution function FΞ(ξ). Then a re-
placement of the random vector Y by the random function 
ϕ(X | Ξ) will yield an epistemic random variable 

∫==

x
XX xxX~

all
)(d))|(|()))|((( FDPpEM ii ΞϕΞϕ .(12) 

A value of M~  is the damage probability at given ξ, 
namely, )))|(|(( ξXX ϕiDPE . A density of M~  can be 
used as the prior density π(µ) quantifying the epistemic 
uncertainty in the damage probability )|( AADP i  
(Block 5, Fig. 1). 
 
3.4. Updating the prior density of damage probability 
The standard Bayesian posterior density has the form 
 π(µ | data) ∝ π(µ) L(data | µ), (13) 
where “data” is represented by the samples p or y′  
(Fig. 2). The usual Bayesian posterior π(µ | data) can be 
replaced by the estimated posterior (Vaidogas 2007b): 
 data)|(ˆ µπ  ∝ )|(data)( µµπ BL̂ , (14) 
where )|(data µBL̂  is an estimate of the likelihood func-
tion (Block 6, Fig. 1). This estimate is based on a boot-
strap estimation of the density of the pivotal quantity 

Mn

~ˆ −µ , where nµ̂  is the mean value of the sample p. A 
possibility to replace L(data | µ) by )|(data µBL̂  was first 
suggested by Boos and Monahan (1986). 
The estimate )|(data µBL̂  is calculated by 
 ∑

=




 ′−−= B

b

bnn
nB wwB

L
1

)21)|( µµµ
κµµ

ˆˆ
ˆˆ , (15) 

where B is the number of random bootstrap samples of 
the size n generated from the empirical distribution func-

tion nF̂  of the data p; bnµ′ˆ  is the mean value of the bth 
bootstrap sample; κ(⋅) is the kernel function (e.g., density 
of standard normal distribution); w is a bandwidth (win-
dow width, smoothing parameter). 

The resulting estimate of the posterior density of 
)|( AADP i  is calculated by the following expression 

(Block 7, Fig. 1): 
 )|()()()|( µµµπµµµπ nBnn LC ˆˆˆˆˆ = , (16) 
where )( nC µ̂  is the normalizing constant. 

Practical implementation of the bootstrap-based up-
dating procedure is relatively simple, as the estimates 

)|( µµnBL ˆˆ  and )|( nµµπ ˆˆ  can be computed almost 
automatically (details are given by Davison, Hinkley 
1998, Davison et al. 1992, and Shao, Tu 1995). 

 
4. Estimation of damage probability with uncertain 
fragility function 
4.1. Problem 
Now the estimation of the damage probability 

)|( AADP i  will be extended to the case of the uncertain 
fragility function Fi(y | Θ) (Eq (7)). The epistemic uncer-
tainty quantified by Fi(y | Θ) can be averaged out or dis-
cretised by calculating the so-called bounds on fragility 
(Der Kiureghian 1999). However, such handling of the 
epistemic uncertainty leads to a partial loss of informa-
tion expressed by Fi(y | Θ). It makes sense to estimate 

)|( AADP i  by utilizing as much of this information as 
possible. This pertains to both specifying the prior den-
sity π(µ) and calculating the posterior density )|( nµµπ ˆˆ . 
 
4.2. Specifying the prior density with uncertain  
fragility function 
The prior of µ can be specified as described in Sec 3.3. 
Let us introduce an epistemic random variable 

)(ny′(1)y′ y
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Fig. 2. One-dimensional visualization of the damage probability estimation with the crisp fragility function P(Di | y)  
(y′(j) is the jth element of the ordered sample) 
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X iFEM =′   

          )(d)|)|((
all

xx X
x

FFi ΘΞϕ∫= . (17) 

A value of M ′~  is the damage probability corresponding 
to given values ξ and θ of Ξ and Θ, namely, 

))),|(|(( θξXX ϕiDPE . A density of M ′~  serves natu-
rally as the prior density π(µ) of the damage probability 

)|( AADP i  (Block 5, Fig. 1). 
 
4.3. Creating the sample of new data 
In case of the uncertain fragility function Fi(y | Θ), an 
incorporation of the new data y′  into the updating of 
π(µ) becomes non-trivial. The sample y′  cannot be trans-
formed into the sample p by means of the relation (11). 
For the jth element jy′  of y′  this relation yields an epis-
temic random variable 
 )|( Θjij Fp y~ ′= . (18) 
This variable can be considered an imprecise observation 
(datum) (Fig. 3). Hence the uncertain fragility function 
Fi(y | Θ) requires to update π(µ) using a set of n imprecise 
“observations” jp~ . 
 

y

p
1

0 y'j

Fi(y|Θ) = P(Di | y,Θ)
),|( ΘjyDPp ij ′=~

Density of
imprecise datum

 
 

Fig. 3. One-dimensional visualization of an imprecise 
value of the fragility function Fi(y|Θ) related to the  
observation jy′  
 
The problem of the Bayesian updating with impre-

cise data is known in the Bayesian statistical theory and 
related fields. Some authors model imprecise data with 
fuzzy numbers (Hryniewicz 2003; Huang et al. 2006; 
Viertl 2006). This approach it is not directly applicable to 
the case where data is represented as a set of epistemic 
random variables 
 }, ...,, ...,,{ 21 nj pppp ~~~~p~ = . (19) 
An alternative approach, which matches the representa-
tion of data by p~ , is a quantification of uncertainty in 
individual data points using probability distributions (Siu, 
Kelly 1998 and references therein). However, this ap-
proach is based on averaging out the measures of epis-
temic uncertainty related to data points. Thus such an 
approach does not fit into the objective to utilize as much 
as possible of the information on epistemic uncertainty. 

A well-elaborated theoretical basis and ready-to-use 
practical recipes for the updating of π(µ) with p~  seem 
not to be available. Therefore one can start with a heuris-
tic procedure which can provide some practical solution 
of the updating problem. The basic idea of the procedure 
is a discretisation of the uncertain fragility function 
Fi(y | Θ). It can be represented as a family of fragility 
functions Fi(y | Θ = θk) with equal epistemic weights wk, 
namely, 
 Φ = {(Fi(y | Θ = θk), wk), k = 1, 2, … , m}, (20) 
where wk = 1/m for each k. 

An introduction of Φ allows to transform the new 
observation jy′  into a set of m observations 
 ),...,2,1( )|( mkFp kjijk ==′= θΘy . (21) 

An one-dimensional visualization of the transforma-
tion (21) is shown in Fig. 4. After this transformation is 
carried out for all n elements of y′ , a new sample con-
sisting of n×m elements is obtained (Block 8, Fig. 1): 
 p′  = {(pjk, k = 1, 2, … , m), j = 1, 2, … , n}. (22) 

 
As the same family Φ is applied to transform each 

jy′ , all elements of p′  will have equal epistemic weights 
1/m. This will assure that none of the elements will be 
preferred to others. The sample p′  can be applied to the 
updating of π(µ) in place of the sample p obtained with 
the crisp fragility function (Eq (11)). The procedure of 
Bayesian bootstrap resampling can be used for this updat-
ing (Sec 3.4). 

The larger is the number m of members in the fam-
ily Φ the closer is Φ to the continuous fragility function 
Fi(y | Θ). In other words, the larger is m the lesser amount 
of information related to the epistemic uncertainty in 
Fi(y|⋅) is lost. 

 
5. Discretisation of uncertain fragility functions 
Function Fi(y | Θ) can be transformed into Φ directly (at 
the level of its values related to specific y) and indirectly 
(at the level of the parameters Θ). The choice of the dis-
cretisation method depends on the dimensionality of y 
and Θ. 

y

p
1

0 y'j

Fi(y|Θ =θm) = P(Di | y,Θ =θm)

Fi(y|Θ =θ1) == P(Di | y,Θ =θ1)
pj1

pjm
M

Fig. 4. Visualization of the data generated by  
the one-dimensional observation jy′  
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5.1. Discretisation at the level of uncertain parameters 
Where the vector Θ has a relatively small number of 
components, it makes sense to discretise the continuous 
prior/posterior density π(θ) of Θ rather than the fragility 
function Fi(y | Θ) itself. The principle of such a discreti-
sation is illustrated in Fig. 5. For a one-dimensional Θ, 
the values θk can be calculated by 
 1))/((1 += − mkFk Θθ  with k ≤ m, (23) 
where )(1 ⋅−

ΘF  is the inverse distribution function of Θ. To 
satisfy the condition ∑ =k kw 1 , the epistemic weights wk 
should be calculated by distributing the upper tail area 1 –
 FΘ(θm), which is lost due to the discretisation, over all 
θks, namely, 
 wk = 1/(m+1) + 1/((m+1) m) = 1/m. (24) 

In case where all components of Θ are independent 
random variables (are updated independently), the ex-
pression (23) can be generalized to a multi-dimensional 
case with relative ease. If, for example, Θ = (Θ1, Θ2)T and 
π(θ)=π(θ1)π(θ2), one can discretise Fi(y | Θ) by introduc-
ing m = m1×m2 values of Θ, each defined by 

T
21 ),(

21 kkk θθ=θ  
T

22
1

11
1 1)))/((1)),/(((

11
++= −− mkFmkF ΘΘ , (25) 

where k1 ≤ m1 and k2 ≤ m2. The equal epistemic weights 
wk, which can be assigned to θks, are equal to 1/(m1×m2). 

When components of Θ = (Θ1, Θ2)T are normally 
distributed, correlated random variables with the density 
π(θ1, θ2| µ1, µ2, σ1, σ2, ρ), the discretisation can be carried 
out in two stages. 

 

θ

)(θΘF

θ

1

0

π(θ)

θ1 θ
m

θ2 ...

m + 1 equal
intervals

1/(m+1)

θ1 θ
m

θ2 ...

θθ1 θ
m

θ2 ...

1/(m+1)

1/((m+1)m)

  
Fig. 5. Discretisation of the epistemic distribution of a  
fragility function parameter (the case of one-dimensional Θ) 
 

Firstly, one can discretise a marginal distribution of 
Θ1. This will yield a set of the values 
 ),|1)/(( 11

1
1 1

σµθ Θ += − mkFk  (k = 1, 2, … , m), (26) 
with the equal epistemic weights 1/m, where 

),|( 11
1
1

σµΘ ⋅
−F  is the inverse distribution function of a 

normal distribution with µ1 and σ2. With the values θ1k, 
the conditional distribution of Θ2 given Θ1 = θ1k will be 
normal with the mean 
 )()|( 11

1

2
21122 µθσ

σµθΘΘµ −+=== kkk E  (27) 
and the variance 
 )1()|( 22

2112
2
2 ρσθΘΘσ −=== kk V . (28) 

Let us introduce conditional random variables 
Θ2k~N(µ2k, σ2k) with the distribution functions 

),|( 2222 kkkkF σµθΘ . With Θ1ks, the continuous fragility 
function Fi(y | Θ) can be replaced by a set of functions 
Fi(y | θ1k, Θ2k) (k = 1, 2, … , m). Each of them will have 
one uncertain parameter Θ2k which can be discretised in 
the second stage into m values by adopting the expression 
(23), namely, 
 ),|1)/(( 22

1
2 2 kkk mkF k σµθ Θ += −  with k ≤ m. (29) 

Thus the two-stage discretisation by means of Eqs 
(26) and (29) yields a total of m2 pairs (θ1k, θ2l) and so a 
set of fragility functions Fi(y | θ1k, θ2l), each element of 
which has the epistemic weight of 1/ m2. 

 
5.2. Direct discretisation 

In many cases Fi(y | Θ) is a univariate function (y has 
only one component), whereas the dimensionality of the 
parameter vector Θ is relatively large. An example of 
such a function was developed by Sasani et al. (2002) for 
a seismic fragility analysis of RC walls. This function has 
the form Fi(y | Θ), where y is the significant peak ground 
acceleration and Θ has nine components. 

The direct discretisation of the univariate function 
Fi(y | Θ) can start from segmenting its argument y. One 
can introduce a number ny of values y1, y2, … , yl, … , 

yn
y  equally distributed over the interval [y1, yn

y ]. This 
interval should include the sample y′ . Each yl generates 
an epistemic random variable 
 )|( Θlil yFP =~ , (30) 
with some distribution function )(pF

lP
~ , where p ∈ 

[0, 1]. The continuous distribution of Pl can be discretised 
using the expression (23): 
 1))/((1 += − mkFp

lPlk ~  with k ≤ m, (31) 
where )(1 ⋅−

lP
F~  is the inverse distribution function of lP

~ . 
The values plk can be grouped together into the sets 
 Πk = {p1k, p2k, … , knyp } (k = 1, 2, … , m). (32) 
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All components of Πk are related to the same quantile 
level k/(m + 1). Hence the epistemic weight of each Πk is 
1/m. The family Φ can be developed by fitting a univari-
ate fragility function Fi(y | θk) to the individual sets Πk. 
The weight of each Fi(y | θk) will still be 1/m. 
 
6. Illustrative example 
6.1. Exposure situation & prior knowledge 
An accidental explosion may occur inside a 30×50 m2 
zone within a plant running hazardous technology 
(Fig. 6). A cylindrical containment structure built of steel 
outside the zone and used for storage of flammable mate-
rial can be damaged by this explosion. 

The damage Di is a loss of containment due to a 
failure of the containment structure. The explosion is a 
distant one with respect to the exposed structure (Bulson 
1997; Kala 2008). The fundamental natural period of the 
structure is assumed to be relatively small, as compared 
to the positive duration of the blast wave reflected by the 
structure. Thus the structure will respond to the positive 
overpressure only. 

The prior knowledge is expressed by the model 
 )|( ξϕ x=y  











 ++′= ),(

1,4
),(

0,43
),(

0,1
32

3
1

32
2

2/3
1

32

/31
1

xxr

x

xxr

x

xxr

xξϕ , (33) 

where y is the peak positive overpressure of the wave 
reflected by the exposed structure; r(x2, x3) is the stand-
off of the explosion (Fig. 6); )(⋅′ϕ  is the deterministic 
function used to transform the incident peak overpressure 
into the reflected one (see Кotlerovski 1995 for details); ξ 
is the dimensionless factor used to adjust a standard TNT 
model to the explosive which can cause the accident un-
der analysis. 

The aleatory uncertainty related to ϕ(x | ξ) is ex-
pressed by the random vector X = (X1, X2, X3)T, the com-
ponents of which are the mass of explosive X1~N(250 kg,  
30 kg) and the coordinates of explosion centre X2~U(0 m,  
30 m) and X3~U(0 m, 50 m) (“N” and “U” denote the 
normal distribution and the uniform distribution, respec-
tively). The uniform distribution of X2 and X3 implies that 
the explosion can occur with the same probability in each 
point of the 30×50 m2 zone. 

The epistemic uncertainty is introduced into the 
prior knowledge by assuming that the adjustment factor ξ 
is uncertain in the epistemic sense. This uncertainty is 
modelled by the random variable Ξ ~ L(0.17975; 
0.11957) (lognormal distribution with the mode of 1,18 
and the coefficient of variation of 0.12). 

Further part of the prior knowledge is represented 
by the fragility function pi(⋅) which relates the overpres-
sure y to the probability of Di. In this example, a hypothe-
tical fragility function pi(⋅) is used. It is expressed by a 
normal distribution function Fi(y | Θ1, Θ2) with uncertain 
mean Θ1 and uncertain variance Θ2. They are assumed to 
be independent and distributed as indicated in Table 1. 

Explosion
centre

x2

30 m

25

40

x2x3

Exposed
structurex3

r(x2, x3)

Slope

25

30 m
r(x2, x3)

x2

Explosion centre

Elevation

Plan

5

 
Fig. 6. Zone of the plant with potential hazard of  
accidental explosion 

 
Table 1. Prior distributions of the parameters Θ1 and Θ2* 

Parameter 
of f. f. 

Type of 
prior Parameters of prior distribution 

Θ1 Normal 25 kPa (mean); 1.5 kPa (sd. dv.) 
1

2
−Θ  Gamma 4 (shape); 300–1 (kPa)–2 (scale) 

* According to recommendations of Congdon (2001: 19) 
 

6.2. Prior density of damage probability 
The prior density π(µ) can be specified by fitting it to the 
sample {µ1, µ2, … , µl, … , lnµ }, in which µl is an esti-
mate of the mean ))|)|((( llipE θξϕ XX  at the given 
values ξl and θl = (θ1l, θ2l)T. To generate the sample of 
µls, the values ξl were sampled by means of Monte Carlo 
simulation from L(0.17975; 0.11957). The values θl were 
sampled from the prior distributions given in Table 1. 
The sample size nl was chosen to be equal to 1000. A 
normal density π(µ | 0.4232; 0.10822) was fitted to the 
sample of µls as the prior density π(µ) (Fig. 7). 
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Fig. 7. Histogram of the sample {µ1, µ2, … , µ1000} and a 
normal density π(µ | 0.4232; 0.10822) fitted to this sample 
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6.3. New information used for updating 
The model ϕ(x | ξ) is only partially relevant to the expo-
sure situation shown in Fig. 6. It is valid for a distant 
free-field explosion on the ground which forms a hori-
zontal plane. However, the ground between the zone and 
the exposed structure is sloping, the distance to the explo-
sion centre is relatively small, and obstacles around the 
explosion centre created by process equipment can dis-
turb the blast wave. Therefore, ϕ(x | ξ) is suitable to spec-
ify the prior density π(µ); however, this density should be 
updated with new data. 

The new data are expressed by a hypothetical sam-
ple with seven elements measured in kPa: 
y′  = { 1y′ , 2y′ , … , 7y′ } 
= {18,38; 13,89; 12,49; 18,12; 20,72; 17,16; 18,52}. (34) 

If the fragility function pi(⋅) were a crisp one, y′  
could be transformed into the fictitious sample p and used 
for the updating of π(µ) (Sec 3.4). However, this example 
deals with the uncertain fragility function Fi(y | Θ1, Θ2). 
To facilitate the Bayesian updating, this function will be 
replaced by a family of functions Fi(y | Θ = θk) (k = 1, 2, 
… , m), each having equal epistemic weight 1/m 
(Sec 4.3). This will allow to create the new sample p′  
defined by Eqs (21) and (22). 

 
Table 2. The discretised values θk of uncertain parameters Θ1 

and Θ2 (m1 = m2 = 10) 
k1(2)/(m1(2)+1) 

1kθ  (kPa) 
2kθ  (kPa)–2 

0.09091 22.9972 0.00561556 
0.18182 23.6373 0.00735316 
0.27273 24.0931 0.00880000 
0.36364 24.4769 0.01016170 
0.45455 24.8287 0.01153080 
0.54545 25.1713 0.01297840 
0.63636 25.5231 0.01458690 
0.72727 25.9069 0.01648580 
0.81818 26.3627 0.01894310 
0.90909 27.0028 0.02277600 
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Fig. 8. Histogram of the sample p′  created by discretis-
ing the fragility function Fi(y | Θ1, Θ2) and plugging in 
values of the initial sample y′  

The discretisation of Fi(y | Θ1, Θ2) was carried out at 
the level of uncertain parameters Θ1 and Θ2 with m1 = 
m2 = 10 (Sec 5.1). The discretised values of the uncertain 
parameters, 

1kθ  and 
2kθ , are given in Table 2. These 

values, together with the elements of the initial sample 
y′ , yield the new data sample p′  consisting of the 700 
values ),(

21 kkji yF θθ|′  (j = 1, 2, … , 7; k1, k2 = 1, 2, … , 
10). A histogram of p′  is shown in Fig. 8. The mean 
700µ̂  of p′  is equal to 0.20357. 

The sample p′  can be applied to estimation of the 
likelihood function )|( 700 µµ̂L  and approximation of the 
posterior distribution of )|( AADP i . 

 

6.4. Posterior density of damage probability 
The estimate of the likelihood function, )|( 700 µµ̂L , was 
obtained by applying the Gaussian kernel function κ(.) 
(Davison, Hinkley 1998: 79). The number of bootstrap 
replications, B, necessary to generate the sample 
{ 1nµ′ˆ , 2nµ′ˆ , … , Bnµ′ˆ }, was taken to be equal to 1000. 
The choice of B was based on the rules of thumb sug-
gested by Efron and Tibshirani (1993: 52). The approxi-
mation of the posterior density, )|( 700µµπ ˆˆ , computed at 
the bandwidth w = 0.05 is shown in Fig. 9. This value of 
w was chosen intuitively and the influence of w on the 
estimates of the damage probability )|( AADP i  remains 
to be investigated. The approximation of the posterior 
density, )|( 700µµπ ˆˆ , was obtained by means of Eq (16). 
The normalizing constant )( 700µ̂C  found by a numerical 
integration is equal to 0.6156. 
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 Fig. 9. Likelihood function estimate )|( 700 µµ̂L , prior 
density π(µ) and estimate of posterior density )|( 700µµπ ˆˆ  
obtained with the bandwidth w = 0.05 

 
The approximation of the posterior density, 

)|( 700µµπ ˆˆ , expresses updated epistemic uncertainty in 
the damage probability )|( AADP i . One can see that 

)|( 700µµπ ˆˆ  is less inaccurate than the prior density π(µ). 
The degree of “inaccuracy” can be expressed by the 
ranges of non-conservative and conservative percentiles 
given in Table 3. The experimental records of the blast 
wave represented by the sample y′  decreased the inaccu-
racy of the prior density π(µ) more than two times. One 
can anticipate that the conservative percentiles derived 



Journal of Civil Engineering and Management, 2009, 15(1):  95–104 

 

103 

from )|( 700µµπ ˆˆ  will be better understandable for the 
decision maker that the density )|( 700µµπ ˆˆ  itself. Thus 
the decision concerning the potential damage event Di 
(failure of structure to contain hazardous material) can be 
made by applying these percentiles. 

 
Table 3. Two pairs of percentiles derived from the prior density 

π(µ) and approximation of the posterior density 
)|( 700µµπ ˆˆ  

Derived from the density Percentile 
π(µ) )|( 700µµπ ˆˆ  

5th 0.2454 0.1675 
95th 0.6010 0.3169 

Range 0.3556 0.1494 
1st 0.1717 0.1365 
99th 0.6747 0.3480 

Range 0.503 0.2115 
 

7. Conclusions 

An application of fragility functions to assessment of 
potential damage due to an accidental action has been 
considered. The result of this assessment was a probabil-
ity of foreseeable damage event (damage probability). 
This probability was expressed and estimated as a mean 
value of a fragility function developed for the damage 
event under study. Bayesian prior and posterior distribu-
tions specified for this mean value were used as estimates 
of the damage probability. They were treated as measures 
of epistemic uncertainty related to this probability. The 
technique of Bayesian bootstrap resampling was used for 
updating the prior distribution. 

The main emphasis was on an application of fragil-
ity functions within the scheme of Bayesian reasoning. 
These functions were used for utilising the prior knowl-
edge about the accidental action and transforming this 
knowledge into the prior distribution. The new informa-
tion applied to the updating of the prior distribution was 
expressed as a small-size sample consisting of experi-
mental observations of the accidental action. The key idea 
of the paper was not to use these observations directly but 
to transform them into values of fragility function (new 
fictitious data). These values can be applied to the Bayes-
ian updating. 

The paper considered two cases of the updating: the 
case where the fragility function quantifies aleatory un-
certainty only and the case where this function expresses 
both aleatory and epistemic uncertainty. A heuristic pro-
cedure was proposed to deal with the latter case. It was 
based on a discretisation of the continuous distributions 
which model epistemic uncertainty in fragility function 
parameters. 

The approach proposed in the paper allows to utilise 
different sources of information to the assessment of 
damage due to accidental actions. An important feature of 
this approach is that the assessment can be carried out 
with a small-size sample of accidental action values re-
corded in the experiment. Such a sample can be not ame-

nable to the classical statistical analysis. However, this 
sample can be used for damage assessing within the 
scheme of Bayesian reasoning. A potential field of appli-
cation of the proposed approach are risk studies of haz-
ardous industrial facilities like the ones described by 
Fabbrocino et al. (2005) and Na and Shinozuka (2008). 

 
References 
Aven, T.; Pörn, K. 1998. Expressing and interpreting the results 

of quantitative risk analyses. Review and discussion, Re-
liability Engineering & System Safety 61(1): 3–10. 

Barnett, V. 1991. Sample survey. Principles & methods. London etc.: Edward Arnold. 
Boos, D. D.; Monahan, J. F. 1986. Bootstrap methods using 

prior information, Biometrica 73(1): 77–83. 
Bulson, P. S. 1997. Explosive loading on engineering struc-

tures. London etc: E & FN Spon. 
Casal, J. 2008. Evaluation of the effects and consequences of 

major accidents in industrial plants. Amsterdam etc: El-sevier. 
Casciati, F.; Faravelli, L. 1991. Fragility analysis of complex 

structural systems. Taunton: Research studies press. 
Congdon, P. 2000. Bayesian statistical modelling. Chichester et al.: Wiley. 
Davison, A. C.; Hinkley, D. V. 1998. Bootstrap methods and 

their application. Cambridge: Cambridge university press. 
Davison, A. C.; Hinkley, D. V.; Worton, B. J. 1992. Bootstrap 

likelihoods, Biometrica 79(1): 113–130. 
Der Kiureghian, A. A. 1999. Bayesian framework for fragility 

assessment, in Proc of ICASP 8, 7–10 Juny, 2003, Sidney, Australia, 1003–1010. 
Efron, B.; Tibshirani, R. J. 1993. An introduction to the boot-

strap. New York: Chapman & Hall. 
Ellingwood, B. R. 1998. Issues related to structural aging in 

probabilistic risk assessment of nuclear power plants, Re-
liability Engineering & System Safety 62(3): 171–183. 

Ellingwood, B. R. 2001. Earthquake risk assessment of building 
structures, Reliability Engineering & System Safety 74(3): 251–262. 

ENV 1998. ENV 1991-2-7:1998. Eurocode 1: Basis of Design 
and Actions on Structures. Part 2-7: Accidental Actions due to Impact and Explosions. Brussels: CEN. 

Fabbrocino, G.; Iervolino, I.; Orlando, F.; Salzano, E. 2005. 
Quantitative risk analysis of oil storage facilities in seis-mic areas, Journal of Hazardous Materials A123: 61–69. 

Ghiocel, D. M.; Wilson, P. R.; Thomas, G. G.; Stevenson, J. D. 
1998. Seismic response and fragility evaluation for an 
Eastern US NPP including soil-structure interaction ef-
fects, Reliability Engineering & System Safety 62(3): 197–
214. 

Hryniewicz, O. 2003. Bayes reliability tests with imprecise 
input data, in Proc of KONBIN 2003, 27-30 May 2003, 
Gdynia, Poland 2: 212–218. 

Huang, H.-Z.; Zuo, M. J.; Sun, Zh.-Q. 2006. Bayesian reliability 
analysis for fuzzy lifetime data, Fuzzy Sets and Systems 
157: 1674–1686. 

ISO 2394:1998(E). 1998. General principles on reliability for 
structures. Geneve: ISO. 

Jankovski, V.; Atkočiūnas, J. 2008. MATLAB implementation 
in direct probability design of optimal trusses, Mechanika 6(74): 30–37. 



E. R. Vaidogas, V. Juocevičius.  Assessment of structures subjected to accidental actions using crisp and uncertain fragility... 

 

104 

Kala, Z. 2008. Fuzzy probability analysis of the fatigue resis-
tance of steel structural members under bending, Journal 
of Civil Engineering and Management 14(1): 67–72. 

Kotlerovskij, V. A. et al. 1995. Shelters of civil defence. Mos-cow: Stroijizdat (in Russian). 
Lee, K. H.; Rosowsky, D. V. 2006. Fragility analysis of wood-

frame buildings considering combined snow and earth-quake loading, Structural Safety 28(3): 289–303. 
Li, Y.; Ellingwood, B. R. 2007. Reliablity of woodframe resi-

dential construction subjected to earthquakes, Structural 
Safety 29(4): 294–307. 

Liel, A. B.; Haselton, C. B.; Deierlein, G. G.; Baker, J. W. 
2008. Incorporating modeling uncertainties in the assess-
ment of seismic collapse risk of buildings, Structural 
Safety (article in press). 

Na, U. J.; Shinozuka, M. 2008. Simulation-based seismic loss 
estimation of seaport transportation system, Reliability 
Engineering & System Safety (article in press). 

Park, Y. J.; Hofmayer, C. H.; Chokshi, N. C. 1998. Survey of 
seismic fragilities used in PRA studies of nuclear power 
plants, Reliability Engineering & System Safety 62(3): 185–195. 

Ravindra, M. K. 1995. Extreme wind risk assessment, in Prob-
abilistic Structural Mechanics Handbook. New York etc.: Chapman&Hall, 429–464. 

Sasani, M.; Der Kiureghian, A.; Bertero, V. V. 2002. Seismic 
fragility of short period reinforced concrete structural 
walls under neat source ground motions, Structural Safety 24(2): 123–138. 

Shao, J.; Tu, D. 1995. The jackknife; bootstrap. New York etc.: Springer. 
Siu, N. O.; Kelly, D. L. 1998. Bayesian parameter estimation in 

probabilistic risk assessment, Reliability Engineering & 
System Safety 62(1): 89–116. 

Vaidogas, E. R. 2005a. Explosive damage to industrial build-
ings: assessment by resampling limited experimental data 
on blast loading, Journal of Civil Engineering and Man-
agement 11(4): 251–266. 

Vaidogas, E. R. 2005b. Actions imposed on structures during 
man-made accidents: prediction via simulation-based un-
certainty propagation, Journal of Civil Engineering and 
Management 11(3): 225–242. 

Vaidogas, E. R. 2006. First step towards preventing losses due 
to mechanical damage from abnormal actions: Knowl-
edge-based forecasting the actions, Journal of Loss Pre-
vention in the Process Industries 19(3): 375–385. 

Vaidogas, E. R. 2007a. Handling uncertainties in structural 
fragility by means of the Bayesian bootstrap resampling, 
in Proceedings (CD-ROM) of Int. Conf. ICASP 10. 1–3 
August, 2007, Tokyo, Japan. London: Taylor & Francis. 

Vaidogas, E. R. 2007b. Prediction of accidental actions likely to 
occur on building structures. An approach based on sto-
chastic simulation. Vilnius: Technika. 

Vaidogas, E. R.; Juocevičius, V. 2008a. Sustainable develop-
ment and major industrial accidents: the beneficial role of 
risk-oriented structural engineering, Technological and 
Economic Development of Economy 14(4): 612–627. 

Vaidogas, E. R.; Juocevičius, V. 2008b. Reliability of a timber 
structure exposed to fire: estimation using fragility func-tion, Mechanika 5(73): 35–42.  

Viertl, R. 2006. Univariate statistical analysis with fuzzy data, 
Computational Statistics & Data Analysis 51: 133–147. 

Zavadskas, E. K.; Vaidogas, E. R. 2008. Bayesian reasoning in 
managerial decisions on the choice of equipment for pre-
vention of industrial accidents, Engineering Economics 
60(5): 32–40. 

 
AVARINIŲ APKROVŲ VEIKIAMŲ KONSTRUKCIJŲ VERTINIMAS TAIKANT TIKSLIAS IR NEAPIBRĖŽTAS PAŽEIDŽIAMUMO FUNKCIJAS 
E. R. Vaidogas, V. Juocevičius 
S a n t r a u k a  
Analizuojamas pažeidžiamumo funkcijų taikymas vertinant potencialius statybinių konstrukcijų pažeidimus avariniais 
poveikiais. Vertinimas atliekamas skaičiuojant galimos konstrukcijos pažaidos tikimybę. Ši tikimybė yra išreiškiama 
vidutine pažeidžiamumo funkcijos reikšme. Ta funkcija yra formuojama analizuojamam pažaidos įvykiui. Apriorinis ir 
aposteriorinis Bajeso skirstiniai yra taikomi pažaidos tikimybės reikšmei vertinti. Apriorinis skirstinys yra gaunamas 
pasinaudojant turima informacija apie avarinį poveikį ir transformuojant šią informaciją per pažeidžiamumo funkciją. 
Aposteriorinis skirstinys yra gaunamas pasitelkiant naują, eksperimentinę informaciją apie avarinį poveikį. Aposteri-
oriniam skirstiniui gauti taikomas kartotinio statistinio ėmimo (būtstrapo) metodas. Naują informaciją sudaro eksperi-
mentiniai avarinio poveikio charakteristikų matavimai, kurie tiksliai atitinka konstrukcijos ekspozicijos tiriamo 
poveikio situaciją. Apriorinis ir aposteriorinis skirstiniai išreiškia episteminį neapibrėžtumą vertinamos pažaidos tiki-
mybės reikšmės atžvilgiu. Šie skirstiniai yra gaunami taikant tiek pažeidžiamumo funkciją, kuri išreiškia tik stochastinį 
neapibrėžtumą, tiek funkciją, kurios reikšmės yra neapibrėžtos epistemine prasme. Potenciali siūlomo metodo taikymo 
sritis yra pavojingų pramoninių objektų rizikos vertinimas. 
Reikšminiai žodžiai: avarinis poveikis, pažaida, pažeidžiamumo funkcija, neapibrėžtumas, kartotinio statistinio ėmimo 
metodas, Bajeso požiūris. 
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