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Abstract. Many construction processes are carried out by machines working together and forming technological systems, 
eg earthmoving machinery made up of excavators and haulers (trucks). Productivity (W(N)) is a key to valuate the process 
design purposes. The paper presents the results obtained by applying artificial neural networks to predict productivity 
(W(N),S) for earthmoving machinery systems, consisting of c excavators and N haulers. Experimentally determined produc-
tivity values can form a standard basis for designing construction earthworks. Possessing the data set consisting of the 
technical parameters of earthmoving machinery systems and the corresponding productivities for different output hauling 
distances, one can train artificial neural networks and use subsequently for the reliable prediction of W(N),S. 

Keywords: earthwork, productivity, neural networks, queuing theory, systems of collaborating construction machines, 
construction industry. 

 
1. Introduction 

The interaction between machines in most sets of 
earthmoving machinery consisting of excavators and 
haulers (trucks), found on construction sites, can be ana-
lysed from a systemic perspective, using the queuing 
theory [1–3]. A systemic analysis of the construction 
processes allows one to assess their productivity, taking 
into account the probabilistic nature of cycle time deter-
mined by time studies. 

The analytical solutions of the queuing system mod-
els are relatively simple when the latter are single-phase 
models (with one or many service channels), the flow of 
arrivals is of the Poisson type and the distribution of ser-
vice durations is exponential or of the Erlang type [4–6]. 
In order to use such models one needs to have a proper 
software capable of performing a large number of compu-
tations in a short time for different configurations of ma-
chines operating in a system. If, however, the distribution 
of service times and interarrival times is an arbitrary dis-
tribution, single-phase models are solved by simulation 
methods [4, 7]. In the latter case, the computer program 
simulating the system’s operation is much more compli-
cated and the computation time is much longer. 

The introduction of new sets of machinery or the re-
alization of the works in different environmental condi-
tions makes it necessary (for both the analytical model 
and the simulation model) to carry out new laborious 
studies of input and service times. This may pose a prob-
lem, since it is often impossible to carry out such studies 
at the work design stage. 

In this paper artificial neural networks (ANN) are 
applied to design sets of earthmoving machinery. The 
results of applying ANN to predict productivity W(N),S of 

systems of collaborating earthmoving machines, consist-
ing of c excavators and N haulers, are presented. 

 
2. Research methodology 

The methodology schematically shown in Fig 1 was 
used to demonstrate the usefulness of artificial neural 
networks for identifying productivity W(N),S of earthmo-
ving machinery systems. 

As Fig 1 shows, the research consisted of two main 
stages. Stage I covered an analysis of an earthmoving 
machinery system, made up of c excavators and N hau-
lers, as a mass service system (MSS). Hauler capacity Pjt, 
excavator bucket capacity bk, output hauling distance L, 
road category Kd, number of excavators c and number of 
haulers N operating in the system were the input parame-
ters for this stage which included:  
• studies of loading times and hauling cycle times, 
• statistical processing of the time study results, 
• identification of the process as a queuing system, 
• construction of a computer simulator, 
• computations which yielded system productivities 

W(N),S. 
A single-phase, multichannel mass service system 

(MSS) with an exponential distribution (M) of interarrival 
times in the input process, an exponential distribution (M) 
of service times, a closed cycle of arrivals and FIFO (first 
in, first out) processing was adopted as the model of the 
system of collaborating machines. The number of arrivals 
in the system is limited to N and the number of queuing 
stations is limited to c, where c < N. λ  is an arrivals entry 
distribution parameter and µ  is a service time parameter. 

A scheme  of  the  considered  system  is  shown  in  Fig 2.  
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Fig 1. Schema of research methodology 

 

MSS: M/M/c/FIFO/N is the adopted mass service system 
(queuing system) code (1). 

Such a queuing system (QS) can be analysed by the 
theory of discrete random processes [1]. A random sto-
chastic process is a family of the following random vari-
ables: 
 {St;t∈T}={St}t ,  (1) 
where t assumes values from set T, and St is the state of 
QS at instant t. 

 

 
 

Fig 2. Diagram of mass service system considered 
 

The considered system can be in the following 
states: 

S0 – there are no arrivals in the system; 
S1 – there is one arrival in the system, which is being 

serviced; 
Sk – there are k arrivals being serviced in the system, 

k < c; 
Sc – there are c arrivals in the system, all of them be-

ing serviced; 
Sc+r – there are c+r arrivals in the system, c arrivals 

are being serviced, r arrivals are queuing; 
SN – there are N arrivals, c arrivals are being ser-

viced, N-c are waiting for service. 
 
It is apparent that the number of states which the 

considered QS can reach is finite. A graph of permissible 
states is shown in Fig 3. 
 

 
 

Fig 3. Graph of states for queuing system M/M/c/FIFO/N 
 
Symbol λ or kμ; k=1,....,c, which stands for the 

probability of transition from state Si to state Si+1 or to 
state Si–1, is placed over each edge of the graph. At any 
instant ti the system can be in one of the above-mentioned 
states. By analysing the possible system states and the 
probability of reaching them in successive instants ti of 
system operation one can arrive at the solution of system 
productivities. 

The probability of the QS states can be described by 
a system of Chapman-Kolmogorov differential equations 
[1]. For the considered QS the system of equations is: 
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The initial conditions are defined by the initial posi-
tion of QS. It was assumed that at the initial instant t = 0 
(system startup) the system was in position S0, thus: 
 1)0(0 =p , 0)0( =ip , Ni .........1= . 

When the system is in a steady state, limit z ∞→t  
is approached and the system of differential equations 
becomes a system of algebraic equations. 

The probability that the considered QS will be in a 
given state can be calculated from the following system 
of algebraic equations: 

States without queue 
States with 
queue 
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In the steady state the normalising condition has this 
form: 
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The probabilities of the particular system states will 
be obtained by solving the above system of equations and 
using the normalising condition. 
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System productivity W(N), defined as the volume of 
output disposed of in a unit time, is essential for process 
design needs. The productivity of the system shown in 
Fig  2 depends on the service channel utilisation coeffi-
cient which is expressed by: 

 W(N)= ( ) jtA PWPc µ− )(1 , (7) 

where: µ – the average rate of service, Pjt – hauler capac-
ity, c – the number of service channels (excavators), 
WP(A) – a service channel downtime coefficient. 

The service channel downtime coefficient is ex-
pressed by: 
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Using the above mass system service model and the 
results of studies of hauling cycle times and loading times 
carried out during massive earthworks, the productivities 
of different sets of earthmoving machines were calculated. 

Stage II covered the construction of an artificial neu-
ral network, its training and testing and an analysis of the 
results. In order to design a system of ANNs for a par-
ticular task one needs to specify the network structure, ie 
determine the number of layers and the number of neu-
rons in each layer, the parameter weights and the activa-
tion function coefficients. 

A database made up of the technical parameters of 
the machinery systems (for which time studies had been 
carried out and productivities W(N) determined from rela-
tions 10), calculated by a computer programme simulat-
ing the operation of a single-phase, multichannel queuing 
system, was used to train the network. The database was 
divided into 5 sets. The division criterion was output 
hauling distance which amounted to: 1, 2, 3, 5 and 7 km. 
The data sets were written to a computer file (constituting 
segment 1 of stage II) and then entered as input parame-

ters for the neural networks into segment 2. Each data set 
was divided into 2 parts: a training set and a testing set. 

Segment 2 of stage II (Fig 1) is the MATLAB soft-
ware used for network simulations. A neural network 
type was chosen and a neural network with an experimen-
tally determined structure was designed. The training 
patterns were fed randomly. The neural network training 
and testing results, including the network structure and 
the weight values, were saved to a file. The output data 
from segment 2 were analysed in segment 3 (Fig 1). Two 
pairs of data were input into the latter segment: one pair 
was the data from segment 2, yielded by the trained neu-
ral network, while the other one were the values from the 
programme simulating MSS operation. First the data 
which the neural network had been trained on were input 
and the ability to reproduce the training patterns was 
tested. Then the testing data were input and the identifica-
tion was checked for correctness. The identified produc-
tivity W(N),S was obtained at the segment’s output. 

 
3. Artificial neural network 

The productivity of a mass service system depends 
on many technical parameters of its components and on 
the operating conditions. The main factors having a bear-
ing on the system’s productivity include: hauler loading 
time, hauler work cycle time, excavator bucket capacity, 
hauler loading platform capacity, hauler driving speed, 
excavator bucket working speed, the kind of road surface, 
the category of the soil, the number of excavators work-
ing in the system, the number of haulers working in the 
system, the excavator work cost and the hauler work cost. 

Some of the input parameters were eliminated during 
the training process in order to obtain an optimal result.  

As neural networks are trained, it is analysed how 
the particular input parameters affect the correctness of 
the obtained results. As a result of such an analysis, the 
number of input parameters was reduced to the ones 
which most affected the correctness of data mapping. 

Ultimately, to train the neural network we adopted 
the following vectors: 

 W(N),S = {c, N, bk, Pjt, Kd },     (9) 

where: c – the number of excavators, N – the number of 
haulers, bk, – excavator bucket capacity, Pjt – hauler load-
ing platform capacity, Kd – the kind of road surface. 

As a result of training and testing, a network consist-
ing of 3 unidirectional multilayer error back propagation 
networks with a conjugate gradient algorithm (BPNN-
CGB) was constructed (Fig 4). This type of network was 
chosen since it is most suitable for solving the considered 
problem [8–23]. A nonlinear sigmoidal activation func-
tion was adopted.  

Table 1 shows exemplary values of the technical pa-
rameters of the machinery systems for which the time 
studies were carried out and the corresponding productiv-
ities yielded by the model simulating the collaboration of 
the machines. The values were used to predict productiv-
ity W(N),S, for a hauling distance of 2 km. The structural 
components of the adopted BPNN-CGB neural network 
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are shown in Table 2. The network structure was used 
then to identify W(N),S for other hauling distances. 

 
 

Productivity
 W(N), S

Input layer Hidden layer Output layer

Number of
 excavators

 
c 

Number
of trucks

 
N

Excavator bucket
capacity

 
b k

Hauler loading
platform capacity

  P jt 
Type of road
surface

  K d 

 
 

Fig 4. Structure of adopted unidirectional multilayer error 
backpropagation network with a conjugate gradient algo-
rithm (BPNN-CGB) 
 
The error backpropagation algorithm is considered 

to be the primary algorithm for training multilayer neural 
networks [8, 9]. The algorithm consists in modifying the 
weights on the connections between the neurons of adja-
cent layers, uses gradient optimisation methods and is 
based on the minimisation of the sum square of learning 
errors [8, 9]. 

A set of training patterns can be described as follows: 
 x = (x0, x1, …, xN), (10) 
 y = (y1, y2, …, yM), (11) 
 z = (z1, z2, …, zM), (12) 
where: x – an input network vector, y – the current net-
work vector, z – an assigned output network vector, x0 – a 
unit polarisation vector, x0 = 1 (bias). 
 
Table 1. Exemplary values of parameters for predicting produc-

tivity W(N),S for hauling distance of 2 km 
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200 2 17 5,6 12 2 276,73 

Table 2. Adopted structural components of BPNN-CGB neural 
network for identifying productivity W(N),S for speci-
fied hauling distances 

Network structural components 
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3 5 1 8 1 200 

5 5 1 8 1 200 

7 5 1 8 1 200 

 
A model of the error backpropagation, unidirec-

tional, multilayer neural network with a hidden layer is 
shown in Fig 5. 

The aim of training is to determine neuron weights 
l
ijw  (l = 1, 2), denoted by superscript 1 and 2 for respec-

tively the hidden and output layer, so that y closely corre-
sponding to z is obtained at the output for the assigned 
input vector. Symbols vj and yj denote the output signals 
of respectively the hidden layer neurons (j = 1, 2, ... K) 
and the output layer neurons (j = 1, 2, ... M). 

 
 
 

X 1

X 2

X N

y 1 

y M

input layer hidden layer output layer 

1

.

.

.

.

.

.

.

.

.

1

ν 1

ν 2

ν Κ

w10 1

w11
1 

w12
1 

w1 N1 

wKN 1 

wK 2 1

w10
2 

wMK 2 

w1 K2

w12
2 

w11
2 

 
 

Fig 5. Model of error backpropagation, unidirectional two-
layer neural network with one hidden layer [8, 10–13] 
 
As the neural network is being trained one cannot 

tell in advance which parameters and modifications will 
yield the best results. This depends on the task which the 
neural network is to perform and on the set of training 
patterns. A multilayer neural network is trained itera-
tively until the lowest averaged error is obtained. The 
latter expresses a given neural network’s degree of learn-
ing which is usually assessed by means of the root means 
square error (RMSE). If the set of training patterns is 
written as: 
 U = {(x, z)(p)⎥ p = 1, ..., U}, (13) 
where: (x, z)(p) – known input and output vectors of pat-
terns p, and the testing set is written as: 
 T = {(x, z) (p)⎥ p = 1, ..., T}. (14) 
then RMSE is described by this relation: 
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a)  

   
 
 
b) 

  
 
 
c) 

  
 
 
Figs 6. Relation between value yielded by model simulating operation of machinery system and value predicted by neural 
network (for training and testing sets) for productivity W(N),S and hauling distance of a) 2 km, b) 5 km, c) 7 km 
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where: P = U, T. 
The process of training the neural network was re-

peated many times, introducing changes in: 
• the number of hidden layers; 
• the number of neurons in the hidden layers; 
• the training coefficient; 

• the weights; 
• the permissible error threshold. 

Appropriate training algorithms, the number of hid-
den layers (1 to 3), the number of hidden layer neurons (6 
to 14) and the number of epochs (5 to 5000) were deter-
mined experimentally, separately for each network. An 
epoch is understood as a single pass through the entire 
training set, followed by testing of the verification set 
during iterative training of a neural network. 

 
a) b) 

 

   
 
 

 
 

Fig 7. Neural network training and testing RMSE versus number of epochs  
for productivity W(N),S and hauling distance of a) 2 km, b) 5 km, c) 7 km 

c) 
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One should note that 200 patterns (170 for training 
and 30 for testing) were used for each neural network. 
During network modelling stop criteria were applied to 
the training process. A network was considered well 
trained when: 
• the values of the training and testing errors were the 

same or similar, 
• the number of epochs at the assumed error value 

was the smallest, 
• the correlation coefficient for data mapping was 

close to 1, 
• the training and testing errors were below 15 %, 
• the standard deviation was below 12 %. 

 
4. Network training and testing results 

Fig 6 illustrates the relation between the value 
yielded by the model simulating the operation of the ma-
chinery system and the value predicted by the BPNN-
CGB neural network for a hauling distance of 2, 5 and 
7 km. The results prove that the BPNN-CGB neural net-
work correctly maps the training data and correctly iden-
tifies the testing data – as evidenced by the location of the 
points close to the centre line (corresponding to the ideal 
mapping) and by the fact that very high values of correla-
tion coefficient R (see Figs 6) were obtained for both 
training and testing. 

 
Table 3. Correlation coefficient and RMSE values for BPNN-

CGB for identifying productivity W(N),S at specified 
hauling distances 

Correlation coeffi-
cient R 

[–] 

Root mean square 
error RMSE 

[–] 

Distance 
in km 

training testing training testing 

1 0,993 0,993 0,0128 0,0148 

2 0,988 0,993 0,0232 0,0240 

3 0,992 0,989 0,0159 0,0232 

5 0,994 0,989 0,0109 0,0188 

7 0,996 0,995 0,0070 0,0132 

 
Fig 7 shows graphs of the training and testing 

RMSEs versus the number of epochs for the adopted neu-
ral network for respectively productivity W(N),S at a haul-
ing distance of 2, 5 and 7 km. It follows from the figures 
that RMSE rapidly decreases with the increasing number 
of epochs. 

The correlation coefficient and RMSE values for the 
BPNN-CGB network for identifying productivity W(N)S at 
the particular hauling distances are compiled in Table 3. 

 
5. Conclusion 

The results presented confirm the suitability of uni-
directional multilayer error back propagation neural net-
works with a conjugate gradient algorithm (BPNN-CGB) 
for predicting the productivity (W(N),S) of systems of col-
laborating earthmoving machines, as evidenced by the  
 

low network training and testing RMSE values and the 
high values of correlation coefficient R for testing. This 
has been demonstrated for different configurations of 
machines operating in a system consisting of c excavators 
and N trucks at output hauling distances of 1, 2, 3, 5 and 
7 km. 

From the above one can draw the conclusion that 
having a set of such data as: hauler capacity Pjt, excavator 
bucket capacity bk, hauling distance L, road class Kd, 
number of excavators c and the number of haulers (N) 
operating in the system and the corresponding (to this set) 
productivities obtained for different hauling distances, 
one can train neural networks and then use them to relia-
bly predict productivity W(N.),S in the design of earthwork 
processes in the construction industry. 
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Notation 

Symbols used in this paper: 
bk = excavator bucket capacity 
c = the number of excavators 
pk = the probability that there are k arrivals 

in the system 
po = the probability that there are no arri-

vals in the system 
ti = time instant i 
ui = network inputs 
wij = weights of synaptic connections 
xi = neural network input vector compo-

nents 
yi = neural network output vector compo-

nents 
zi = assigned neural network output vector 
FIFO = queuing rule: first in, first out 
Kd = the kind of road surface 
M = exponential distribution 
MSS/QS = mass service system/queuing system 
N = the number of haulers 
P = the number of samples in the database 
Pjt = hauler loading platform capacity 
R = correlation coefficient 
RMSE = root mean square error 
Si = system state at instant i 
SSi = service station denotation 
T = testing set, 
T = time 
U = training set, 
W(N) = productivity 
W(N),S = productivity determined by neural 

network 
WP(A) = excavator downtime coefficient 
X0 = bias (threshold value), 
ZGi = arrival denotation 
λ = arrivals entry distribution parameter 
μ = the average service rate 

 

MATEMATINIS-NEURONINIS MODELIS ŽEMĖS DARBŲ MAŠINŲ NAŠUMUI VERTINTI 

K. Schabowicz, B. Hola 

S a n t r a u k a  

Daugelyje statybos procesų naudojamos tarpusavyje susijusios statybinės mašinos, suformuojančios technologines siste-
mas. Pavyzdžiui, žemės darbams vienu metu taikomi ekskavatoriai ir savivarčiai. Pagrindinis statybinių mašinų rodiklis 
yra našumas. Straipsnyje pateikiamos žemės darbų mašinų sistemos, sudarytos iš c ekskavatorių ir N savivarčių, našumo 
vertinimo rezultatai. Našumas vertintas, taikant dirbtinius neuroninius tinklus. Eksperimentiškai apskaičiuotos našumo 
reikšmės gali būti panaudotos sudarant žemės darbų projektus. Turint žemės darbų mašinų sistemos techninių parametrų 
duomenų bazę bei tam tikrus našumus, esant skirtingiems grunto vežimo atstumams, iš pradžių mokomi dirbtiniai neuro-
niniai tinklai, o vėliau jie naudojami patikimam darbo našumui prognozuoti. 

Reikšminiai žodžiai: žemės darbai, neuroniniai tinklai, aptarnavimo teorija, statybos mašinų sistemos, statybos pramonė. 
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