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Abstract. Numeric analysis of the large penetration of the cone in undrained soil using finite element method (FEM) is 
presented. Until now the computation procedures has not been developed to such an extent, that they could provide 
numerical solution of large cone penetration problem. In this paper for solving of the large cone penetration problem an 
updated Lagrangian formulation and finite element method are used. To overcome large distortion of the finite element 
geometry during cone penetration leading to illconditioning equations a remeshing technique is developed. The pro
posed remeshing technique enables the simulation of the penetration process until steady cone penetration is reached. 
The analysis of the cone penetration in undrained soil is provided. The comparison of current numerical results and 
other authors' results are presented. 
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1. Introduction 

Cone penetration test (CPT) is one of the most popu
lar in-situ tests used to investigate the soil properties [1]. 
Assessment of cone testing results is usually based on 
the relationships between soil properties and soil resis
tance to cone penetration. Many investigations are aimed 
at establishing theoretical frame for CPT problem and 
numerical finite element analysis seems to be a prospec
tive tool applicable to these purposes. 

Most of the existing correlations between cone re
sistance and soil properties have been obtained by using 
one of the following five different approaches [2]: ex
perimental methods, three basic theoretical approaches 
such as bearing capacity theory, cavity expansion theory 
and steady state deformation approach as well as con
ventional incremental finite-element analysis. 

Until now, experimental methods are generally pre
ferred for establishing correlations although the theoreti
cal solutions have provided a useful framework of un
derstanding. 

When applying the bearing capacity theory, the cone 
resistance is assumed to be equal to the collapse load of 
a deep circular foundation in soil. Two analytical ap
proaches, ie limit equilibrium and slip-line methods, were 
used for determining cone resistance [3, 4]. 

Cavity expansion theories have been suggested as 
being appropriate for the deep penetration problem [5-

7]. The limit solution for the cylindrical cavity pressure 
is widely assumed to be applicable to the estimation of 
the radial stress on the shaft, and the limit pressure for 
spherical cavity expansion is relevant to the end bearing 
pressure of the cone. However, it has been pointed out 
[8] that one of the inconsistencies with this approach is 
that it does not model correctly the strain paths followed 
by soil elements. 

In isotropic homogenous soil, cone penetration may 
be treated as a steady state deformation of soil around a 
fixed cone penetrometer [9-ll]. The pattern of defor
mation is described by steady state flow compatible with 
the boundary conditions. Certain class of undrained (in
compressible) flow problems can be solved using par
ticularly simple stream functions. The strain rates can be 
determined from the velocities at every point. The strain 
history of any material point as it moves along a stream
line is then available. Given stress boundary conditions 
in the upstream direction it is now possible to integrate 
a constitutive (stress-strain) law along each streamline to 
give the stress throughout the soil. The resulting stresses 
derived from this approach may not satisfy all the equi
librium equations. This is because for 2D problems, such 
as cone penetration in undrained clays, the soil deforma
tion is not completely decoupled from the soil strength 
parameters, although the coupling is believed to be quite 
weak for undrained problems. Because of the above 
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source of uncertainty, the iterative procedure for adjust
ing the initial deformation to eliminate the equilibrium 
imbalance is suggested [9]. However, this iterative pro
cedure cannot remove all the errors that exist in the strain 
path stress solutions [12]. 

In the last few decades, a fast development of nu
merical methods and computer technology enabled nu
merical modelling of various engineering problems. Con
ventional finite elements models have been extended to 
plasticity of soils [13-17], geometrical non-linearity [18-
20], porous media [21-24] as well as flow models [25, 
26]. At the same time a large amount of geotechnical 
and civil engineering applications have been analysed by 
the FEM [27-30]. 

In general, the non-linear finite element method 
(FEM) [31] allows rigorous CPT solutions without sim
plifying assumptions for cone geometry or material be
havior. However, the computational procedures has not 
been developed to such an extent that they could pro
vide the numerical solution to be directly used in 
geotechnical practice. 

In small strain FEM penetration analysis, the cone 
is introduced into a prebored hole, with the surrounding 
soil still in its in-situ stress state. An incremental plastic 
calculation is carried out and the collapse load is as
sumed to be equal to the cone resistance [32]. Such analy
sis is not capable of proper simulating the cone penetra
tion, since during the cone movement, high lateral stresses 
tend to develop next to the cone shaft. As expected, a 
buildup of the above stresses will lead to a higher cone 
resistance than that predicted by a small strain analysis. 

In order to include the effects of cone penetration 
on initial stress conditions, a large penetration analysis 
using large strains is required, since the cone must be 
pushed into soil with a vertical displacement of several 
times the diameter of the cone penetrometer. Cividini 
and Gioda ( 1988) [ 18] have presented some results of 
penetration into a Drucker-Prager frictional material. They 
have used zero-thickness elements to model the frictional 
interface behaviour between the cone and the soil. In 
their analyses the smoothness of the cone-soil interface 
is varied. Kousis et al ( 1988) [ 19] have also presented a 
large strain formulation and its application to the analy
sis of the cone penetration test in clay soil. Large cone 
penetration analysis is also presented by Sheng et al 
( 1997) [33]. However, a large distortion of the finite 
element geometry during penetration leading to ill-con
ditioned equations and failure of iterative process re
stricted application of the FEM for modeling of CPT. 

To avoid a large mesh distortion that occurs in the 
large cone penetration analysis, van den Berg ( 1994, 
1996) [25, 26] uses an arbitrary Lagrangian-Eulerian 
formulation to uncoupled nodal point displacements and 
velocities from material displacements and velocities. 
Uncoupling of material and nodal point displacements 
implies that convection has to be taken into account to 
be able to update the state at the nodal points. As pointed 

out by Yu et al (2000) [34], the use of smoothing proce
dures for interpolating stress and strain fields does not 
always give stable and accurate solutions. 

Recently to avoid the large mesh distortion a new 
computational tool remeshing technique [35-39] started 
to be applied in the conventional finite element analysis 
mainly for simulation of metal forming process. A few 
examples of application of remeshing to geotechnical 
problems have been also found in references [40-42], 
but direct applications to simulation of CPT have been 
not found. In the present study, the FE remeshing tech
nique for simulating the large penetration of cone is de
veloped and analysis of the cone penetration in undrained 
soil is provided. 

2. Problem definition 

In the CPT, a cone on the end of a series of rods is 
pushed into the ground at a constant rate and measure
ments of the resistance to penetration of the cone are 
made (Fig 1). The cone with a diameter d of 35,7 mm, 
cone tip angle - 60° and penetration speed equals 2 cm/s 
is widely used as a standard [43]. 

~ u(t) 
r"l 1 

' ,u 

~d 
Cone tip 

Cone 

Soil 

Fig 1. Cone penetration 

Frequently, engineers working in geotechnical prac
tice get measured CPT data as the cone resistance qc 
(the acting force on cone tip divided by the cone cross 
area), the skin friction and the pore water pressure, while 
mechanical properties of soil such as Youngs' modulus 
E, undrained shear strength cu , friction angle <j>, etc are 
required to be used for deformation and stability analysis. 

Generally, cone resistance problem reflects relation
ship 

(1) 

Usually, for the undrai 1) is interpreted in terms of 
shear strength C11 : 

(2) 

where cr; is average in-situ stress or vertical stress at 
penetration depth due to soil load. 

A number of authors offer different expressions to 
determine cone factor N c . Current investigations are 
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aimed at developing theoretical frame and computation 
tool for determining N e by numerical experiments us
ing FEM. 

3. Mathematical model 

Mathematical model explored here to describe large 
penetration problem is a standard continuum mechanics 
approach based on the equilibrium of internal and exter
nal virtual works in the actual configuration correspond
ing to time t + !lt . It is written for actual volume t+L1ry as: 

J t+M 1:··. 0 t+Me·· t+MdV =ot+L1tR (3) 
I) 1J ' 

r+lilv 

where the r+M •ij are the Cartesian components of the 

Cauchy stress tensor, the I+M e;j are the Cartesian com

ponents of an infinitesimal strain tensor and the o1+L1I R 

is the external virtual work. 
Since the body undergoes large displacements and 

large strains providing unknown current configuration, and 
the constitutive relations are non-linear, the relation in 
(3) cannot be solved directly. However, an approximate 
solution can be obtained by referring all variables to a 
previously calculated known reference configuration at 
time t, and linearising the resulting equation. 

To solve (3) the updated Lagrangian formulation is 
used. In this solution scheme all static and kinematic 
variables are referred to the reference configuration: 

J 1+!111 s ... o 1+!11,~;.. I dV = or+L11 R 
1J 1J ~) 

ly 

in which r+L1J Sij is the 2nd Piola-Kirchhoff stress at time 

t, t+L1:£u is Lagrangian strain at time t + !lt . 
The linearisation of equation of motion (4) then re-

sulted in the following relation: 

J 1cep 1 <;:.I rdv J 1 <;:.I 1dV _ Urs' ers ·u eu + •u·u Tlij -
rv tv 

(5) 

where 1 C~p is the tangential material property tensor 
urs 

referred to the configuration at time t; 
1 

't;j - the known 

Cauchy stress at time t; 1 eu, 1 TJu - the linear and non

linear COmponentS Of incremental strains I £U = I eu+1 TJU 

which are referred to the configurations at time t. 

Material property tensor 1 Cij~s is derived using in

cremental theory of plasticity. Infinite small increment 

of the total strain increment d 1 
Eij is assumed to be the 

sum of the elastic strain increment d 1 ~:ij and the plastic 

. . dt p .. stram mcrement £u , te. 

d l -dl e dl p (6) eu - Eu+ EU. 

The elastic response is given by linear elastic con
stitutive relation 

d t ce dt e aU = Ukl Ekf' (7) 

where Cijkl is a constant fourth-order elasticity tensor. 

The plasticity properties of soil is described by yield 
criterion 

(8) 

where a v is a yielding constant varying with hardening 
variable ·au. 

The direction of the plastic strain increment is de
fined by flow rule. In case of undrained soil an associ
ated flow rule may be used: 

t p aj 
d~: .. =d"J....--, 

1J at a .. 
I) 

(9) 

where d 'A is a positive scalar of proportionality depen
dent on the state of stress and load history. 

Using Eqs (6)-(8) elastoplastic material property 
tensor is derived: 

aj e e aj 
-,--Curs Cmnkl -,--

tcep = Ce_ -a Ors a Omn (10) 
ijkl ljkl alj alj ' 

H'+--Ce --
:-.t abed :-.t 
o Oab 0 0 ed 

where H' is the hardening modulus, which for a perfect 
plasticity material becomes zero. 

4. Finite element discretisation 

For discretisation of problem (5) with respect to (10) 
the finite element method is used. A general displace
ment finite element formulation may be expressed by 
equilibrium equation 

[K(U(t))]!!..U(t) = !l.F(t), (II) 

where [K(U(t))] is the stiffness matrix of finite element 
assembling, which relates the vector L1U of the nodal 
displacement increments to the vector L1F of the total 
load increments. 

The most usual finite element equation for updated 
Lagrange description is expressed as 

(12) 

where [r K J and [r KG] are global linear and geometric 
(initial stress) stiffness matrices while the vector L1F pre
sents the load vector with the effects of the element sur
face traction force, the element body force and the ele
ment initial stresses. 
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By utilising shape functions for displacements in the 
incremental virtual work equation (5) stiffness matrixes 
are derived for each element e. Further, each incremen
tal finite-element equation is assembled to construct the 

stiffness matrixes [r K J and [r KG] for the whole re-

gion. 

The linear stiffness matrix of element [r Kf] is ob

tained from the first term of (5). The notion linear is 
used to reflect geometrical linearity, but, actually, this 
matrix involves material non-linearity. Finally, it is ex
pressed as: 

[
1Kf]= J [1Bff[rcep][rBf]dv, (13) 

rv 

where [r cep] is elastoplastic material property matrix re

flecting term ( 1 0) and [r Bf] is linear strain-displacement 

transformation matrices. Geometrical stiffness (initial 

stress) matrix [r K(;] is obtained from the second term 

of (5) as: 

[r K(; ]= J[1 B(; r [r r ][r B(; ~V, (14) 
rv 

where [r B(;] is non-linear strain-displacement transfor

mation matrix, [r r] is matrix of Cauchy stresses. 

To describe the contact between the deformable soil 
and the rigid cone surface a special zero thickness con
tact elements are used. At each integration point these 
elements construct a measure of overclosure and mea
sure of relative shear sliding. These kinematic measures 
are then used to introduce surfaces interaction theory. If 
A is a point on the deformable surface, with current co
ordinates x A (Fig 2), the closest distance h from A to 
the rigid surface is determined according to 

nh=xA-x,-r, 

where n is the unit normal of the rigid surface at point 
A' which is the closest point to A, Xc the coordinates of 
the reference node C of the rigid body, and r the vector 
from C to A'. If h > 0, there is no contact between the 
surfaces at A. If h = 0, the surfaces are in contact. In 

c 
/ 

/r 
n 

A 

Fig 2. Soil-cone contact simulation 

numerical calculations small violations of this exact con
tact conditions are allowed. 

The behaviour of the contact is defined by the Cou
lomb friction model, in which two contact surfaces can 
carry shear stresses up to a certain magnitude across their 
interface before they start sliding relative to one another; 
this state is known as sticking. The Coulomb friction 

model defines this critical shear stress, tcrir , at which 
sliding of the surfaces starts as a function of the contact 
pressure, p, between the surfaces: 

tcrit = JlP • 
where 1.1. is the coefficient of friction. Additionally, shear 

stress limit, 't max , is used, so that, regardless of the mag
nitude of the contact pressure stress, sliding will occur if 
the magnitude of the equivalent shear stress reaches this 
value. Finally, the sliding surface is described by line 
segment in plane 1:-p, which for Coulomb frictional model 
is presented on Fig 3. 

p 
Fig 3. Coulomb friction model 

Then the equation ( 11) is solved by increments us
ing Newton-Rapson iterative technique. 

5. Large penetration without remeshing 

Usually updated Lagrangian formulation (5) and its 
FE model (12) are related to fixed finite element mesh. 
The first stage in numerical analysis of CPT is to verify 
suitability or drawbacks of the traditional approach to 
large penetration problem. 

The penetration of the standard geometry cone pen
etrating the soil is considered in this verification example. 
The rigid cone is introduced into a prebored hole. The 
initial state of soil defined by the weight y = 18 kN/m3 

and lateral pressure ratio K0 = 1 ,0. The soil is assumed 
to be elastic-perfectly plastic incompressible Mises ma
terial with Young's modulus£= 30 MPa, Poisson's ra
tio v = 0,495 and the yield stress crv = 40 kPa. 

Since cone is penetrating by ·vertical loading, the 
3D solid problem may be reduced to axisymmetric prob
lem with 2D discretisation domain (Fig 4) having di
mensions h+H = 1,25 m, D = 0,625 m. The soil is mod
elled using the four-noded axisymmetric elements with 
four Gauss points. The penetration process itself is initi
ated by applying displacement u to the rigid cone. 

The numerically obtained loading curve relating re
sultant load F acting on the tip of cone (Fig 4) and cone 



126 D. Markauskas, et alI JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2003, Vol IX, No 2, 122-131 

displacement u as well as distortion of initial finite ele
ment mesh are the most important characteristics and, at 
the same time, quality indicators of numerical analysis. 
As it follows from a simple observation, the large dis
tortion of mesh (Fig 5b) and cyclic variations of loading 
curve (Fig 5c) are far from being satisfactory for quali
tative assessment of numerical solution. 

a) 

c) 

z 
..1111 

u: 

Rigid 
1 

cone 
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d/2 
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Contact 
surface 

Soil 

D 

Fig 4. Numerical model 
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Fig S. Results of analysis without remeshing using a 
smooth cone with r = 30 mm: a) idealised geometry of 
the cone, b) deformed mesh, c) loading curve 

By sliding of the cone with respect to solid the outer 
contact solid node after certain time sliding looses the 
contact with conical surface of the cone and moves along 
the vertical surface. The cyclic character of loading curve 
may be explained as a consequence of jumping of indi
vidual nodes during sliding. Finally, cycling step is re
lated to the dimension of the contact finite element. 

The traditional procedure of finite element refine
ment leads even to large distortion of mesh and penetra
tion process fails down at smaller displacement values. 
To avoid such a large mesh distortion larger elements 
can be used [33, 44], but in this case accuracy of calcu
lated stress values decrease dramatically. By using small 
rounded radius, fmally tending to sharp angle, and by 
increasing the roughness of contact this tendency is even 
worse. The results of simulation of rough cone presented 
in Fig 6 show much more heavy distortion of mesh and 
irregular character of loading curve, which clearly indi
cates unsatisfactory validity of numerical simulation. To 
overcome this difficulty, a remeshing technique will be 
given below. 

6. Remeshing technique 

Remeshing as regeneration of the mesh together with 
the transfer of the state variables to new mesh, comprises 
a loop of operations until required overall penetration 
has been reached: 

1) Solution of non-linear analysis problem with ini
tial mesh. 

a) 

b) 
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Fig 6. Results of analysis without remeshing using a 
rough cone: a) deformed mesh, b) loading curve 
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2) Regeneration of the new mesh qsing the deformed 
domain boundary. 

3) Transfer of state variables from the deformed 
initial mesh into the new mesh. 

The remeshing techniques can be constructed by 
applying extra/interpolation transfer of state variables 
method, where extrapolation of the state variables to ini
tial mesh nodes, averaging and then interpolation to a 
new mesh is performed. Due to numerical difficulties by 
calculating of stresses in displacement finite element 
models, accuracy of this technique can be, however, not 
sufficient to model the high-gradient stress field around 
the cone (Fig 7). 

Fig 7. Stress field around cone tip 

To improve numerical accuracy the moving least 
square method using superconvergent patch recovery 
(SPR) technique [45] has been applied for transfer of 
state variables. It is developed by the authors and imple
mented into software compatible with ABAQUS [ 46] 
finite-element code. 

The transfer operation using moving least-squares 
method consists of the following steps: constructing the 
patches from the Gauss points of the old elements mesh, 
finding in which patch the Gauss point of the new ele
ment is, transfer of the variables from the Gauss points 
of the old mesh to the Gauss points of the new mesh 
using the polynomial function and the least-squares 
method. These steps are illustrated in Fig 8. 

The validity of remeshing technique has been tested 
for simulating CPT problem where frictionless sliding 
contact surface with a small rounded radius r = 2 mm 
was assumed. The material parameters were defined in 
previously examples. A typical loading curve of CPT 
(Fig 9) obtained by remeshing technique contains 
jumpings, frequency of which is related to frequency of 
remeshing steps. Interpretation of results shows that jump
ing has mainly three reasons. The first reason is related 
to shifting of the nodal points by mesh regeneration, the 

second one is related to corner node sliding, while the 
third one is related to transfer procedure. As it follows 
from the figure, using different approximation approaches, 
different loading curves /, 2 or 3 may be obtained. 

To investigate convergence, the calculations based 
on different frequency between remeshing and various 
mesh densities have been performed. Loading curves 
presented in Fig I 0 obtained using various meshes with 
458, 1632, 3541 and 6472 elements, where 4, 8, 12 and 
16 elements on cone tip were used respectively. Cone 
displacements between remeshing steps was taken about 
a half size of the element on the cone. However, refine
ment of the mesh and remeshing interval are time-con-

a) 

b) 

c) 

- Old defonned mesh 

- - - New defonned mesh 

Gauss point of old mesh 

D Gauss point of new mesh 

Fig 8. Illustration of the moving least-squares method: a) 
constructing the patch in the defonned initial mesh, b) 
finding in which patch the new Gauss point is, c) inter
polation of the variables 
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suming processes. On the other hand, a thorough exami
nation of the results gives an opportunity to construct a 
smooth curve directly, which is actually equilibrium curve 
2 (Fig 9) obtained by coarse mesh and relative large 
remeshing interval. 

Fig 9. Loading curve obtained by remeshing technique 

Fig 10. Illustration results of testing 

Finally, it is necessary to emphasise that the 
remeshing technique developed also comprised evalua
tion of smooth loading curve for CPT. 

7. The cone penetration in clay 

The numerical technique discussed and verified 
above is used to simulate CPT in clay. Since water per
meability of clay is very low, the water in this soil has 
no time to flow out of the pores when cone penetration 
is performed at the standard speed. Therefore, cone pen
etrates completely undrained soil [47], and elastic-per
fectly plastic incompressible Mises material may be ap
plied for clay [48). 

An elastic-plastic soil model with Mises yield crite
ria and the following clay parameters were used: Young's 
modulus E = 22,5 MPa, Poisson's ratio v = 0,495, weight 
y = 18 kN!m\ lateral pressure ratio K0 = I ,0. As it obvi-

ous in undrained soil analysis, yield stress 0 y is simple 

related to undrained shear strength as Oy = 2c11 • Shear 

strength cu can be obtained from triaxial compression 

test [49] and is taken as c11 = 50 kPa. These parameters 
define rigidity index 1,. = 150. 

To avoid boundary effects at the start of the analy
sis, the cone is placed into prebored hole h = 0,55 m 
(Fig I I), with the surrounding soil still in its in-situ stress 
state. 

Fig 11. Numerical model 

The soil region divided by finite elements should 
be considerably large to avoid the influence on the re
sult of the replacement of the infinite half-space by a 
limited size zone. The size of discretised domain was 
taken according to Yu et al [12] with D = I,I m, h+H = 

I ,8 m and verified with more large discretised domain. 
The upper soil layer h, = 4,45 m has been removed and 
his influence was replaced by adding additional external 
pressure p = 80 kPa to the free soil surface (Fig I I). 
The penetration process is initiated by applying displace
ment u to the cone, until a steady state is reached. The 
reaction force F on the cone tip at the steady state di
vided by the cone area is assumed to be cone resistance 
qc. The domain was discretised into I 944 bilinear four 
nodded elements, while soil-cone interaction is described 
by contact surface [46]. The total value of DOF of the 
model equals to 5082. 

Fig 12. Results of cone penetration in clay 
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The remeshing technique developed is able to over
come difficulties caused by the sharp comer and rough
ness of the cone. The load-displacement curves obtained 
using fully smooth penetrometer (ie no friction between 
penetrometer and clay) and fully rough penetrometer (ie 
friction between penetrometer and clay is equal to clay 
shear strength) are shown in Fig 12. For illustrating the 
capability of large displacement approach, the loading 
curve obtained by small strain analysis is also given in 
the figure. The above curves may be considered as en
velope for different cone-clay friction values. 

The results of calculations are expressed in terms 
of the cone factor Nc presented in Table and compared 
to the other solutions. 

Values of theoretical and experimental cone factors derived 
by using different methods 

Description 
Nc 

smooth rough 

Curent authors results, FEM, large 11,8 14,4 
strain with remeshing 
Results obtained by the author via small 8,5-9,4 
strain FEM, rough cone tip [50) 
Mayerhof ( 1951 ), bearing capacity 9,7 
theory, rough base [I) 
Vesic (1972), spherical cavity 8,0 
expansion theory [5] 
Yu (1993), cavity expansion theory [7) 9,8 15,0 
Van den Berg and Vermeer (1994 ), 
large strain FEM analysis by Arbitrary 13,6 17,5 
Lagrangean-Eulerian approach [25] 
Yu et al (2000), steady state FEM [34) 10,4 12,72 
Lunne and Kleven ( 1981 ), 11-19 
experimental, normally consolidated 
clays [51] 
Kurup et al ( 1994 ), experimental, 
calibration chamber testing, average 15 
results on specimen with rigidity index 
!50 [52) 

The obtained cone factor for given soil parameters 
is Nc = II ,8 for smooth cone and Nc = 14,4 for rough 
cone. As it was expected, solution of bearing capacity 
theory is smaller as authors results obtained by FEM with 
remeshing. This is because the bearing capacity theory 
neglects the influence of the initial stress states around 
the shaft. In particular, the horizontal stress tends to in
crease around the cone shaft after cone penetration, and 
the influence of this change on the cone resistance is not 
considered in bearing capacity analysis. 

For the same reason as bearing capacity theory, the 
small strain FE analysis [50] gives to small cone factor 
Nc = 8,5-9,4. 

In cavity expansion theory, both elastic and plastic 
deformations of the soil during cone penetration and the 
influence of the cone penetration process on initial stress 
states can be taken into account. The cone factor from 

spherical cavity expansion solution Vesic (1972) [5] is 
Nc = 8,0. More advanced solutions give higher values 
[6, 7]. 

Lunne and Kleven (1981) [51] showed that for nor
mally consolidated marine clays with field vane as the 
reference test, the cone factor Nc varied between II and 
19 with an average value of 15. 

Kurup et al (1994) [52] have presented the results 
of a calibration chamber study on CPT in cohesive soils. 
His test was performed on overconsolidated sample with 
overconsolidation ratio of 5 and rigidity index I,= !50 
and provides average value of the cone factor Nc = 15. 
The current investigation is performed on the clay which 
have the same rigidity index I,= 150, but Mises model 
strictly speaking corresponds to lightly overconsolidated 
clays with overconsolidation ratio of 2 [ 12] which should 
give lower values of the cone factor. Therefore the ob
tained values for rough cone Nc = 14,4 is in a very good 
agreement with experimental results. 

8. Conclusions 

On the basis of numerical investigation the follow
ing conclusion has been drawn: 

l. Large distortion of the finite elements is a seri
ous obstacle in the application of the conventional dis
placement finite element method to large displacement 
analysis, and remeshing technique developed is one of 
the prospective computational techniques to be used for 
modelling purpose. 

2. Remeshing technique, which uses moving least 
square method based on SPR technique for transfer of 
state variables, is developed and implemented into soft
ware compatible with standard FEM code. Validity of 
the remeshing is illustrated in modelling of CPT tests. 

3. Remeshing technique is supplied by approxima
tion procedure, which allows constructing smooth CPT 
loading curve on relative coarse finite element discreti
sation and remeshing frequency. 

4. The developed remeshing technique is applied 
to smooth and rough cone test in clay, where large pen
etration of cone u = 14 d is reached. The obtained cone 
factors are II ,8 and 14,4 for smooth and rough cone 
respectively. The solutions obtained are compatible with 
other theoretical solutions and provides good agreement 
with experimental results. 

5. The remeshing technique is universal and may 
be used in other problems, but future research and veri
fication of technical remeshing details is required for 
particular cases. 
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