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Vilnius Gediminas Technical University 

1. Introduction 

In many engineering applications of dynamical de

sign, analysis and control of mechanical and structural 

systems the need for fast and accurate computational 

methods is essential. Progress made in developing and 

understanding direct time integration methods for gene

ral computational structural dynamics applications has 

been well documented in [1-4). This includes develop

ment of efficient computational and mixed time integ

ration methods, investigations encompassing accuracy 

and stability properties. A wide range of problems, inc

luding elastodynamics, adhesive-diffusive systems asso

ciated with fluid dynamics has been solved using met

hods in which the unknown parameters were assumed 

to be continuous with respect to time. Many traditional 

ordinary differential equation algorithms were rederi

ved in this manner [5]. 

Another approach, working from the differential 

equation viewpoint, has been derived in recent years. 

The idea is to approximate the unknown fields using 

time-discontinuous functions [6]. The application of 

time-discontinuous Galerkin (DG) method leads to 

A-stable, higher order accurate solution procedures for 

ordinary differential equations and provides a new pos

sibilities for the development of adaptive strategies. This 

is in contrast to the conditional stability of some time

-continuous Galerkin methods. Much research was con

ducted by Hulbert [7] to apply time-discontinuous Ga

lerkin methods to computational structural dynamics. A 

new version of DG approach was presented in [8]. This 

DG scheme is constructed using weighting exponential 

function for the inner product. This weighting function 

is used when the basis functions of temporal domain 

have degree two or higher. The proposed time finite 

element strategy enables us to overcome aforementio

ned disadvantage of Galerkin least squares approach, 

the case when the least squares terms destroy the ban

ded structure of the system of equations [6]. This 

time-discontinuous Galerkin approach enables us to 

construct a family of algorithms for direct time integ

ration [9]. The main feature of this family is that the 

algorithms have a hierarchical structure. This means that 

the system of equations of a particular order contains 

as a subset the equations of all methods of lower order 

or, in other words, the increased accuracy by this ap

proach is obtained by adding one or more terms in the 

interpolation function, without modification of the pre

vious ones. This is in contrast to traditional single-step 

integration methods, where increased accuracy may be 

obtained by reducing the time step length or by a chan

ge of integration methods, in this case a completely 

new system of equations has to be established and sol

ved. However, the variational formulations of DG met

hod lead to systems of coupled equations to be solved 

which are larger than those emanating from traditional 

semidiscrete approaches. The present paper introduces 

a new strategy for developing predictor-multicorrector 

algorithms which enables to reduce the computational 

effort. As far as the advantage is concerned, the hie

rarchical formulation is optimal because it allows for 

all information to be passed from one discretisation le

vel to the second one and enables a convenient design 

of predictor-multicorrector algorithms which retain the 

stability in all phases of the numerical procedure. 

We will consider a system of the ordinary diffe

rential equations associated with the semidiscrete form 

of linear elastodynamics 

[M]ii+[C]ti+[K]u=F(t), tE(O,T) (I) 

with the initial conditions 

u(O)=U 0 , ti(O)=Uo (2) 

where [M), [C) and [K) are the mass, damping and 
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stiffness matrices, respectively; F(t) is the prescribed 

vector of external load and u is the vector of unknown 

nodal displacements. A superposed dot denotes differ

entiation with respect to time. [MJ is assumed to be 

symmetric positive-definite while [C] and [K] are as

sumed to be symmetric positive semi-definite. 

2. Time-discontinuous Galerkin algorithm 

The variational formulation of the considered time

discontinuous Galerkin method is: 

Find UE V such that VvE V, 

A(u,v) 11 =L(v) 11 , n=l,2 .......... N 

where 

and 

A(u, v) 11 =(vl-! 11 ,Lu)111 +v~-I [M]ti~-1 + 

+ v~-I [K]u~-I 

L ( v )11 = ( Vl-! 11 , F) J
11 

+ v ~-I [ M] ti~-1 + 

+v~-I [K]u~-I 

n=2, ....... N 

(3. I) 

(3.2) 

(3.3) 

Lu=[M]ii+[C]ti+[K]u. (3.5) 

The details are given in [9]. Within a discrete time 

interval the unknown fields can be approximated by 

k-th order polynomials which are constructed from k+ I 

terms of a Taylor series expansion in time. For the 

sake of simplicity, the subsequent presentation is re

stricted to k=2. In this case the quadratic variation of 

displacement in the n-th time interval is assumed and 

can expressed be as follows 

(4) 

where the constant in time value u ~-I defines the dis

placement at the beginning of the n-th time interval, 

v ~-I defines the velocity at the beginning of the time 

interval, a 11 is the constant acceleration. In this case, 

velocity varies linearly and is calculated using 

(5) 

Substituting eq (4) and (5) and their correspond

ing functions for the equation of the variational formu-

lation of time-discontinuous Galerkin method (3) and 

performing integration explicitly we obtain a system of 

linear equations which can be expressed as 

(6) 

where u11 _1 and v 
11

_1 are the displacement and the ve

locity at the end of the previous (n- I )-th interval, re

spectively and submatrices can be expressed as 

(7) 

(8) 

(9) 

The coefficients b1 , b2 , b3 , b4 and F111 , F211 are 

defined as follows 

where a >0. 

1-e-atl.l 
bl=--

a 

b-, = 1 - e -all. 
1 (a~ t + l) 

- 1 a-

Ill 

Fill= I 11 F dt 
111·1 

Ill 

F2 11 = I 1-l F(l-1 11 . 1 )dt 

(I I) 

(I 2) 

(13) 

(I 5) 

(16) 

The direct solution of this equation system IS 

computationally expensive. One approach in order to 

decrease the computational cost is to construct predic

tor-multicorrector algorithms. 
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3. Predictor-multicorrector algorithm 

In this section, we present the development of a 

new family of the predictor-multicorrector algorithms, 

based on time-discontinuous Galerkin method. The main 

idea of these algorithms is to cast the coupled equa

tions in predictor-multicorrecror form. The goal is to 

reduce the computational effort while retaining the 

desirable accuracy and stability of the underlying fully 

coupled method. 

Solving the system (6) in the predictor

multicorrector fom1, the first equation of ( 6) defines 

the value of u~_ 1 , 1.e., u~_ 1 = u~_ 1 . The second and 

third equations of (6) are solved separately: for given 

an initial approximation (predictor value) of the accel

eration, the second equation is solved for the velocity. 

Next, using the resultant velocity, the third equation is 

solved for the acceleration. Finally, using this updated 

acceleration, the second equation is again solved for 

the velocity. These two equations are solved repeatedly 

until desired accuracy is obtained. Proposed predictor

multicorrector algorithm is cast as a residual-driven 

algorithm. This feature provides that the iterative solu

tions converge to the solution of the fully coupled 

method. The essence of the predictor-multicorrector 

algorithm, which is based on the time-discontinuous 

Galerkin approach using quadratic interpolation in time, 

is presented in following equations (Table). Note that 

the velocity equation is solved again after solving for 

the acceleration so that the updated acceleration prop

erly influences the velocity. The maximum number of 

corrector passes affects the stability and the accuracy 

of the algorithm. 

In the same way we can construct a whole family 

of predictor-multicorrector algorithms based on differ

ent interpolation functions of displacements. 

4. Stability and error analysis 

Since any n degrees of freedom coupled system 

can be decomposed into n uncoupled scalar equations, 

it can be established that the entire coupled system is 

reduced to consideration of the individual model equa

tion [3]. 
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Predictor-multicorrector algorithm based on quadratic interpo
lation function of displacements 

A. Initialization 

u(t(,) = u0 

v(t(J)=v 0 

t=O 

B. Time integration 

a) Predictor phase 

=0 

b) Multi corrector phase 

[M,~]ll v(o) = R\~l) 

v(t:_1 )(I) = v(t1~_ 1 )(O) + !l v(o) 

For i = 1, ..... , imax - I 

v(t+ )(i+1) = v(t+ )(i) + !l v(i) 
11-1 n-1 

Next i 

u(t;1 ) u(t1~_ 1 )+ !l t v(t:_1 pmax) + 
1 1 limax-li 

+-llt- a 11 
2 

limax-li 
v(t;,) = v(t:-1 J(imax) + !l t all 

t=t+Llt 

If t < T. go to a), else terminate 

Where 

[ M ~ ] = [ M] + b1 [ C] + b2 [ K] 

R\.il =[M]v(t;,_J)+F111 -b1 [K]u(t 1~_J)
-([M]+b1[C] +b2 [K])v(t:_ 1)(i)-

- (h1 [M] + b2 [C] + .!._b 3 [K])a~,iJ 2 

R~:> =F211 -b2[K]u(t:_J)-(b2[C]+ 

+b3[K])v(t:_1)(i) - (b2[M]+ 

+ b3 [ C] + .!_ b4 [ K])a~/ J 
2 



Thus the analysis is performed on the scalar sin- 1.1 ,-------------------, 

gle degree of freedom harmonic oscillator model pro

blem with no damping or friction 

(17) 

with 

d(0)=d0 and d(O)=v0 (18) 

where w" is the natural frequency of the system and 

d is the displacement magnitude. 

In the present analysis a particular emphasis is pla

ced on the dissipative properties and the temporal ac

curacy of the proposed predictor-multicorrector algo

rithm. 

For the purposes of analysis, it is useful to trans

form each of the numerical formulations to the discrete 

form, that is to express the values at the end of the 

time interval ( u ~ and u ~ ) in terms of the values at 

the end of the previous time interval. This can be writ

ten in the form 

(19) 

where [A] is the numerical amplification matrix. 

Convergence of a numerical formulation requires 

consistency and stability. Consistency can be determi

ned from the truncation error. Stability is determined 

by spectral radius of the numerical amplification mat

rix which is defined by 

p( [A])=maxi I Ai ([A]) I (20) 

where N is the dimension of the amplification matrix. 

The formulation is unconditionally stable if the 

spectral radius is less than or equal to unity, ie 

p([A])::; 1. (21) 

Fig I depicts spectral radii of the implicit predic

tor-multicorrector scheme for two, three corrector pas

ses and parent fully coupled algorithm. The fully coup

Jed time-discontinuous Galerkin method using quadra

tic interpolation-in-time does not damp high frequency 

response ( Poo = I ). However, the corresponding impli

cit predictor-multicorrector schemes exhibit numerical 

dissipation in the high frequency regime. The high fre

quency asymptotic limit of the spectral radius ( Poo) is 

0.58 and 0.778 for two and three corrector passes, res

pectively. 

C/J 
::I 

:0 
~ ..... 

t;j 
..... 
u 
0 c.. 

C/J 

0.~ 

0.~ 

0.7 

o.o 

0.5 

O..J 

0.3 

0.2 
() 2 

b.t/T 

Fig 1. Spectral radii for the predictor-multicorrector al

gorithms based on quadratic-in-time interpolations for 
the time-discontinuous Galerkin method 

When solving dynamical problems it is common 

procedure to separate the error in numerical schemes, 

into dissipation, namely, amplitude error, and disper

sion, namely, phase error. Provided that the eigenvalu

es of [A] remain complex ('Au([A])=A±iB,B:;tO), 

algorithmic damping ratio provides a measure of the 

numerical dissipation and can be expressed 

-h lnp 
'Jf =-~ 

/',.{(!) 
(22) 

Algorithmic damping ratios are compared in Fig 2. 

The parent algorithm exhibits the least numerical dis

sipation followed by three-pass and the two-pass algo

rithms, in increasing order of algorithmic damping. The 

two-pass algorithm dissipation is still somewhat high in 

01) 
r:: ·c.. 
E 
~ ., 
() .E 

-= ·;:: 
0 
01) 

~ 

0.3,--------------------, 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

b.t/T 

Fig 2. Algorithmic damping ratios for the predictor
multicorrector algorithms based on quadratic-in-time in
terpolations for the time-discontinuous Galerkin method 
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the low frequency regime to be of practical use. In 

contrast, the three-pass algorithm possesses good algorit

hmic damping characteristic in low frequency regime. 

Dispersion in waves is generated when the phase 

velocity is a function of the frequency. The physical 

measure of the dispersion in one dimension (time) is 

the difference between analytical natural frequency and 

the numerical frequency. 

The relative frequency error provides a measure 

of the numerical dispersion and in the numerical ex

pression it is given by 

wh 
--1 where 
-h ' 
w 

-h 1 1(B) w = l'lt- tan- A · (23) 

Relative frequency errors in the low frequency do

main are compared in Fig 3. 

The third-order accuracy of the time finite element 

algorithms is clearly evident since the frequency error 

for these algorithms is substantially smaller than that 

of the Newmark algorithm 

In order to establish the results of the global trun

cation error, a posteriori convergence rate in 11·11 1 norm 

is evaluated, where the error is defined by 

T 

liell1 = J abs(U -u) dt (24) 
() 

where U and u are the exact and approximate solu

tions respectively. 

The results of rate of convergence obtained using 

different numerical fommlations are shown in Fig 4. 
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2 .... 
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Fig 3. Relative frequency errors for the predictor-multi
corrector algorithms based on quadratic-in-time interpo
lations for the time-discontinuous Galerkin method 
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Fig 4. A posteriori rate of convergence by the predic
tor-multicorrector algorithms based on quadratic-in-time 
interpolations for the time-discontinuous Galerkin method 

For the sake of comparison the convergence rates 

of parent algorithm and Newmark algorithm are also 

presented. The two-pass and three-pass algorithms dem

onstrate third-order accuracy. The three-pass algorithm 

agrees more closely with parent algorithm especially 

for smaller time steps. 

5. Conclusions 

The predictor-multicorrector algorithm for solution 

of second order ordinary differential equations associ

ated with structural dynamics is presented. The pro

posed approach is based on new version of the time

discontinuous Galerkin method. The proposed algorithm 

is characterised by the stability condition, phase dissi

pation and frequency errors, a posteriori convergence 

rate. 
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1\'AUJAS PROGNOZES IR MULTIKOREKCIJOS 
ALGORITMAS, SKIRTAS LAIKUI 11\'TEGRUOTI 
STRUKTURINES DINAMIKOS UZDAVINIUOSE 

R. Bausys 

Santrauka 

Tn1kusis laike Galiorkino metodas leidzia sudaryti efek

tyvius struktiirines dinamikos uzdaviniq sprendimo algoritmus. 

Sio metodo variacine formuluote pateikta lygtyje (3). Lygcil!. 

sistema, gauta taikant kvadratines laiko interpoliacines funkci

jas, yra pateikta lygtyje (6). Taikant originallJ. tn1klJ..ii laike 

Galiorkino metod<l, tenka spr~sti didesn~ lygcilJ. sistem'l,, paly

ginti su iprastiniais laiko integravimo algoritmais. Norint is

vengti sio tn1kumo, pasiiilytas naujas prognozes ir multiko

rekcijos algoritmas, skirtas laiko integravimui struktiirines di

namikos u2daviniuose. Sio algoritmo sudarymo pagrindine ideja 

yra atskifl!. pagrindinilJ. lygcilJ. liekamlJ..ilJ. narilJ. minimizacija. 

Siuo atveju sprendziamos tokio paties dydzio matricines lyg

tys, kaip ir taikant iPrastus laiko integravimo algoritmus. Tai 

leidzia sumazinti skaiciavimo s<l_naudas kartu islaikant tq pa

ciq tikslumo klas~ bei besqlygini stabilumq. 

Pateiktas prognozes ir multikorekcijos algoritmas skirtas 

pagrindinei lygcilJ. sistemai (6) spr~sti. Taikant prognozes ir 

multikorekcijos algoritmq, pirmoji lygtis is ( 6) sistemas api-

brezia u~-l reiksm~. t. y. u~-l = u~-l. Lygciq sistemas (6) 

antroji ir trecioji lygtys sprendziamos atskirai. Taikant pradin~ 

pagreicio aproksimacijq (prognozes etapo reiksm~). sprendzia

ma antroji lygtis ir randamos greicilJ. reiksmes. Toliau, naudo

jant gautas greicil!. reiksmes, sprendziama trecioji lygtis ir ap

skaiCiuojamos naujos pagreiciq reiksmes. Pabaigoje, irasius ap

skaiciuotas pagreiciq reiksmes, vel sprendziama antroji lygtis 

ir nustatomos naujos patikslintos greicilJ. reiksmes. Pakartoti

nai sprendziant sias dvi lygtis, pasiekiamas norimas tikslu

mas. Kadangi taikant si prognozes ir multikorekcijos algorit

mq minimizuojami kiekvienos lygties liekamieji nariai, sio al

goritmo sprendinys konverguoja prie visos lygciq sistemas 

sprcndinio. Prognozes ir multikorekcijos algoritmo pagrindi

nes lygtys pateiktos lenteleje. 

Pagrindines algoritmo charakteristikos nustatomos klasi

kiniais modalines analizes biidais. Gautos charakteristikos pa

lyginamos su kitais metodais. 
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