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Abstract. Under fire, membrane action plays an important role in the performance of slabs subjected to large deflections. 
In this paper, a new model is proposed based on a proper approximation of horizontal displacements for a simply sup-
ported composite slab. The novelty of the proposed approach consists in a special treatment of the system of shape func-
tions for the “in-plane” displacements. Moreover, a load applied to the slab is divided into two components, so that one 
component is balanced by the membrane forces, while the second one is transmitted by the bending forces (including 
transfer of shear and moment). The deflection due to thermal elongations is replaced by the identical deflection caused 
by a fictitious load. Unknown parameters are calculated using the principle of virtual displacements. The effectiveness 
of the model is validated by the results obtained from experiments.
Keywords: approximation of horizontal displacements, membrane action, composite slab, steel beams.

Introduction

It has long been recognised that the load applied to the 
slab is transmitted partly by the flexural rigidity and 
partly by the membrane action of the slab (Timoshenko, 
Woinowsky-Krieger 1959). In case of small displace-
ments, design models do not allow for taking into account 
membrane forces (Timoshenko, Woinowsky-Krieger 
1959). But in case of large deflections, which are accept-
able in fire, membrane action can considerably enhance 
its load-carrying capacity (Bailey 2001). This behaviour 
is possible only in case of using the ductile material. It 
was proved that steel fibre reinforced concrete is suffi-
ciently ductile for creating the membrane action (Fike, 
Kodur 2011; Meskenas et al. 2014; Marciukaitis et al. 
2011). Partial differential equations describing the behav-
iour of the slab in the case of large deflections were intro-
duced by Föppl and von Kármán as early as in the 1910s. 
Since the 1950s the interest to the membrane actions of 
slabs had increased. After Cardington experiments in the 
mid of the 1990s (Bailey et al. 1999, 2000), two dif-
ferent approaches have been developed to address the 
membrane action of slabs at elevated temperatures. They 
may be classified as: (i) analytical approaches, and (ii) 
FEM based approaches. There is a variety of both sim-

plified and advanced analytical models developed since 
then (see, e.g. Bailey 2001; Usmani et al. 2001; Li et al. 
2007; Wang 1997; Vassart, Zhao 2011). These models are 
proposed namely for reinforced concrete. A number of 
FEM models based on geometrically and physically non-
linear approach using commercial software packages like 
ABAQUS with FEAST subroutines (Gillie et al. 2001) 
or ANSYS (Vassart, Zhao 2011; Kodur et al. 2013) have 
been introduced. Specialised software packages like Vul-
can (Huang et al. 2003; Huang 2010), Safir (Franssen 
et al. 2002; Fike, Kodur 2011) or SlabFEM (Tesar 2008; 
Stadler, Mensinger 2014) have been developed to simu-
late composite slabs under elevated temperatures. When 
utilizing the FEM models, the slab is mostly modelled 
with layered shell elements. It is worth mentioning that 
just in Fike and Kodur (2011) the authors consider the use 
of steel fibre reinforced concrete to enhance the fire re-
sistance of composite floor assemblies. The relevant ther-
mal and mechanical properties of steel-fibre reinforced 
concrete for use in fire resistance calculations can be 
found in Lie and Kodur (1996) and Bednář et al. (2013). 

Starting from the previous achievements in this field, 
the present paper proposes a new simplified model, which 
belongs to category (i). As an auxiliary tool for design-
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ing composite floors with steel fibre reinforced concrete 
slabs exposed to fire, the model should be simple and 
sufficiently quick in predicting the reasonable distribu-
tion of membrane forces and displacements during a fire. 
The proposed model covers both geometric and mate-
rial non-linearity. It properly reflects the effect of thermal 
elongations governing the vertical displacements of the 
slab, namely at the stage of heating. In this stage, cor-
rect approximations of displacements and forces as well 
as the fulfilment of boundary conditions play a decisive 
role. Approximations of displacements in case of clamped 
edges were proposed by Timoshenko in Timoshenko and 
Woinowsky-Krieger (1959). A new model of the slab 
with simply supported edges is the subject of this paper. 
The effect of fire on a ceiling slab is twofold. It gives 
the rise to thermal elongations in the middle surface and 
causes a distinct reduction of the material stiffness.

The authors do not strive to predict the overall be-
haviour of the slab. Especially we are not aimed at the 
final stage preceding its collapse. Therefore, the model 
does not analyse in detail such phenomena as cracking in 
tensile zones, transient creep strains as well as develop-
ment of plastic strains for concrete in compression, since 
their description at elevated temperatures might be dubi-
ous. Instead, the material properties are captured by the 
temperature-dependant overall characteristics, the stress-
strain relationships, obtained from the experiments. The 
complexity of material modelling leaps to the eyes when 
comparing the results published in Lie and Kodur (1996) 
and Bednář et al. (2013). Recall that the resulting curves 
differ significantly.

The performance of the model is validated against 
a set of experiments carried out by the research team at 
the Czech Technical University in Prague. This paper is 
part of the complex research program including both the 
experiments on the response of composite floor slabs sub-
jected to fire (Bednář et al. 2012, 2013) and numerical 
simulations.

1. Development of a new model

The model is based on the von Kármán theory of large 
deflections for plates and shallow shells. Displacements 
in the middle surface of the slab are crucial variables of 
the model. Unknown parameters are calculated using the 
principle of virtual displacements. A novelty value of the 
proposed model consists in a special selection of shape 
functions for the “in-plane” displacements u and v. They 
are classified into two sets. The first one serves to aptly 
cover the linear parts of expressions for membrane forces 
and the second set is used to satisfy the static boundary 
conditions (zero normal and shear forces prescribed on 
the boundary).

1.1. Basic ideas and assumptions of the model
A load p applied to the slab is divided into two yet un-
known components p1 and p2, so that p1 is balanced by 
the membrane forces and p2 is balanced by the bending 

forces (Timoshenko, Woinowsky-Krieger 1959). The load 
p1 (membrane) generates a vertical displacement a01 at 
the centre of the slab which is identical to the vertical 
displacement a02 caused by the load p2 (bending).

The deflection w0 at the slab’s centre brought about 
by thermal elongations is replaced by the identical deflec-
tion caused by a fictitious load p0, which is balanced by 
the membrane forces. Therefore, the large deflections of 
the slab affect only the membrane forces.

The underlying equation thus reads:

 1 2p p p+ = , (1)

where: p1 is part of the load balanced by the membrane 
forces, p2 is part of the load balanced by the bending 
forces, and p is the applied external load.

Consequently, the second basic equation assumes 
this form: 

 01 02 00 0a a a w= = − , (2)

where: a00 is the total vertical displacement at the centre 
of the slab, w0 is the vertical displacement at the centre 
of the slab caused by a fictitious load p0 (thermal effect), 
a01 is the vertical displacement caused by p1 (membrane), 
and a02 is the vertical displacement caused by p2 (bend-
ing).

The slab in question is perceived to be simply sup-
ported (Fig. 1). This assumption seems reasonable for 
common slabs subjected to a high temperature as the 
connections gradually lose their stiffness due to cracks 
arising in continuous slabs above the supports and the 
slab subsequently becomes discontinuous.

A common secant modulus of elasticity is adopted 
for the whole thickness of the slab (defined in Section 2, 
Fig. 3).  Geometric characteristics of the structure were 
calculated by stratifying it into layers and reducing the 
width of layers with respect to the modulus of elastic-
ity. This modulus is dependent on temperature. Iterations 
were used to obtain a proper value of the modulus for 
each temperature depending on the current mechanical 
strain attained in each layer. 

Fig. 1. Design scheme of slab with simply supported edges
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1.2. Approximations of vertical displacements
The vertical displacements of the middle surface of the 
slab caused by the membrane forces (loads p1 and p0) are 
approximated as:

 
2 2

00 2 21 1x yw a
L B

  
= − −    

  
, (3)

where: L and B are the half of the length and the half of 
the width of the slab, respectively (see Fig. 1).

The vertical displacements of the middle surface of 
the slab caused by bending forces (load p2) are approxi-
mated as:

 
2 4 2 4

2 02 2 4 2 4
6 1 6 11 1
5 5 5 5

x x y yw a
L L B B

  
= − + − +  

  
. (4)

The vertical displacements of the middle surface of 
the slab caused by fictitious membrane forces (fictitious 
load p0) are approximated as:

 
2 2

1 0 2 21 1x yw w
L B

  
= − −    

  
. (5)

The vertical displacement at the centre of the slab 
w0, induced by thermal expansion, is evaluated by means 
of this simplified formula:

 0
3
2

w B θ= ε , (6)

where: εθ is the overall thermal strain. The overall ther-
mal strain, εθ, of the homogenized cross-section is calcu-
lated as the weighted average satisfying the compatibility 
conditions along the thickness of the slab:

 ( ),
1 1

/
n n

i i i
i i

E Eθ θ
= =

ε = ε ⋅∑ ∑ , (7)

where: εθ,i is the thermal strain and Ei is the modulus of 
elasticity of each layer, n – number of layers of stratified 
cross-section.

1.3. Approximations of horizontal displacements
In case of a simply supported slab the following bounda-
ry conditions for the membrane forces should be satisfied:
 0x x LN = = , 0y y B

N
=

= , 0xy x L
N

=
=  and 0xy y B

N
=

= .

The von Kármán strain-displacement equations writ-
ten for the middle surface will be adopted as a stepping 
stone for the approximation of “in-plane” displacements 
u and v:

 
21

2x
u w
x x
∂ ∂ ε = +  ∂ ∂ 

; (8)

 
2

1
2y

v w
y y

 ∂ ∂
ε = +  ∂ ∂ 

; (9)

 xy
u v w w
y x x y
∂ ∂ ∂ ∂

γ = + +
∂ ∂ ∂ ∂

. (10)

The membrane forces are functions of strains:

 ( )21
x

x x y
EA

N = ε + νε
− ν

; (11)

 ( )21
y

y y x
EA

N = ε + νε
− ν

; (12)

 
2

1
21

xy
xy xy

EA
N −ν

= γ
− ν

, (13)

where: E is the modulus of elasticity, Ax, Ay and Axy are 
the cross-section areas of the slab per 1 m run at each di-
rection (described in Section 2, Fig. 5) and ν is the Pois-
son ratio.

Substituting Eqns (8)–(10) to Eqns (11)–(13) yields:

2

2

2

1
1 1
2 2

x
x

EA u v wN
yx
w

y x
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; (14)

2

2

2
,

2 21
1 1

y
y w wN

y x
EA v u

y x
 ∂ ∂ =   

 ∂
∂ ∂ 
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; (15)

 2
1

21
,xy

xy
EA w wN

x y
v u
x y

 ∂ ∂
+

−
+

ν ∂ ∂
=

∂ ∂− ν  ∂ ∂ 
. (16)

The linear parts of Eqns (14) and (15), i.e. expressions
u v
x y
∂ ∂

+ ν
∂ ∂

 and 
v u
y x
∂ ∂

+ ν
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, will be approximated

as follows:
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 (18)

where: b00, b01, b02, b03, c00, c01, c02 and c03 are to be 
treated as still unknown parameters.

Functions g1(y) and g2(x) were introduced to 

satisfy boundary conditions 0x x LN = =  and 0y y B
N

=
= . 

Substituting Eqns (17), (18) and (3) to Eqns (14) and (15) 
and setting x = L for Nx and y = B for Ny gives:
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Solving differential Eqns (17) and (18) results in the 
searched expressions for the horizontal displacements u 
and v:
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Since Eqns (21) and (22) have also to obey the sym-
metry boundary conditions, i.e. 0 0xu = =  and 0 0yv = = , 
functions C1(y) and C2(x) must be equal to zero.
To satisfy the boundary conditions for shear forces 

( 0xy x L
N

=
=  and 0xy y B

N
=

= ), as well as the symmetry

conditions (
0

0xy x
N

=
=  and 

0
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N
=

= ), the 

expression for u v
y x
∂ ∂

+
∂ ∂

 is presumed in the form:
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where d00 is the unknown parameter.
Recall that the nonlinear part of Eqn (16) satisfies 

both boundary conditions a priori. By differentiating 
Eqns (21) and (22) we obtain:
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The compatibility condition requires that the shear 
strains calculated from Eqns (23) and (24) be identical. 
This yields a system of algebraic equations:
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.  (25)

By solving them we eliminate parameters b00, b01, 
b02, b03.

Finally, inserting these parameters into Eqns (21) 
and (22) we arrive at final expressions for displacements 
u and v.

1.4. Determination of still unknown parameters
The remaining unknown parameters a00, c00, c01, c02, c03 
and d00 are to be found using the principle of virtual dis-
placements:

 ( ) 0V p w dxdyδ − δ ⋅ =∫∫ . (26)

The strain energy of membrane forces will be evalu-
ated by:
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 ( )1
1 .
2 x x y y xy xyV N N N dxdy= ε + ε + γ∫ ∫  (27)

Analogically, the strain energy of bending forces 
will be calculated from:

2 2 2
2 2 2

1 2 ,
2 x y xy

w w wV M M M dxdy
x yx y

 ∂ ∂ ∂
= + + ∂ ∂∂ ∂ 
∫ ∫  (28)

where Ix, Iy and Ixy are the cross-section moments of in-
ertia of the slab per 1 m run at each direction (described 
in Section 2, Fig. 5).

Considering just moderate strains due to bending 
and torsional effects, the bending moments in Eqn (28) 
have already been expressed by the following formulae:
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; (29)

 
2 2

2 2 21
y

y
E I w wM

y x
⋅  ∂ ∂

= − + ν 
− ν ∂ ∂ 

; (30)

 ( )
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E I wM
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⋅ ∂
= − ν

∂ ∂− ν
.  (31)

Equation (26) must be satisfied for any variation of 
each of the unknown parameters. In such a way we obtain 
the system of six Eqns (32)–(37):

 ( )( )( )1 1 1 0
00

0f V p p w dxdy
a
∂

= − + ⋅ =
∂ ∫∫ , (32)

and

1 1 1
2 3 4

00 01 02
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 0,  0.

V V Vf f f
c c c
V Vf f
c d
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= = = = = =
∂ ∂ ∂

∂ ∂
= = = =
∂ ∂

 (33–37)

Assuming that bending moments are not to be de-
pendent on the initial deflection induced by temperature, 
allows us to determine parameter a02 which is propor-
tional to p2, see Eqns (38):

 ( )( )2 2 2
02

0V p w dxdy
a
∂

− ⋅ =
∂ ∫∫ . (38)

To obtain the fictitious load p0 as a function of w0, 
Eqns (32)–(37) can be used replacing w by w1 and a00 
by w0.

Eqns (32)–(37) are linear in parameters c00, c01, c02, 
c03, d00 and nonlinear in parameter a00.

The calculation proceeds in these steps:
1. Determine a02 using Eqn (38).
2. Determine p0 as a function of w0 from the system 

of Eqns (32)–(37) replacing w by w1 and a00 by w0.
3. Determine c00, c01, c02, c03, d00 as a function of a00 

by solving the system of Eqns (33)–(37).

4. Determine a00 by solving the system of equations:

 

( )( )( )1 1 0
00

1 2

01 00 0

0V p p w dxdy
a

p p p
a a w

∂ − + ⋅ =∂ + =
 = −


∫∫
.  (39)

2. Validation of the model

The ribbed composite steel fibre reinforced concrete slab 
with steel beams displayed in Figure 2 was considered 
as an object of investigation.  Experimental data of slab 
tests at elevated temperatures obtained at 21.10.2010 and 
11.10.2011 in PAVUS laboratory in Veselí nad Lužnicí 
(Bednář et al. 2012, 2013) are used to validate the ana-
lytical model. The span and width of the structure is equal 
to 4.5 and 3.0 m, respectively. The slab was loaded by the 
load equal to 1.8 kN/m2. The distance of the steel beams 
IPE100 is equal to 1 m. The beams are connected to the 
slab using studs.

Fig. 2. Transversal cut of slab

The stress-strain curves of steel-fibre reinforced con-
crete used in the experiment at different temperatures are 
shown in Figure 3. Formulas for the stress-strain relation-
ships of SFRC were obtained based on the experiments 
(Bednář et al. 2013) using the method presented in Ger-
nay and Franssen (2011), by the first author as part of his 
PhD thesis and improved by the first author. The secant 
modulus of elasticity (E = tanα, see Fig. 3) dependent 
on temperature was used in computational simulations.

Fig. 3. Stress-strain curves of steel-fibre reinforced concrete 
at different temperatures and definition of secant modulus of 
elasticity (E)
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Material characteristics of steel were applied accord-
ing to EN 1993-1-2 (2005).

The nominal standard fire curve was used at the ex-
periments. The experiment at 2011 was terminated before 
reaching the fire resistance after 126 min in order to fol-
low the development of displacements in the course of 
cooling phase. A thermal analysis was carried out using 
the differential method of heat transfer (Incropera et al. 
2006). The effective thickness of the slab for thermal 
analysis was taken as h1+hr/2 (EN 1994-1-2 2005). Dis-
tribution of temperature through the thickness in time is 
shown in Figure 4. The temperature of steel beams and 

the remaining parts of the ribs was assumed to be equal 
to the temperature of the external layer of the calculated 
slab. The thermal characteristics of materials are used ac-
cording to EN 1993-1-2 (2005) and EN 1992-1-2 (2004).

Geometric characteristics of the structure were cal-
culated by stratifying the structure into layers and reduc-
ing the width of layers according to the current modulus 
of elasticity (Fig. 5). Rigid connection is assumed be-
tween the beams and the slab.

3. Results and discussions

A stress distribution in the middle surface is shown in 
Figures 6 and 7. In the centre region of the slab tensile 
stresses are observed, while in the vicinity of edges com-
pressive stresses appear. This phenomenon confirms the 
theory of tensile membrane at the centre of the slab and 
compressive ring near the boundaries. Shear stress distri-
bution is shown in Figure 8.

The evolution of horizontal displacements u in the 
x-direction on one quarter of the slab is displayed in Fig-
ure 9. It is shown that the symmetry condition is satisfied. 
The utmost horizontal movements of individual points 
toward the centre of the slab appear at the corners of the 
slab. The evolution of membrane forces in the middle 
surface due to horizontal displacements u and v is shown 
in Figure 10.

Fig. 4. Distribution of temperature through thickness of slab 
over time

Fig. 5. Determination of effective cross-section of slab
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The evolution of the load taken by the membrane 
and by the bent slab, respectively, is shown in Figure 11. 
It is evident that at ambient temperature all the load is 
taken by the bending resistance of the slab, but increasing 
temperature causes the increase in deflections and after 
60 minutes (in current experiment) the bending resistance 
of the slab becomes negligible.

The evolution of vertical displacements in time is 
shown in Figures 12 and 13. The thermal deflection rep-
resents the main component of total deflection.  

Fig. 6. Normal stress σx distribution in middle surface (time 
120 min)

Fig. 7. Normal stress σy distribution in middle surface (time 
120 min)

Fig. 8. Shear stress distribution in middle surface (time 
120 min)

Fig. 9. Horizontal displacements u in middle surface (time 
120 min)

Fig. 10. Membrane forces N1x in middle surface subjected to 
horizontal displacements (u and v) only (time 120 min)

Fig. 11. Load distribution between bending and membrane 
resistance of slab; p1 – load taken by membrane, p2 – load 
taken by bending resistance, p – applied load
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The comparison of deflections received from the 
experiments and by the model is shown in Figures 14 
and 15. Slight fluctuations of displacements at the ini-
tial phase of experiment can be ascribed to the fact that 
boundaries at the beginning of the experiment do not per-
form as simply supported, but provide a certain torsional 
rigidity, which, in the course of time, becomes negligible. 
This process is rather difficult to describe analytically. 
This phenomenon is typical for both analytical and FEM-
based models; and at the initial stage of heating predomi-
nates over the remaining effects of material modelling.

The prediction of failure of structure could be per-
formed by analysing the strains and defining limits. These 
results are under preparation and will be presented in a 
forthcoming journal paper.

Conclusions

The model with novel approximations of horizontal dis-
placements, which satisfy the boundary conditions, al-
lows predicting the overall performance of the slab. At 
the end of heating, the deflection caused by mechanical 
load exhibits not more than 4% from the total deflection. 
The model confirms the phenomena of appearance of a 
tension membrane at the centre of the slab and a com-
pressive ring around the perimeter. The load transmitted 
by the bending resistance of the slab is less than 20% of 
the applied load after 30 min and is less than 12% of the 
applied load after 60 min according to the current experi-
ment. The ratio of calculated to experimentally obtained 
deflections varies from 0.72 to 1.2 not considering the 
phase of the collapse of the structure.
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