Study on risk control of water inrush in tunnel construction period considering uncertainty

    Zhu Wen Affiliation
    ; Yuanpu Xia Affiliation
    ; Yuguo Ji Affiliation
    ; Yiming Liu Affiliation
    ; Ziming Xiong Affiliation
    ; Hao Lu Affiliation


Water inrush risk is a bottleneck problem affecting the safety and smooth construction of tunnel engineering works, so the risk control of water inrush is important, however, geological uncertainty and artificial uncertainty always accompany tunnel construction. Uncertainty will not only affect the accuracy of water inrush risk assessment results, but also affect the reliability of water inrush risk decision-making results. How to control the influence of uncertainty on water inrush risk is key to solving the problem of water inrush risk control. Based on the definition of improved risk, a risk analysis model of water inrush based on a fuzzy Bayesian network is constructed. The main factors affecting the risk of water inrush are determined by sensitivity analysis, and possible schemes in risk control of water inrush are proposed. Based on the characteristics of risk control of water inrush in a tunnel, a multi-attribute group decision-making model is constructed to determine the optimal water inrush risk control scheme, so that the optimal scheme for reducing uncertainty in risk control of water inrush is determined. Finally, this system is applied to Shiziyuan Tunnel. The results show that the proposed risk control system for reducing uncertainty of water inrush is efficacious.

First published online 21 August 2019

Keyword : water inrush risk, uncertainty, risk control system, fuzzy Bayesian network, multi-attribute decision making

How to Cite
Wen, Z., Xia, Y., Ji, Y., Liu, Y., Xiong, Z., & Lu, H. (2019). Study on risk control of water inrush in tunnel construction period considering uncertainty. Journal of Civil Engineering and Management, 25(8), 757-772.
Published in Issue
Aug 21, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Ajmani, V. (2012). Modern engineering statistics. Technometrics, 41(4), 373-373.

Ale, B. J. M. (2002). Risk assessment practices in The Netherlands. Safety Science, 40(1), 105-126.

Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Elsevier North-Holland, Inc.

Aven, T., & Renn, O. (2009). On risk defined as an event where the outcome is uncertain. Journal of Risk Research, 12(1), 1-11.

Bao, T., Xie, X., Long, P., & Wei, Z. (2017). MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment. Expert Systems with Applications, 88, 305-317.

Blavatskyy, P. R. (2014). A theory of decision-making under risk as a tradeoff between expected utility, expected utility deviation and expected utility skewness. Social Science Electronic Publishing.

Chen, S. M., & Han, W. H. (2018). A new multiattribute decision making method based on multiplication operations of interval-valued intuitionistic fuzzy values and linear programming methodology. Information Sciences, 429, 421-432.

Chen, Z.-S., Chin, K.-S., Ding, H., & Li, Y.-L. (2016). Triangular intuitionistic fuzzy random decision making based on combination of parametric estimation, score functions, and prospect theory. Journal of Intelligent & Fuzzy Systems, 30(6), 3567-3581.

Detyniecki, M., & Yager, R. R. (2000). Ranking fuzzy numbers using a-weighted valuations. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 8(5), 573-591.

Dong, X., Lu, H., Xia, Y., & Xiong, Z. (2016). Decision-making model under risk assessment based on entropy. Entropy, 18(11), 404.

Eleyedatubo, A. G, Wall, A., & Wang, J. (2010). Marine and offshore safety assessment by incorporative risk modeling in a fuzzy-Bayesian network of an induced mass assignment paradigm. Risk Analysis, 28(1), 95-112.

Fischer, K., & Kleine, A. (2007). Remarks on “A measure of risk and a decision-making model based on expected utility and entropy” by Jiping Yang and Wanhua Qiu (EJOR 164 (2005), 792-799). European Journal of Operational Research, 182(1), 469-474.

Fraldi, M., & Guarracino, F. (2010). Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections. International Journal of Solids and Structures, 47(2), 216-223.

Hao, Y., Rong, X., Ma, L., Fan, P., & Lu, H. (2016). Uncertainty analysis on risk assessment of water inrush in karst tunnels. Mathematical Problems in Engineering, Article ID 2947628.

Heckerman, D., Mamdani, A., & Wellman, M. P. (1995). Realworld applications of Bayesian networks. ACM.

Jousselme, A.-L., Grenier, D., & Bossé, É. (2001). A new distance between two bodies of evidence. Information Fusion, 2(2), 91-101.

Kahraman, C., Onar, S. C., & Oztaysi, B. (2015). Fuzzy multicriteria decision-making: A literature review. International Journal of Computational Intelligence Systems, 8(4), 637-666.

Kaplan, S., & Garrick, B. J. (1981). On the quantitative definition of risk. Risk Analysis, 1(1), 11-27.

Karwowski, W., & Mital, A. (1986). Applications of approximate reasoning in risk analysis. Advances in Human Factors/Ergonomics, 6, 227-243.

Li, S. C., Wu, J., Xu, Z. H., & Li, L. P. (2017). Unascertained measure model of water and mud inrush risk evaluation in karst tunnels and its engineering application. KSCE Journal of Civil Engineering, 21(4), 1170-1182.

Li, S.-c., Zhou, Z.-q., Li, L.-p., Xu, Z.-h., Zhang, Q.-q., & Shi, S.-s. (2013). Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system. Tunnelling and Underground Space Technology, 38, 50-58.

Li, X., & Li, Y. (2014). Research on risk assessment system for water inrush in the karst tunnel construction based on GIS: Case study on the diversion tunnel groups of the Jinping II Hydropower Station. Tunnelling & Underground Space Technology, 40(2), 82-191.

Liu, J., Liao, X., & Yang, J. B. (2015). A group decision-making approach based on evidential reasoning for multiple criteria sorting problem with uncertainty. European Journal of Operational Research, 246(3), 858-873.

Ma, M., & Jiyao, A. N. (2015). Combination of evidence with different weighting factors a novel probabilistic-based dissimilarity measure approach. Journal of Sensors, Article ID 509385.

Melchers, R E. (2001). On the ALARP approach to risk management. Reliability Engineering & System Safety, 71(2), 201-208.

Rassafi, A. A., Ganji, S. S., & Pourkhani, H. (2017). Road safety assessment under uncertainty using a multi attribute decision analysis based on Dempster–Shafer theory. KSCE Journal of Civil Engineering, 22(8), 3137-3152.

Shang, X. G., & Jiang, W. S. (1997). A note on fuzzy information measures. Pattern Recognition Letters, 18(5), 425-432.

Smarandache, F., Dezert, J., & Tacnet, J. M. (2011). Fusion of sources of evidence with different importances and reliabilities. In 2010 13th International Conference on Information Fusion (pp. 1-8). IEEE.

Špačková, O., & Straub, D. (2012). Dynamic Bayesian network for probabilistic modeling of tunnel excavation processes. Computer‐Aided Civil & Infrastructure Engineering, 28(1), 1-21.

Staveren, M. T. V. (2009). Extending to geotechnical risk management. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 3(3), 10.

Tang, C., Wang, J., & Zhang, J. (2010). Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project. Journal of Rock Mechanics and Geotechnical Engineering, 2(3), 193-208.

Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3-4), 312-318.

Wang, Y., Jing, H., Yu, L., Su, H., & Luo, N. (2017). Set pair analysis for risk assessment of water inrush in karst tunnels. Bulletin of Engineering Geology & the Environment, 76(3), 1199-1207.

Xia, Y., Xiong, Z., Dong, X., & Lu, H. (2017). Risk assessment and decision-making under uncertainty in tunnel and underground engineering. Entropy, 19(10), 549.

Xia, Y., Xiong, Z., Wen, Z., Lu, H., & Dong, X. (2018). Entropybased risk control of geological disasters in mountain tunnels under uncertain environment. Entropy, 20(7), 503.

Xu, J., Wan, S. P., & Dong, J. Y. (2016). Aggregating decision information into Atanassov’s intuitionistic fuzzy numbers for heterogeneous multi-attribute group decision making. Applied Soft Computing, 41(C), 331-351.

Yang, J. B., & Xu, D. L. (2013). Evidential reasoning rule for evidence combination. Artificial Intelligence, 205, 1-29.

Yang, J. P., & Qiu, W. (2005). A measure of risk and a decisionmaking model based on expected utility and entropy. European Journal of Operational Research, 164(3), 792-799.

Ye, J. (2007). Improved method of multicriteria fuzzy decisionmaking based on vague sets. Computer-Aided Design, 39(2), 164-169.

Ying, H., & Rui-Hua, H. (2008). Risk attributes theory: Decision making under risk. European Journal of Operational Research, 186(1), 243-260.

Zadeh, L. A. (1965). Fuzzy sets. Information & Control, 8(3), 338-353.

Zhang, L., Skibniewski, M. J., Wu, X., Chen, Y., & Deng, Q. (2014). A probabilistic approach for safety risk analysis in metro construction. Safety Science, 63(3), 8-17.

Zhang, L., Wu, X., Skibniewski, M. J., Zhong, J., & Lu, Y. (2014). Bayesian-network-based safety risk analysis in construction projects. Reliability Engineering & System Safety, 131(3), 2939.

Zhang, Q. S., & Jiang, S. Y. (2008). A note on information entropy measures for vague sets and its applications. Information Sciences, 178(21), 4184-4191.