Share:


Characterizations on fracture process zone of plain concrete

    Yuxiang Tang Affiliation
    ; Hongniao Chen Affiliation

Abstract

The fracture property of concrete is essential for the safety and durability analysis of concrete structures. Investigating the characteristics of the fracture process zone (FPZ) is of great significance to clarify the nonlinear fracture behaviour of concrete. Experimental and numerical investigations on the FPZ of plain concrete in pre-notched beams subjected to three-point bending were carried out. Electronic speckle pattern interferometry (ESPI) technique was used to observe crack evolution and measure the full-field deformation of the beams. The development of the FPZ were evaluated qualitatively and quantitatively based on the in-plane strain contours and displacement field measured by ESPI, respectively. By integrating the cohesive crack model and finite element (FE) model, various tension softening curves (TSCs) were employed to simulate the fracture response of concrete beams. By comparing the deformation obtained by FE simulation and experiments, the TSCs of plain concrete were evaluated and most suitable TSCs of concrete were recommended.

Keyword : concrete, fracture process zone, tension softening, ESPI, cohesive crack model

How to Cite
Tang, Y., & Chen, H. (2019). Characterizations on fracture process zone of plain concrete. Journal of Civil Engineering and Management, 25(8), 819-830. https://doi.org/10.3846/jcem.2019.10799
Published in Issue
Oct 1, 2019
Abstract Views
1252
PDF Downloads
890
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Arnautov, A. K., Bikovens, O., Gribniak, V., Nasibullins, A., Blumbergs, I., & Hauka, M. (2016). Investigation on fracture of epoxy-filled composites by acoustic emission. Journal of Civil Engineering and Management, 22(5), 683-689. https://doi.org/10.3846/13923730.2016.1157094

Bazant, Z. P., & Cedolin, L. (1979). Blunt crack band propagation in finite element analysis. Journal of the Engineering Mechanics Division, 105, 297-315.

Bhowmik, S., & Ray, S. (2019). An experimental approach for characterization of fracture process zone in concrete. Engineering Fracture Mechanics, 211, 401-419. https://doi.org/10.1016/j.engfracmech.2019.02.026

British Standards Institution. (2007). BS EN 197-1:2000 CementPart 1: Composition, specifications and conformity criteria for common cements.

Cendón, D. A., Gálvez, J. C., Elices, M., & Planas, J. (2000). Modelling the fracture of concrete under mixed loading. International Journal of Fracture, 103(3), 293-310. https://doi.org/10.1023/A:1007687025575

Chen, H. H., & Su, R. K. L. (2011). Experimental study on fracture behavior of pre-notched mortar beams using ESPI technique. In Z. Bojkovic, J. Kacprzyk, N. Mastorakis, V. Mladenov, R. Revetria, L. A. Zadeh, & A. Zemliak (Eds.), Recent researches in hydrology, geology and continuum mechanics (pp. 32-37). WSEAS Press.

Chen, H. H., & Su, R. K. L. (2013). Tension softening curves of plain concrete. Construction and Building Materials, 44, 440-
451. https://doi.org/10.1016/j.conbuildmat.2013.03.040

Chen, H. H. N., Su, R. K. L., Fok, S. L., & Zhang, H. G. (2017). Fracture behavior of nuclear graphite under three-point bending tests. Engineering Fracture Mechanics, 186, 143-157. https://doi.org/10.1016/j.engfracmech.2017.09.030

Cornelissen, H. A. W., Hordijk, D. A., & Reinhardt, H. W. (1986). Experimental determination of crack softening characteristics of normalweight and lightweight concrete. HERON, 31(2), 45-56.

Dantec-Ettemeyer. (2001). ISTRA for Windows (Version 3.3.12).

Daoud, A., Maurel, O., & Laborderie, C. (2013). 2D mesoscopic modelling of bar–concrete bond. Engineering Structures, 49, 696-706. https://doi.org/10.1016/j.engstruct.2012.11.018

Denarie, E., Saouma, V. E., Iocco, A., & Varelas, D. (2001). Concrete fracture process zone characterization with fiber optics. Journal of Engineering Mechanics, 127(5), 494-502. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(494)

Dong, W., Wu, Z., Zhou, X., Wang, N., & Kastiukas, G. (2017). An experimental study on crack propagation at rock-concrete interface using digital image correlation technique. Engineering Fracture Mechanics, 171, 50-63. https://doi.org/10.1016/j.engfracmech.2016.12.003

Elices, M., Guinea, G. V., Gomez, J., & Planas, J. (2002). The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics, 69(2), 137-163. https://doi.org/10.1016/S0013-7944(01)00083-2

Gribniak, V., Rimkus, A., Torres, L., & Jakstaite, R. (2017). Deformation analysis of reinforced concrete ties: Representative geometry. Structural Concrete, 18(4), 634-647. https://doi.org/10.1002/suco.201600105

Guo, Z. K., Kobayashi, A. S., & Hawkins, N. M. (1993). Further studies on fracture process zone for Mode-I concrete fracture. Engineering Fracture Mechanics, 46(6), 1041-1049. https://doi.org/10.1016/0013-7944(93)90155-L

Hadjab-Souag, S., Thimus, J. F., & Chabaat, M. (2007a). Detecting the fracture process zone in concrete using scanning electron microscopy and numerical modelling using the nonlocal isotropic damage model. Canadian Journal of Civil Engineering, 34(4), 496-504. https://doi.org/10.1139/l06-132

Hadjab-Souag, S., Chabaat, M., & Thimus, J. F. (2007b). Use of scanning electron microscope and the non-local isotropic damage model to investigate fracture process zone in notched concrete beams. Experimental Mechanics, 47(4), 473-484. https://doi.org/10.1007/s11340-006-9001-0

Haggerty, M., Lin, Q., & Labuz, J. F. (2010). Observing deformation and fracture of rock with speckle patterns. Rock Mechanics and Rock Engineering, 43(4), 417-426. https://doi.org/10.1007/s00603-009-0055-z

Hamad, W. I., Owen, J. S., & Hussein, M. F. M. (2013). An efficient approach of modelling the flexural cracking behaviour of un-notched plain concrete prisms subject to monotonic and cyclic loading. Engineering Structures, 51, 36-50. https://doi.org/10.1016/j.engstruct.2013.01.007

Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7

Hu, X. Z. (2002). An asymptotic approach to size effect on fracture toughness and fracture energy of composites. Engineering Fracture Mechanics, 69(5), 555-564. https://doi.org/10.1016/S0013-7944(01)00102-3

Hu, X. Z., & Duan, K. (2004). Influence of fracture process zone height on fracture energy of concrete. Cement and Concrete Research, 34(8), 1321-1330. https://doi.org/10.1016/j.cemconres.2003.12.027

Huntley, J. M., & Saldner, H. (1993). Temporal phase-unwrapping algorithm for automated interferogram analysis. Applied Optics, 32(17), 3047-3052. https://doi.org/10.1364/AO.32.003047

Jakubovskis, R., Kupliauskas, R., Rimkus, A., & Gribniak, V. (2018). Application of FE approach to deformation analysis of RC elements under direct tension. Structural Engineering and Mechanics, 68(3), 345-358. https://doi.org/10.12989/sem.2018.68.3.345

Kanomata, T., Suzuki, T., Kaneko, T., Yasui, H., Miura, S., & Nakagawa, Y. (2012). Size independent fracture energy of concrete. Construction & Building Materials, 26(1), 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034

Li, X., & Marasteanu, M. (2010). The fracture process zone in asphalt mixture at low temperature. Engineering Fracture Mechanics, 77(7), 1175-1190. https://doi.org/10.1016/j.engfracmech.2010.02.018

Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Topical review: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science & Technology, 20(6), 062001. https://doi.org/10.1088/0957-0233/20/6/062001

Reinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and failure analysis of concrete. Journal of Structural Engineering, 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)

RILEM. (1985). TC 50-FMC fracture mechanics of concrete, determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(4), 287-290. https://doi.org/10.1007/BF02472918

RILEM. (1990). TC 89-FMT fracture mechanics of concrete, determination of the fracture parameters (KIcs and CTODc) of plain concrete using three-point bend tests. Materials and Structures, 23(6), 457-460. https://doi.org/10.1007/BF02472029

Shah, S. P., Swartz, S. E., & Ouyang, C. (1995). Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock and other quasi-brittle materials. New York: John Wiley & Sons, Inc.

Siebert, T., Schubach, H. R., & Splitthof, K. (2011). Recent developments and applications for optical full field strain measurement using ESPI and DIC. In Fourth International Seminar on Modern Cutting and Measurement Engineering. https://doi.org/10.1117/12.891864

Skarżyński, Ł., Syroka, E., & Tejchman, J. (2011). Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams. Strain, 47(S1), 319-332. https://doi.org/10.1111/j.1475-1305.2008.00605.x

Skarżyński, Ł., & Tejchman, J. (2010). Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. European Journal of Mechanics, 29(4), 746-760. https://doi.org/10.1016/j.euromechsol.2010.02.008

Sousa, J. L. A. O., & Gettu, R. (2006). Determining the tensile stress-crack opening curve of concrete by inverse analysis. Journal of Engineering Mechanics, 132(2), 141-148. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(141)

Su, R. K. L., Chen, H. H., Fok, S. L., Li, H., Singh, G., Sun, L., & Shi, L. (2013). Determination of the tension softening curve of nuclear graphites using the incremental displacement collocation method. Carbon, 57, 65-78. https://doi.org/10.1016/j.carbon.2013.01.033

Su, R. K. L., Chen, H. H. N., & Kwan, A. K. H. (2012). Incremental displacement collocation method for the evaluation of tension softening curve of mortar. Engineering Fracture Mechanics, 88, 49-62. https://doi.org/10.1016/j.engfracmech.2012.04.005

Sze, K. Y., Fan, H., & Chow, C. L. (1995). Elimination of spurious pressure and kinematic modes in biquadratic 9-node plane element. International Journal for Numerical Methods in Engineering, 38(23), 3911-3932. https://doi.org/10.1002/nme.1620382302

Tang, Y. X., & Chen, H. N. (2018). Simulation of crack propagation in concrete based on extended finite element method. Key Engineering Materials, 783, 165-169. https://doi.org/10.4028/www.scientific.net/KEM.783.165

Wittmann, F. H., Rokugo, K., Brühwiler, E., Mihashi, H., & Simonin, P. (1988). Fracture energy and strain softening of concrete as determined by means of compact tension specimens. Materials and Structures, 21(1), 21-32. https://doi.org/10.1007/BF02472525

Wu, Z. M., Rong, H., Zheng, J. J., Xu, F., & Dong, W. (2011). An experimental investigation on the FPZ properties in concrete using digital image correlation technique. Engineering Fracture Mechanics, 78, 2978-2990. https://doi.org/10.1016/j.engfracmech.2011.08.016

Yuan, Q., Junrui, C., Weihua, D., Faning, D., Man, L., & Zengguang, X. (2015). A quasi real-time approach to investigating the damage and fracture process in plain concrete by X-Ray tomography. Journal of Civil Engineering and Management, 22(6), 792-799. https://doi.org/10.3846/13923730.2014.914089

Zhang, C., Yang, X., & Gao, H. (2018). Air-void-affected zone in concrete beam under four-point bending fracture. Journal of Civil Engineering and Management, 24(2), 130-137. https://doi.org/10.3846/jcem.2018.456