Share:


Understanding the structural behavior of historical buildings through its constructive phase evolution using H-BIM workflow

    Alfredo Calì   Affiliation
    ; Poliana Dias de Moraes Affiliation
    ; Ângela Do Valle Affiliation

Abstract

Knowledge is fundamental to understand the key characteristics of a heritage building. Furthermore, constructive analysis of a historical construction is central to research into its structural behavior. This work aims to increase the knowledge level of a historical construction by the understanding of the constructive evolution through Historical-Building Information Modeling (H-BIM) workflow. The research proposes a multidisciplinary approach applicable to the field of historical constructions, which is resumed in the followings steps: historical-critical analysis, material and soil characterization, data organization through H-BIM, qualitative static and dynamic structural analysis, validation of the results. The building of Quartel da Tropa – located in Florianópolis, Brazil – is used as a practical case study to show how the proposed research can be adapted to historical buildings. Such an impressive eighteen-century masonry construction is the largest troop barracks among Brazilian fortifications. The proposed approach allows the creation of a structural model from the architectural model with fewer uncertainties and less simplification, improving the knowledge path of historical constructions and its structural assessment. The historical-critical analysis and the H-BIM allow managing and presenting of the information useful to the understanding of the constructive phase evolution of a historical building.

Keyword : H-BIM, structural analysis of historical constructions, knowledge path of cultural heritage, historical-critical analysis

How to Cite
Calì, A., Dias de Moraes, P., & Do Valle, Ângela. (2020). Understanding the structural behavior of historical buildings through its constructive phase evolution using H-BIM workflow. Journal of Civil Engineering and Management, 26(5), 421-434. https://doi.org/10.3846/jcem.2020.12612
Published in Issue
May 15, 2020
Abstract Views
137
PDF Downloads
78
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

ABNT. (2004). N6118–2003. Norma Brasileira. Projeto de estruturas de concreto – Procedimento [Design of structural concrete – Procedure]. Rio de Janeiro (in Portuguese).

Arash, S. (2012). Mechanical properties of masonry samples for theoretical modelling. In 15th International Brick and Block Masonry Conference. Florianópolis, Brazil.

Antonopoulou, S., & Bryan, P. (2017). BIM for heritage: developing a historic building information model. Historic England, Swindon.

Autodesk, Inc. (2012a). Robot – Calculations: Lanczos method (Dynamic analysis). https://knowledge.autodesk.com/support/robot-structural-analysis-products/learn-explore/caas/documentation/RSA/2013/ENU/filesROBOT/GUID-9A509DAF-7A96-4B90-8223-6C2413BCC326-htm.html?st=lanczos

Autodesk, Inc. (2012b). Integrating Revit structure and Robot structural analysis professional workflows. https://www.cadstudio.cz/dl/Linking_Autodesk_Revit_Revit%20Structure_and_Robot_Structural_Analysis_Professional-Whitepaper.pdf

Autodesk, Inc. (2015a). Robot – Calculations: Sparse method. Robot structural analysis Products. Autodesk knowledge network. https://knowledge.autodesk.com/support/robot-structural-analysis-products/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Robot/files/GUID-0C1A369E-5DED-4C23-AE5D-8929D62F5A93-htm.html

Autodesk, Inc. (2015b). Calculation of mesh quality coefficient of finite elements. https://knowledge.autodesk.com/support/robot-structural-analysis-products/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Robot/files/GUID-C99501F6-BCCB-458F-9CA1-87AD1876889F-htm.html

Bank, R. E., & Douglas, C. C. (1993). Sparse matrix multiplication package (SMMP). Advances in Computational Mathematics, 1(1), 127–137. https://doi.org/10.1007/BF02070824

Barazzetti, L., Banfi, F., Brumana, R., Oreni, D., Previtali, M., Roncoroni, F., & Schiantarelli, G. (2015). BIM from laser clouds and finite element analysis: combining structural analysis and geometric complexity. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5-W4), 345–350. https://doi.org/10.5194/isprsarchives-XL-5-W4-345-2015

Bathe, K. J. (2016). Finite element procedures for solids and structures. Nonlinear analysis. MIT Center for Advanced Engineering Studies.

Betti, M., Galano, L., & Vignoli, A. (2016). Finite element modelling for seismic assessment of historic masonry buildings. In S. D’Amico (Ed.), Earthquakes and their impact on society (pp. 377–415). Springer. https://doi.org/10.1007/978-3-319-21753-6_14

Biagini, C., Capone, P., Donato, V., & Facchini, N. (2016). Towards the BIM implementation for historical building restoration sites. Automation in Construction, 71, 74–86. https://doi.org/10.1016/j.autcon.2016.03.003

Bruno, S., De Fino, M., & Fatiguso, F. (2018). Historic building information modelling: performance assessment for diagnosis-aided information modelling and management. Automation in Construction, 86, 256–276. https://doi.org/10.1016/j.autcon.2017.11.009

Clemente, P., Bontempi, F., & Boccamazzo, A. (2012). Design and optimization of base isolated masonry buildings. In 15th World Conference on Earthquake Engineering (15WCEE). Lisbon, Portugal.

Calì, A., do Valle, Â., & de Moraes, P. D. (2019). Building information modeling and structural analysis in the knowledge path of a historical construction. In R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, & L. F. Ramos (Eds), Structural analysis of historical constructions (pp. 2071–2079). Springer. https://doi.org/10.1007/978-3-319-99441-3_222

Carvalho, J., Ortega, J., Lourenço, P. B., Ramos, L. F., & Roman, H. (2014). Safety analysis of modern heritage masonry buildings: Box-buildings in Recife, Brazil. Engineering Structures, 80, 222–240. https://doi.org/10.1016/j.engstruct.2014.09.004

Chi, H. L., Wang, X., & Jiao, Y. (2015). BIM-enabled structural design: impacts and future developments in structural modelling, analysis and optimization processes. Archives of Computational Methods in Engineering, 22(1), 135–151. https://doi.org/10.1007/s11831-014-9127-7

Coons, S. A. (1967). Surfaces for computer-aided design of space forms (No. MAC-TR-41). Massachusetts Institute of Technology. https://doi.org/10.21236/AD0663504

Crespi, P., Franchi, A., Ronca, P., Giordano, N., Scamardo, M., Gusmeroli, G., & Schiantarelli, G. (2015). From BIM to FEM: the analysis of an historical masonry building. WIT Transactions on the Built Environment, 149, 581–592. https://doi.org/10.2495/BIM150471

Del Piero, G. (1989). Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica, 24(3), 150–162. https://doi.org/10.1007/BF01559418

Department of Aerospace Engineering Sciences. (2018). ‘Solving FEM Equations’. In University of Colorado at Boulder (Ed.), Introduction to finite element methods (ASEN 5007). https://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch26.d/IFEM.Ch26.pdf

Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C., & Dirix, E. (2015). Structural simulations and conservation analysis-historic building information model (HBIM). The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5/W4), 351–357. https://doi.org/10.5194/isprsarchives-XL-5-W4-351-2015

Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons.

Ferrito, T., Milosevic, J., & Bento, R. (2016). Seismic vulnerability assessment of a mixed masonry–RC building aggregate by linear and nonlinear analyses. Bulletin of Earthquake Engineering, 14(8), 2299–2327. https://doi.org/10.1007/s10518-016-9900-0

Gentile, C., & Saisi, A. (2007). Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials, 21(6), 1311– 1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007

Gentile, C., Saisi, A., & Cabboi, A. (2015). Structural identification of a masonry tower based on operational modal analysis. International Journal of Architectural Heritage, 9(2), 98–110. https://doi.org/10.1080/15583058.2014.951792

Gesualdo, A., & Nunziante, L. (2005). Omogeneizzazione di murature storiche. In Proceedings XVII National Congress AIMETA. Florence, Italy (in Italian).

Hacıefendioğlu, K., Demir, G., & Alpaslan, E. (2016). Determination of modal parameters of historical masonry minarets by using operational modal analysis. In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE’16). Prague, Czech Republic. https://doi.org/10.11159/icsenm16.104

Ho-Le, K. (1988). Finite element mesh generation methods: a review and classification. Computer-Aided Design, 20(1), 27–38. https://doi.org/10.1016/0010-4485(88)90138-8

Katili, I. (1993). A new discrete Kirchhoff‐Mindlin element based on Mindlin‐Reissner plate theory and assumed shear strain fields—part I: An extended DKT element for thickplate bending analysis. International Journal for Numerical Methods in Engineering, 36(11), 1859–1883. https://doi.org/10.1002/nme.1620361106

Kilar, V., & Petrovčič, S. (2018). Seismic rehabilitation of masonry heritage structures with base-isolation and with selected contemporary strengthening measures. International Journal of Safety and Security Engineering, 7(4), 475–485. https://doi.org/10.2495/SAFE-V7-N4-475-485

Koch, E. (2011). The Lanczos method. In E. Pavarini, E. Koch, D. Vollhardt, & A. Lichtenstein (Eds), The LDA+ DMFT approach to strongly correlated materials. Reihe Modeling and Simulation. Lecture Notes of the Autumn School 2011.

Kolcun, A. (1999). The quality of meshes and FEM computations. In The 7th International Conference in Central Europe on Computer Graphics, Visualization and interactive Digital Media ‘99 (pp. 100–105).

Geotechnical Mapping Laboratory of Federal University of Santa Catarina. (2018). Geothecnical experimental results of Florianópolis soils. Florianópolis, Brazil.

Pereira, R. L. (2007). Estruturas de coberta da Arquitetura religiosa em Pernambuco tipologia, patologia e intervenções. AERPA.

Ioannides, M., Fink, E., Brumana, R., Patias, P., Doulamis, A., Martins, J., & Wallace, M. (Eds.). (2016). Digital heritage. Progress in cultural heritage: Documentation, preservation, and protection. In 6th International Conference, EuroMed 2016, Nicosia, Cyprus.

Mastrodicasa, S. (2012). Dissesti statici delle strutture edilizie (9th ed.). Hoepli (in Italian).

Magenes, G., & Menon, A. (2009). A review of the current status of seismic design and assessment of masonry buildings in Europe. Journal of Structural Engineering (Madras), 35(6), 247–256.

Meli, R., & Peña, F. (2004). On elastic models for evaluation of the seismic vulnerability of masonry churches. In Structural Analysis of Historical Constructions (pp. 1121–1131). Padova, Italy.

Morgenstern, N. R., & Eisenstein, Z. (1970). Methods of estimating lateral loads and deformations. In Lateral Stresses in the Ground and Design of Earth-Retaining Structures (pp. 51–102). ASCE.

Murphy, M. (2012). Historic building information modelling (HBIM): For recording and documenting classical architecture in Dublin 1700 to 1830 (Doctoral dissertation). Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin, Ireland.

NTC 2008. (2009). Norme tecniche per le costruzioni. Decreto Ministeriale 14 Gennaio 2008.

MIBAC. (2017). Guidelines for evaluation and mitigation of seismic risk to cultural heritage (Directive of the Prime Minister, 12/10/2007, G.U. n.24 of 29/1/2008).

Oreni, D., Brumana, R., Della Torre, S., & Banfi, F. (2017). Survey, HBIM and conservation plan of a monumental building damaged by earthquake. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(5/W1), 337–342. https://doi.org/10.5194/isprs-archives-XLII-5-W1-337-2017

Pocobelli, D. P., Boehm, J., Bryan, P., Still, J., & Grau-Bové, J. (2018). BIM for heritage science: a review. Heritage Science, 6(1), 30. https://doi.org/10.1186/s40494-018-0191-4

Pradel, D. (1994). Distribution des pressions actives dans les sols cohesifs [Active pressure distribution in cohesive soils]. In Proceedings of XIIIICSM FE (pp. 795–798). New Delhi, India.

Provatidis, C. G., & Kanarachos, A. E. (2000). On the use of Coons’ interpolation in CAD/CAE applications. In M. Mastorakis (Ed.), Systems and control: Theory and applications (pp. 343–348). World Scientific and Engineering Society Press.

ReLUIS. (2010). Linee guida per il rilievo, l’analisi ed il progetto di interventi di riparazione e consolidamento sismico di edifici in muratura in aggregato (in Italian).

Roca, P., Cervera, M., & Gariup, G. (2010). Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering, 17(3), 299–325. https://doi.org/10.1007/s11831-010-9046-1

Rocco Lahr, F. A., Christoforo, A. L., Chahud, E., Branco, L. A. M. N., Battistelle, R. A., & Valarelli, I. D. (2015). Poisson’s ratios for wood species for structural purposes. Advanced Materials Research, 1088, 690–693. https://doi.org/10.4028/www.scientific.net/AMR.1088.690

Ross, R. J. (2010). Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory. https://doi.org/10.2737/FPL-GTR-190

Terezo, R. F. (2005). Avaliação das Estruturas de Madeira do Quartel da Tropa da Fortaleza da Ilha de Anhatomirim. Florianópolis, Brazil: Grupo Interdisciplinar de Estudos de Madeira – GIEM. http://fortalezas.org/midias/arquivos/3167.pdf (in Portuguese).

Tonera, R., & Fragoso, M. P. (2013). The World fortifications database and his contributions to tourism as a guide social development. Caderno Virtual de Turismo, 13, 53–64.

Vandesande, A., & Van Balen, K. (2018). Innovative built heritage models based on preventive and systemic approaches. In A. Vandesande & K. Van Balen (Eds), Innovative built heritage models (pp. 3–10). CRC Press. https://doi.org/10.1201/9781351014793-1

Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings – Literature review and future needs. Automation in Construction, 38, 109–127. https://doi.org/10.1016/j.autcon.2013.10.023

Zenid, G. J. (2009). Madeira: uso sustentável na construção civil. Instituto de Pesquisas Tecnológicas (in Portuguese).

Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method. Volume 2: Solid mechanics. Butterworth-Heinemann.