Share:


A novel decision-making model for selecting a construction project delivery system

    Xingyu Zhu   Affiliation
    ; Xianhai Meng   Affiliation
    ; Yongqiang Chen Affiliation

Abstract

It is crucial for the owner of a construction project to select an appropriate project delivery system (PDS) during early decision-making stages of the project. Due to project uncertainty or a lack of project information, the parameters of a PDS are difficult to measure and quantify. Therefore, there are still major challenges to the objective selection of PDSs. This research proposes a novel systematic decision-making model to select the appropriate PDS by using the combination of case-based reasoning (CBR) and robust nonparametric production frontier method. The Bayesian-Structural Equation Modeling (SEM) supported Z-order-m method is interpreted into the case retrieves process of traditional CBR method in order to eliminate the deteriorative internal and external influence for PDS selection. The case study was based on questionnaire survey conducted in China and used to test the validation of the proposed model. The findings reveal that the systematic decision-making model can overcome some problems of the traditional methods and improve the accuracy of PDS selection. As a result, this research has both theoretical and practical implications for the construction industry.

Keyword : data envelopment analysis, multi-criteria decision-making, construction project, project delivery system, nonparametric production frontier theory, case-based reasoning

How to Cite
Zhu, X., Meng, X., & Chen, Y. (2020). A novel decision-making model for selecting a construction project delivery system. Journal of Civil Engineering and Management, 26(7), 635-650. https://doi.org/10.3846/jcem.2020.12915
Published in Issue
Jul 9, 2020
Abstract Views
652
PDF Downloads
586
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications, 7(1), 39–59. https://doi.org/10.3233/AIC-1994-7104

Al Khalil, M. I. (2002). Selecting the appropriate project delivery method using AHP. International Journal of Project Management, 20(6), 469–474. https://doi.org/10.1016/S0263-7863(01)00032-1

Alhazmi, T., & McCaffer, R. (2000). Project procurement system selection model. Journal of Construction Engineering and Management, 126(3), 176–184. https://doi.org/10.1061/(ASCE)0733-9364(2000)126:3(176)

American Society of Civil Engineers. (2012). Quality in the constructed project: A guide for owners, designers, and constructors. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784411896

An, X., Wang, Z., Li, H., & Ding, J. (2018). Project delivery system selection with Interval-Valued Intuitionistic Fuzzy Set Group decision-making method. Group Decision and Negotiation, 27(4), 689–707. https://doi.org/10.1007/s10726-018-9581-y

Anderson, S., & Oyetunji, A. (2003). Selection procedure for project delivery and contract strategy. In Construction Research Congress (pp. 1–9). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/40671(2003)83

Brock, V., & Khan, H. U. (2017). Big data analytics: does organizational factor matters impact technology acceptance? Journal of Big Data, 4(1), 21. https://doi.org/10.1186/s40537-017-0081-8

Chan, A. P. C, Yung, E. H. K., Lam, P. T. I., Tam, C. M., & Cheung, S. O. (2001). Application of Delphi method in selection of procurement systems for construction projects. Construction Management and Economics, 19(7), 699–718. https://doi.org/10.1080/01446190110066128

Chan, A. P. C., Scott, D., & Lam, E. W. M. (2002). Framework of success criteria for design/build projects. Journal of Management in Engineering, 18(3), 120–128. https://doi.org/10.1061/(ASCE)0742-597X(2002)18:3(120)

Chan, A. P. C., & Chan, A. P. L. (2004). Key performance indicators for measuring construction success. Benchmarking, 11(2), 203–221. https://doi.org/10.1108/14635770410532624

Chan, C. T. W. (2007). Fuzzy procurement selection model for construction projects. Construction Management and Economics, 25(6), 611–618. https://doi.org/10.1080/01446190701209933

Chan, S. L., & Park, M. (2005). Project cost estimation using principal component regression. Construction Management and Economics, 23(3), 295–304. https://doi.org/10.1080/01446190500039812

Chang, C. Y., & Ive, G. (2002). Rethinking the multi-attribute utility approach based procurement route selection technique. Construction Management and Economics, 20(3), 275–284. https://doi.org/10.1080/01446190110117608

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8

Chen, Y. Q., Lu, H., Lu, W., & Zhang, N. (2010). Analysis of project delivery systems in Chinese construction industry with data envelopment analysis (DEA). Engineering, Construction and Architectural Management, 17(6), 598–614. https://doi.org/10.1108/09699981011090215

Chen, Y. Q., Liu, J. Y., Li, B., & Lin, B. (2011). Project delivery system selection of construction projects in China. Expert Systems with Applications, 38(5), 5456–5462. https://doi.org/10.1016/j.eswa.2010.10.008

Cheung, S.-O., Lam, T.-I., Wan, Y.-W., & Lam, K.-C. (2001). Improving objectivity in procurement selection. Journal of Management in Engineering, 17(3), 132–139. https://doi.org/10.1061/(ASCE)0742-597X(2001)17:3(132)

Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: A probabilistic approach. Journal of Productivity Analysis, 24(1), 93–121. https://doi.org/10.1007/s11123-005-3042-8

Daraio, C., & Simar, L. (2007). Advanced robust and nonparametric methods in efficiency analysis (Vol. 4). Springer US. https://doi.org/10.1007/978-0-387-35231-2

De Carvalho, J., & Chima, F. O. (2014). Applications of structural equation modeling in social sciences research. American International Journal of Contemporary Research, 4(1), 6–11.

de Mántaras, R. L., & Plaza, E.(1997). Case‐based reasoning: an overview. AI Communications, 10(1), 21–29.

Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls and protocols in DEA. European Journal of Operational Research, 132(2), 245–259. https://doi.org/10.1016/S0377-2217(00)00149-1

El-Sappagh, S. H., & Elmogy, M. (2015). Case based reasoning: Case representation methodologies. International Journal of Advanced Computer Science and Applications, 6(11), 192–208. https://doi.org/10.14569/IJACSA.2015.061126

Elbarkouky, M. M. G., & Robinson Fayek, A. (2011). Fuzzy preference relations consensus approach to reduce conflicts on shared responsibilities in the owner managing contractor delivery system. Journal of Construction Engineering and Management, 137(8), 609–618. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000334

Garvin, M. J. (2003). Role of project delivery systems in infrastructure improvement. In Construction Research Congress (pp. 1–8). American Society of Civil Engineers, Honolulu, Hawaii, United States. https://doi.org/10.1061/40671(2003)79

Gazder, U., Shakshuki, E., Adnan, M., & Yasar, A. U. H. (2018). Artificial neural network model to relate organization characteristics and construction project delivery methods. Procedia Computer Science, 134, 59–66. https://doi.org/10.1016/j.procs.2018.07.144

Gearhart, R. S., & Michieka, N. M. (2018). A comparison of the robust conditional order-m estimation and two stage DEA in measuring healthcare efficiency among California counties. Economic Modelling, 73, 395–406. https://doi.org/10.1016/j.econmod.2018.04.015

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). CRC Press. https://doi.org/10.1201/b16018

Guerrini, A., Romano, G., Mancuso, F., & Carosi, L. (2016). Identifying the performance drivers of wastewater treatment plants through conditional order-m efficiency analysis. Utilities Policy, 42, 20–31. https://doi.org/10.1016/j.jup.2016.08.001

Gupta, S., & Kim, H. W. (2008). Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities. European Journal of Operational Research, 190(3), 818–833. https://doi.org/10.1016/j.ejor.2007.05.054

Hosseini, A., Lædre, O., Andersen, B., Torp, O., Olsson, N., & Lohne, J. (2016). Selection criteria for delivery methods for infrastructure projects. Procedia – Social and Behavioral Sciences, 226, 260–268. https://doi.org/10.1016/j.sbspro.2016.06.187

Hughes, W., Murdoch, J. R., & Champion, R. (2015). Construction contracts: law and management. Routledge. https://doi.org/10.4324/9781315695211

Ibbs, C. W., Kwak, Y. H., Ng, T., & Odabasi, A. M. (2003). Project delivery ssystems and project change: quantitative analysis. Journal of Construction Engineering and Management, 129(4), 382–387. https://doi.org/10.1061/(ASCE)0733-9364(2003)129:4(382)

Juan, Y.-K. (2009). A hybrid approach using data envelopment analysis and case-based reasoning for housing refurbishment contractors selection and performance improvement. Expert Systems with Applications, 36(3), 5702–5710. https://doi.org/10.1016/j.eswa.2008.06.053

Khanzadi, M., Nasirzadeh, F., Hassani, S. M. H., & Mohtashemi, N. N. (2016). An integrated fuzzy multi-criteria group decision making approach for project delivery system selection. Scientia Iranica, 23(3), 802–814. https://doi.org/10.24200/sci.2016.2160

Kneip, A., Park, B. U., & Simar, L. (1998). A note on the convergence of nonparametric DEA estimators for production efficiency scores. Cambridge University Press, 14(6), 783–793. https://doi.org/10.1017/S0266466698146042

Konchar, M., & Sanvido, V. (1998). Comparison of U.S. project delivery systems. Journal of Construction Engineering and Management, 124(6), 435–444. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:6(435)

Kumaraswamy, M. M., & Dissanayaka, S. M. (2001). Developing a decision support system for building project procurement. Building and Environment, 36(3), 337–349. https://doi.org/10.1016/S0360-1323(00)00011-1

Ling, F. Y. Y., Chan, S. L., Chong, E., & Ee, L. P. (2004). Predicting performance of design-build and design-bid-build projects. Journal of Construction Engineering and Management, 130(1), 75–83. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:1(75)

Liu, B., Huo, T., Shen, Q., Yang, Z., Meng, J., & Xue, B. (2015). Which owner characteristics are key factors affecting project delivery system decision making? Empirical analysis based on the rough set theory. Journal of Management in Engineering, 31(4), 05014018. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000298

Liu, B., Huo, T., Liang, Y., Sun, Y., & Hu, X. (2016). Key factors of project characteristics affecting project delivery system decision making in the Chinese construction industry: Case study using Chinese data based on rough set theory. Journal of Professional Issues in Engineering Education and Practice, 142(4), 05016003. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000278

Lo, S.-C., Chao, Y., Simos, T. E., & Maroulis, G. (2007). Efficiency assessment of road project delivery models. AIP Conference Proceedings, 963, 1016–1019. https://doi.org/10.1063/1.2835911

Luu, D. T., Thomas Ng, S., & Chen, S. E. (2003). A case-based procurement advisory system for construction. Advances in Engineering Software, 34(7), 429–438. https://doi.org/10.1016/S0965-9978(03)00043-7

Luu, D. T., Ng, S. T., & Chen, S. E. (2005). Formulating procurement selection criteria through case-based reasoning approach. Journal of Computing in Civil Engineering, 19(3), 269–276. https://doi.org/10.1061/(ASCE)0887-3801(2005)19:3(269)

Luu, D. T., Ng, S. T., Chen, S. E., & Jefferies, M. (2006). A strategy for evaluating a fuzzy case-based construction procurement selection system. Advances in Engineering Software, 37(3), 159–171. https://doi.org/10.1016/j.advengsoft.2005.05.004

Mafakheri, F., Dai, L., Slezak, D., & Nasiri, F. (2007). Project delivery system selection under uncertainty: multicriteria multilevel decision aid model. Journal of Management in Engineering, 23(4), 200–206. https://doi.org/10.1061/(ASCE)0742-597X(2007)23:4(200)

Mahdi, I. M., & Alreshaid, K. (2005). Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). International Journal of Project Management, 23(7), 564–572. https://doi.org/10.1016/j.ijproman.2005.05.007

Martin, H., Lewis, T. M., Petersen, A., & Peters, E. (2017). Cloudy with a chance of fuzzy: Building a multicriteria uncertainty model for construction project delivery selection. Journal of Computing in Civil Engineering, 31(1), 4016046. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000614

Marzouk, M., & Elmesteckawi, L. (2015). Analyzing procurement route selection for electric power plants projects using smart. Journal of Civil Engineering and Management, 21(7), 912–922. https://doi.org/10.3846/13923730.2014.971131

Merna, T., & Al-Thani, F. F. (2018). Financing infrastructure projects (2nd ed.). ICE Publishing. https://doi.org/10.1680/fipse.63365

Mesa, H. A., Molenaar, K. R., & Alarcón, L. F. (2016). Exploring performance of the integrated project delivery process on complex building projects. International Journal of Project Management, 34(7), 1089–1101. https://doi.org/10.1016/j.ijproman.2016.05.007

Minchin, R. E., Li, X., Issa, R. R., & Vargas, G. G. (2013). Comparison of cost and time performance of design-build and design-bid-build delivery systems in Florida. Journal of Construction Engineering and Management, 139(10), 04013007. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000746

Mostafavi, A., & Karamouz, M. (2010). Selecting appropriate project delivery system: Fuzzy approach with risk analysis. Journal of Construction Engineering and Management, 136(8), 923–930. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000190

Ng, S. T., & Cheung, S. O. (2007). Virtual project delivery system adviser. Journal of Professional Issues in Engineering Education and Practice, 133(4), 275–284. https://doi.org/10.1061/(ASCE)1052-3928(2007)133:4(275)

Ng, S. T., Luu, D. T., Chen, S. E., & Lam, K. C. (2002). Fuzzy membership functions of procurement selection criteria. Construction Management and Economics, 20(3), 285–296.

Oh, S. -C., & Shin, J. (2015). The impact of mismeasurement in performance benchmarking: A Monte Carlo comparison of SFA and DEA with different multi-period budgeting strategies. European Journal of Operational Research, 240(2), 518–527. https://doi.org/10.1016/j.ejor.2014.07.026

Ojo, S. O., Aina, O., & Adeyemi, A. Y. (2011). A comparative analysis of the performance of traditional contracting and design-build procurements on client objectives in Nigeria. Journal of Civil Engineering and Management, 17(2), 227–233. https://doi.org/10.3846/13923730.2011.574449

Oyetunji, A. A., & Anderson, S. D. (2006). Relative eeffectiveness of project delivery and contract strategies. Journal of Construction Engineering and Management, 132(1), 3–13. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:1(3)

Qiang, M., Wen, Q., Jiang, H., & Yuan, S. (2015). Factors governing construction project delivery selection: A content analysis. International Journal of Project Management, 33(8), 1780–1794. https://doi.org/10.1016/j.ijproman.2015.07.001

Raab, R. L., & Lichty, R. W. (2002). Identifying subareas that comprise a greater metropolitan area: The criterion of county relative efficiency. Journal of Regional Science, 42(3), 579–594. https://doi.org/10.1111/1467-9787.00273

Ribeiro, F. L. (2001). Project delivery system selection: a casebased reasoning framework. Logistics Information Management, 14(5/6), 367–376. https://doi.org/10.1108/eum0000000006248

Richter, M. M., & Weber, R. O. (2013). Case representations. In Case-based reasoning: A textbook (pp. 87–111). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40167-1_5

Rowlinson, S., & McDermott, P. (2005). Procurement system (A guide to best practice in construction) (1st ed.). Taylor & Francis. https://doi.org/10.4324/9780203982785

Rwelamila, P. D., & Edries, R. (2007). Project procurement competence and knowledge base of civil engineering consultants: An empirical study. Journal of Management in Engineering, 23(4), 182–192. https://doi.org/10.1061/(ASCE)0742-597X(2007)23:4(182)

Saaty, T. L. (1972). An eigenvalue allocation model for prioritization and planning (Working Paper). Energy Management and Policy Center, University of Pennsylvania.

Serra, T., & Oude Lansink, A. (2014). Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach. European Journal of Operational Research, 239(1), 237–242. https://doi.org/10.1016/j.ejor.2014.05.020

Shi, Q., Zhou, Y., Xiao, C., Chen, R., & Zuo, J. (2014). Delivery risk analysis within the context of program management using fuzzy logic and DEA: A China case study. International Journal of Project Management, 32(2), 341–349. https://doi.org/10.1016/j.ijproman.2013.05.002

Simar, L. (2003). Detecting outliers in frontier models: A simple approach. Journal of Productivity Analysis, 20(3), 391–424. https://doi.org/10.1023/A:1027308001925

Simar, L., & Wilson, P. W. (1998). Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management Science, 44(1), 49–61. https://doi.org/10.1287/mnsc.44.1.49

Simar, L., & Wilson, P. W. (2008). Statistical inference in nonparametric frontier models: Recent developments and perspectives. In The measurement of productive efficiency and productivity change (pp. 421–521). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195183528.003.0004

Smith, N. J., Merna, T., & Jobling, P. (2014). Managing risk in construction projects (3rd ed.). Wiley-Blackwell.

Sueyoshi, T., & Goto, M. (2009). DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry. European Journal of Operational Research, 199(2), 576–594. https://doi.org/10.1016/j.ejor.2008.11.039

Thomas, S. R., Macken, C. L., Kim, I., & Chung, T. H. (2002). Measuring the impacts of the delivery system on project performance – Design-Build and Design-Bid-Build. NIST.

Timothy, Z. K. (2015). Multiple regression and beyond: An introduction to multiple regression and structural equation modeling (2nd ed.). Routledge.

Tookey, J. E., Murray, M., Hardcastle, C., & Langford, D. (2001). Construction procurement routes: re‐defining the contours of construction procurement. Engineering, Construction and Architectural Management, 8(1), 20–30. https://doi.org/10.1108/eb021167

Zhao, Y., Zhang, M., Guo, X., Zhou, Z., & Zhang, J. (2017). Research on matching method for case retrieval process in CBR based on FCM. Procedia Engineering, 174, 267–274. https://doi.org/10.1016/j.proeng.2017.01.134