Resilience-cost tradeoff supply chain planning for the prefabricated construction project

    Hong Zhang Affiliation
    ; Lu Yu   Affiliation


Delivery of the prefabricated components may be disrupted by low productivity and various of traffic restrictions, thus delaying the prefabricated construction project. However, planning of the prefabricated component supply chain (PCSC) under disruptions has seldom been studied. This paper studies the construction schedule-dependent resilience for the PCSC plan by considering transportation costs and proposes a multi-objective optimization model. First, the PCSC planning problem regarding schedule-dependent resilience and resultant transportation cost is analyzed. Second, a quantification scheme of the schedule-dependent resilience of the PCSC plan is proposed. Third, formulation of the resilience-cost tradeoff optimization model for the PCSC planning is developed. Fourth, the multi-objective particle swarm optimization (MOPSO)-based method for solving the resilience-cost tradeoff model is presented. Finally, a case study is presented to demonstrate and justify the developed method. This study contributes to the knowledge and methodologies for PCSC management by addressing resilience at the planning stage.

Keyword : prefabricated construction, prefabricated component supply chain (PCSC), disruption, schedule-dependent resilience, resilience quantification, resilience-cost tradeoff, multi-objective particle swarm optimization (MOPSO)

How to Cite
Zhang, H., & Yu, L. (2021). Resilience-cost tradeoff supply chain planning for the prefabricated construction project. Journal of Civil Engineering and Management, 27(1), 45-59.
Published in Issue
Jan 12, 2021
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Aloini, D., Dulmin, R., Mininno, V., & Ponticelli, S. (2012). Supply chain management: a review of implementation risks in the construction industry. Business Process Management Journal, 18(5), 735–761.

Arashpour, M., Bai, Y., Aranda-mena, G., Bab-Hadiashar, A., Hosseini, R., & Kalutara, P. (2017). Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configurations in off-site construction. Automation in Construction, 84, 146–153.

Berdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy, 9(2), 117–127.

Brandon-Jones, E., Squire, B., Autry, C., & Petersen, K. J. (2014). A contingent resource-based perspective of supply chain resilience and robustness. Journal of Supply Chain Management, 50(3), 55–73.

Chen, C.-C. (Frank), Tsai, Y.-H. (Natalie), & Schonfeld, P. (2016). Schedule coordination, delay propagation, and disruption resilience in intermodal logistics networks. Transportation Research Record: Journal of the Transportation Research Board, 2548(1), 16–23.

Chen, L., & Miller-Hooks, E. (2012). Resilience: An indicator of recovery capability in intermodal freight transport. Transportation Science, 46(1), 109–123.

Colicchia, C., Dallari, F., & Melacini, M. (2010). Increasing supply chain resilience in a global sourcing context. Production Planning & Control, 21(7), 680–694.

Davis, P. R. (2008). A relationship approach to construction supply chains. Industrial Management & Data Systems, 108(3), 310–327.

Ellram, L. M., Tate, W. L., & Billington, C. (2004). Understanding and managing the services supply chain. Journal of Supply Chain Management, 40(3), 17–32.

Francis, R., & Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability Engineering & System Safety, 121, 90–103.

Geng, L., Xiao, R., & Xu, X. (2014). Research on MAS-based supply chain resilience and its self-organized criticality. Discrete Dynamics in Nature and Society, Article ID 621341.

Hackl, J., Adey, B. T., & Lethanh, N. (2018). Determination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 33, 618–637.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23.

Huang, M., Li, R., & Wang, X. (2011). Network construction for fourth-party logistics based on resilience with using Particle Swarm Optimization. In 2011 Chinese Control and Decision Conference (pp. 3924–3929). IEEE.

Ip, W. H., & Wang, D. (2011). Resilience and friability of transportation networks: Evaluation, analysis and optimization. IEEE Systems Journal, 5(2), 189–198.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks (pp. 1942–1948). IEEE.

Kim, T., Kim, Y.-w., & Cho, H. (2020). Dynamic production scheduling model under due date uncertainty in precast concrete construction. Journal of Cleaner Production, 257, 120527.

Kumar, V., & Viswanadham, N. (2007). A CBR-based decision support system framework for construction supply chain risk management. In 2007 International Conference on Automation Science and Engineering (pp. 980–985). IEEE.

Li, Z., Shen, G. Q., & Xue, X. (2014). Critical review of the research on the management of prefabricated construction. Habitat International, 43, 240–249.

Li, C. Z., Hong, J., Xue, F., Shen, G. Q., Xu, X., & Mok, M. K. (2016). Schedule risks in prefabrication housing production in Hong Kong: a social network analysis. Journal of Cleaner Production, 134, 482–494.

Luo, L., Qiping Shen, G., Xu, G., Liu, Y., & Wang, Y. (2019). Stakeholder-associated supply chain risks and their interactions in a prefabricated building project in Hong Kong. Journal of Management in Engineering, 35(2), 05018015.

Meng, X. (2013). Change in UK construction: Moving toward supply chain collaboration. Journal of Civil Engineering and Management, 19(3), 422–432.

Miller-Hooks, E., Zhang, X., & Faturechi, R. (2012). Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research, 39(7), 1633–1643.

Morlok, E. K., & Chang, D. J. (2004). Measuring capacity flexibility of a transportation system. Transportation Research Part A: Policy and Practice, 38(6), 405–420.

Murino, T., Romano, E., & Santillo, L. C. (2011). Supply chain performance sustainability through resilience function. In Proceedings of the 2011 Winter Simulation Conference (pp. 1600–1611). IEEE.

Murray-tuite, P., & Mahmassani, H. (2004). Methodology for determining vulnerable links in a transportation network. Transportation Research Record: Journal of the Transportation Research Board, 1882, 88–96.

Murray-tuite, P. (2006). A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions. Proceedings of the 2006 Winter Simulation Conference (pp. 1398–1405). IEEE.

Peeta, S., Sibel Salman, F., Gunnec, D., & Viswanath, K. (2010). Pre-disaster investment decisions for strengthening a highway network. Computers & Operations Research, 37(10), 1708–1719.

Peng, P., Snyder, L. V., Lim, A., & Liu, Z., (2011). Reliable logistics networks design with facility disruptions. Transportation Research Part B: Methodological, 45(8), 1190–1211.

Polat, G. (2010). Precast concrete systems in developing vs. industrialized countries. Journal of Civil Engineering and Management, 16(1), 85–94.

Ratick, S., Meacham, B., & Aoyama, Y. (2008). Locating backup facilities to enhance supply chain disaster resilience. Growth and Change, 39(4), 642–666.

Snyder, L. V., & Daskin, M. S. (2005). Reliability models for facility location: The expected failure cost case. Transportation Science, 39(3), 400–416.

Shojaei, P., & Haeri, S. A. S. (2019). Development of supply chain risk management approaches for construction projects: A grounded theory approach. Computers & Industrial Engineering, 128, 837–850.

Ta, C., Goodchild, A. V., & Pitera, K. (2009). Structuring a definition of resilience for the freight transportation system. Transportation Research Record: Journal of the Transportation Research Board, 2097, 19–25.

Taillandier, F., Taillandier, P., Tepeli, E., Breysse, D., Mehdizadeh, R., & Khartabil, F. (2015). A multi-agent model to manage risks in construction project (SMACC). Automation in Construction, 58, 1–18.

Taroun, A. (2014). Towards a better modelling and assessment of construction risk: Insights from a literature review. International Journal of Project Management, 32(1), 101–115.

Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 79, 22–48.

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317–325.

Wang, Z., Hu, H., & Zhou, W. (2017a). RFID enabled knowledge-based precast construction supply chain. ComputerAided Civil and Infrastructure Engineering, 32, 499–514.

Wang, T.-K., Zhang, Q., Chong, H.-Y., & Wang, X. (2017b). Integrated supplier selection framework in a resilient construction supply chain: An approach via Analytic Hierarchy Process (AHP) and Grey Relational Analysis (GRA). Sustainability, 9(2), 289.

Wang, Y., Yuan, Z., & Sun, C. (2018). Research on assembly sequence planning and optimization of precast concrete buildings. Journal of Civil Engineering and Management, 24(2), 106–115.

Zhang, H., & Yu, L. (2020). Prefabricated component site layout planning subject to dynamic and interactive constraints. Automation in Construction (Submitted manuscript).