Information-flow-based safety education (IFSE): an indispensable perspective on safety education

    Kaixin Gao   Affiliation
    ; Keping Zhou   Affiliation
    ; Zhipeng Liang   Affiliation


Any systems can be expressed by and connected with information. For the safety education system, doing so is essentially a process of safety information dissemination and cognition. Therefore, information is the core of the safety education system. At present, the key factors affecting the effectiveness of safety education are safety demand analysis information, the dissemination and cognitive processes of safety information and information feedback. Research on the construction of a framework model for safety education under the guidance of information flow clears and classifies information-related elements of the safety education process. Therefore, it is conducive to the construction of a safety education system to improve its management level and, through the rational use of information technology, to improve the conversion rate of safety information into safety behaviour. Based on a systematic review and comparison of the existing research perspectives on safety education and information-flow-based safety education (IFSE), this paper analyses the reasons why we need a new perspective on safety education. We introduce information flow into the safety education framework model. The fundamental and expanding elements of safety education propagation are examined and deduced based on information theory. Combined with the connotations of safety education and information flow, this paper analyses the implementation steps of IFSE and applies them to the safety education of new employees in metal and nonmetal mines. In the micro-design, virtual reality technology is used to integrate safety education content and information technology. A new perspective on safety education is created; then, the framework model of IFSE, its implementation steps and models of the processing and utilization processes of safety education are constructed. IFSE is a new perspective for realizing safety education in practice, and the framework model of IFSE provides rigorous theoretical knowledge. Of course, to improve IFSE in practice, more scientific and detailed evaluation methods need to be introduced. This paper is helpful for guiding the safety education theory research from “trivializes situated” to “systematic” and for guiding the design, implementation, assessment and optimization of the safety education practice.

Keyword : information cognition, information dissemination, safety education, framework model, system, virtual reality

How to Cite
Gao, K., Zhou, K., & Liang, Z. (2021). Information-flow-based safety education (IFSE): an indispensable perspective on safety education. Journal of Civil Engineering and Management, 27(7), 472-484.
Published in Issue
Oct 6, 2021
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Catino, M., & Patriotta, G. (2013). Learning from errors: Cognition, emotions and safety culture in the Italian air force. Organization Studies, 34(4), 437–467.

Chaudhry, P. E., Chaudhry, S., & Reese, R. (2011). Developing a model for enterprise information systems security. Journal of Academic Research in Economics, 3(3), 243–252.

Gao, K. X., Wu, C., & Wang, B. (2017). Construction of general model of safety education based on information spreading. Journal of Information, 36(12), 132–137.

Glendon, A. I., & Litherland, D. K. (2001). Safety climate factors, group differences and safety behaviour in road construction. Safety Science, 39(3), 157–188.

Gore, B. F. (2002). Human performance cognitive-behavioral modeling: A benefit for occupational safety. International Journal of Occupational Safety and Ergonomics, 8(3), 339–351.

Han, S. U., & Lee, S. H. (2013). A vision-based motion capture and recognition framework for behavior-based safety management. Automation in Construction, 35(11), 131–141.

Heinrich, W. H. (1980). Industrial accident prevention: A safety management approach (5th ed.). McGraw-Hill Companies.

Huang, L., Wu, C., & Jia, N. (2016). Study on methodology of safety theoretical model construction. China Safety Science Journal, 26(12), 1–6.

Kaufman, R., & Kaufman, J. D. (2008). What should high–risk operations evaluate relative to safety and safety training. Performance Improvement Quarterly, 5, 16–24.

Kostopoulou, O. (2006). From cognition to the system: developing a multilevel taxonomy of patient safety in general practice. Ergonomics, 49(5–6), 486–502.

Le, Q. T., Pedro, A., Lim, C. R., Park, H. T., Park, C. S., & Kim, H. K. (2015). A Framework for using mobile based virtual reality and augmented reality for experiential construction safety education. International Journal of Engineering Education, 31(3), 713–725.

Lei, Y., Wu, C., Feng, Y. S., & Wang, B. (2019). Optimization of multi-level safety information cognition (SIC): A new approach to reducing the systematic safety risk. Reliability Engineering & System Safety, 190, 106497.

Li, H., Lu, M., Hsu, S. C., Gray, M., & Huang, T. (2015). Proactive behavior-based safety management for construction safety improvement. Safety Science, 75, 107–117.

Liang, Z., Zhou, K., & Gao, K. (2019). Development of virtual reality serious game for underground rock-related hazards safety training. IEEE Access, 7, 118639–118649.

Limberg, L., & Sundin, O. (2006). Teaching information seeking: relating information literacy education to theories of information behavior. Information Research, 12(1), 904–918.

Liu, J., & Song, X. (2014). Countermeasures of mine safety management based on behavior safety mode. Procedia Engineering, 84, 144–150.

Mcsween, T. E. (1995). The values-based safety process: Improving your safety culture with a behavioral approach. Journal of Organizational Behavior Management, 19(3), 115–119.

Misovich, S. J., Martinez, T., Fisher, J. D., Bryan, A., & Catapano, N. (2006). Predicting breast self-examination: A test of the information-motivation-behavioral skills model. Journal of Applied Social Psychology, 33(4), 775–790.

Mitropoulos, P., Cupido, G., & Namboodiri, M. (2009). Cognitive approach to construction safety: Task demand-capability model. Journal of Construction Engineering and Management, 135(9), 881–889.

Mosleh, A., & Chang, Y. (2004). Model-based human reliability analysis: Prospects and requirements. Reliability Engineering & System Safety, 83(2), 241–253.

Naidoo, S., London, L., Rother, H.-A., Burdorf, A., Naidoo, R. N., & Kromhout, H. (2010). Pesticide safety training and practices in women working in small-scale agriculture in South Africa. Occupational & Environmental Medicine, 67(12), 823–828.

Njenga, K., & Brown, I. (2012). Conceptualizing improvisation in information systems security. European Journal of Information Systems, 21(6), 592–607.

Sklet, S. (2004). Comparison of some selected methods for accident investigation. Journal of Hazardous Materials, 111(1), 29–37.

Songkhla, T. N., Ismail, M. H. S., Biak, D. R. B. A., Bolong, J., & Syafiie, S. (2018). Safety behavior and incident experience of worker in gas stations of Suratthani Province, Thailand. Journal of Computational and Theoretical Nanoscience, 24(1), 485–488.

Taylor, Z. (1999). Values, theories and methods in social work education. International Social Work, 42, 309–318.

Wang, B., Wu, C., Shi, B., & Huang, L. (2017). Evidence-based safety (EBS) management: A new approach to teaching the practice of safety management (SM). Journal of Safety Research, 63, 21–28.

Wang, X., Xing, Y., Luo, L., & Yu, R. (2018). Evaluating the effectiveness of behavior-based safety education methods for commercial vehicle drivers. Accident Analysis and Prevention, 117, 114–120.

Zhang, K., Suo, J., Chen, J., Liu, X., & Gao, L. (2017). Design and implementation of fire safety education system on campus based on virtual reality technology. In 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic.

Zhong, X. R. (2013). Construction safety accident prevention research based on 3E principle. Applied Mechanics & Materials, 353–356, 2867–2871.

Zhou, Q., Fang, D., & Wang, X. (2008). A method to identify strategies for the improvement of human safety behavior by considering safety climate and personal experience. Safety Science, 46(10), 1406–1419.

Zohar, D., & Luria, G. (2003). The use of supervisory practices as leverage to improve safety behavior: a cross-level intervention model. Journal of Safety Research, 34(5), 567–577.