Barriers to the adoption of new safety technologies in construction: a developing country context

    Jeffrey Boon Hui Yap   Affiliation
    ; Canwin Guan Ying Lam   Affiliation
    ; Martin Skitmore   Affiliation
    ; Nima Talebian   Affiliation


The adoption rate of new technologies is still relatively low in the construction industry, particularly for mitigating occupational safety and health (OSH) risks, which is traditionally a largely labor-intensive activity in developing countries, occupying ill-afforded non-productive management resources. However, understanding why this is the case is a relatively unresearched area in developing countries such as Malaysia. In aiming to help redress this situation, this study explored the major barriers involved, firstly by a detailed literature review to identify the main barriers hampering the adoption of new technologies for safety science and management in construction. Then, a questionnaire survey of Malaysian construction practitioners was used to prioritize these barriers. A factor analysis further identified six major dimensions underlying the barriers, relating to the lack of OSH regulations and legislation, technological limitations, lack of genuine organizational commitment, prohibitive costs, poor safety culture within the construction industry, and privacy and data security concerns. Taken together, the findings provide a valuable reference to assist industry practitioners and researchers regarding the critical barriers to the adoption of new technologies for construction safety management in Malaysia and other similar developing countries, and bridge the identified knowledge gap concerning the dimensionality of the barriers.

Keyword : construction industry, safety management, technology adoption, barriers, factor analysis, developing countries

How to Cite
Yap, J. B. H., Lam, C. G. Y., Skitmore, M., & Talebian, N. (2022). Barriers to the adoption of new safety technologies in construction: a developing country context. Journal of Civil Engineering and Management, 28(2), 120–133.
Published in Issue
Jan 14, 2022
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abdul-Rashid, A.-A., & Abdul-Aziz, H. (2003). Construction safety in Malaysia: A review industry performance and outlook for the future. Journal of Construction Research, 4(2), 141–153.

Alaloul, W. S., Liew, M. S., Zawawi, N. A. W. A., & Kennedy, I. B. (2020). Industrial Revolution 4.0 in the construction industry: Challenges and opportunities for stakeholders. Ain Shams Engineering Journal, 11(1), 225–230.

Amirah, N. A., Asma, W. I., Muda, M. S., & Mohd Amin, W. A. A. W. (2013). Safety culture in combating occupational safety and health problems in the Malaysian manufacturing sectors. Asian Social Science, 9(3), 182–191.

Aripin, I. D. M., Zawawi, E. M. A., & Ismail, Z. (2019). Factors influencing the implementation of technologies behind industry 4.0 in the Malaysian construction industry. In International Conference on Built Environment and Engineering 2018 – “Enhancing Construction Industry Through IR4.0” (IConBEE 2018), MATEC Web of Conferences (Vol. 266), Johor, Malaysia, 01006.

Babulal, V. (2020). Construction related deaths and injuries alarming. New Straits Times.

Bademosi, F., & Issa, R. R. A. (2021). Factors influencing adoption and integration of construction robotics and automation technology in the US. Journal of Construction Engineering and Management, 147(8), 04021075.

Cinite, I., & Duxbury, L. E. (2018). Measuring the behavioral properties of commitment and resistance to organizational change. Journal of Applied Behavioral Science, 54(2), 113–139.

Cortellazzo, L., Bruni, E., & Zampieri, R. (2019). The role of leadership in a digitalized world: A review. Frontiers in Psychology, 10.

Delgado, J. M. D., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, 100868.

Demirkesen, S., & Tezel, A. (2021). Investigating major challenges for industry 4.0 adoption among construction companies. Engineering, Construction and Architectural Management.

Dodge Data & Analytics. (2017). Safety management in the construction industry 2017 (SmartMarket Report). Bedford, MA.

Dodge Data & Analytics. (2019). Using technology to improve risk management in construction (SmartMarket Insight). Bedford, MA.

Edirisinghe, R. (2019). Digital skin of the construction site: Smart sensor technologies towards the future smart construction site. Engineering, Construction and Architectural Management, 26(2), 184–223.

Forcina, A., & Falcone, D. (2021). The role of Industry 4.0 enabling technologies for safety management: A systematic literature review. Procedia Computer Science, 180, 436–445.

Gou, Q., Yan, L., Liu, Y., & Li, Y. (2013). Construction and strategies in IoT security system. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1129–1132). IEEE, Beijing, China.

Goyal, P., Sahoo, A. K., & Sharma, T. K. (2019). Internet of things: Architecture and enabling technologies. Materials Today: Proceedings, 34(3), 719–735.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. Cengage Learning.

Hämäläinen, P., Takala, J., & Saarela, K. L. (2006). Global estimates of occupational accidents. Safety Science, 44(2), 137–156.

Jitwasinkul, B., & Hadikusumo, B. H. W. (2011). Identification of important organisational factors influencing safety work behaviours in construction projects. Journal of Civil Engineering and Management, 17(4), 520–528.

Kamaruddin, S. S., Mohammad, M. F., & Mahbub, R. (2016). Barriers and impact of mechanisation and automation in construction to achieve better quality products. Procedia-Social and Behavioral Sciences, 222, 111–120.

Kang, L., & Wu, C. (2020). Evaluating the safety performance of China’s provincial construction industries from 2009 to 2017. Journal of Civil Engineering and Management, 26(5), 435–446.

Kang, Y., Jin, Z., Hyun, C., & Park, H. (2018). Construction management functions for developing countries: Case of Cambodia. Journal of Management in Engineering, 34(3), 05018004.

Karakhan, A., Xu, Y., Nnaji, C., & Alsaffar, O. (2019). Technology alternatives for workplace safety risk mitigation in construction: Exploratory study. In T. Hartmann (Ed.), Advances in informatics and computing in civil and construction engineering (pp. 823–829). Cham, Switzerland: Springer International Publishing.

Kartam, N. A., Flood, I., & Koushki, P. (2000). Construction safety in Kuwait: Issues, procedures, problems, and recommendations. Safety Science, 36(3), 163–184.

Li, S., Zhang, Z., Mei, G., Lin, D., Yu, J., Qiu, R., Su, X., Lin, X., & Lou, C. (2021). Utilization of BIM in the construction of a submarine tunnel: A case study in Xiamen City, China. Journal of Civil Engineering and Management, 27(1), 14–26.

Liu, H., Skibniewski, M. J., & Wang, M. (2016). Identification and hierarchical structure of critical success factors for innovation in construction projects: Chinese perspective. Journal of Civil Engineering and Management, 22(3), 401–416.

Long, S., & Spurlock, D. G. (2008). Motivation and stakeholder acceptance in technology-driven change management: Implications for the engineering manager. Engineering Management Journal, 20(2), 30–36.

Loushine, T. W., Hoonakker, P. L. T., Carayon, P., & Smith, M. J. (2006). Quality and safety management in construction. Total Quality Management and Business Excellence, 17(9), 1171–1212.

Maliha, M. N., Abu Aisheh, Y. I., Tayeh, B. A., & Almalki, A. (2021). Safety barriers identification, classification, and ways to improve safety performance in the architecture, engineering, and construction (AEC) industry: Review study. Sustainability, 13(6), 3316.

Mckinsey Global Institute. (2017). Reinventing construction: A route to higher productivity. Washington, DC, USA.

Nnaji, C., & Karakhan, A. A. (2020). Technologies for safety and health management in construction: Current use, implementation benefits and limitations, and adoption barriers. Journal of Building Engineering, 29, 101212.

Nnaji, C., Lee, H. W., Karakhan, A., & Gambatese, J. (2018). Developing a decision-making framework to select safety technologies for highway construction. Journal of Construction Engineering and Management, 144(4), 04018016.

Nnaji, C., Gambatese, J., Karakhan, A., & Osei-Kyei, R. (2020a). Development and application of safety technology adoption decision-making tool. Journal of Construction Engineering and Management, 146(4), 04020028.

Nnaji, C., Gambatese, J., Lee, H. W., & Zhang, F. (2020b). Improving construction work zone safety using technology: A systematic review of applicable technologies. Journal of Traffic and Transportation Engineering, 7(1), 61–75.

Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, 83, 121–139.

Okpala, I., Nnaji, C., & Awolusi, I. (2019). Emerging construction technologies: State of standard and regulation implementation. In ASCE International Conference on Computing in Civil Engineering 2019 (pp. 153–161). ASCE, Atlanta, Georgia.

Okpala, I., Nnaji, C., & Karakhan, A. A. (2020). Utilizing emerging technologies for construction safety risk mitigation. Practice Periodical on Structural Design and Construction, 25(2), 04020002.

Osunsanmi, T. O., Oke, A. E., & Aigbavboa, C. O. (2020). Barriers for the adoption of incorporating RFID with mobile technology for improved safety of construction professionals. In C. Aigbavbao, & W. Thwala (Eds), The construction industry in the fourth industrial revolution (pp. 297–304). Cham, Switzerland: Springer International Publishing.

Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, 122, 103517.

Pradhananga, P., ElZomor, M., & Santi Kasabdji, G. (2021). Identifying the challenges to adopting robotics in the US construction industry. Journal of Construction Engineering and Management, 147(5), 05021003.

Rohana, M. (2012). Readiness of a developing nation in implementing automation and robotics technologies in construction: A case study of Malaysia. Journal of Civil Engineering and Architecture, 6(7), 858–866.

Rwamamara, R. A., Lagerqvist, O., Olofsson, T., Johansson, B. M., & Kaminskas, K. A. (2010). Evidence-based prevention of work-related musculoskeletal injuries in construction industry. Journal of Civil Engineering and Management, 16(4), 499–509.

Shen, X., & Marks, E. (2016). Near-miss information visualization tool in BIM for construction safety. Journal of Construction Engineering and Management, 142(4), 04015100.

Shen, Y., Tuuli, M. M., Xia, B., Koh, T. Y., & Rowlinson, S. (2015). Toward a model for forming psychological safety climate in construction project management. International Journal of Project Management, 33(1), 223–235.

Tam, C. M., Fung, I. W. H., & Chan, A. P. C. (2001). Study of attitude changes in people after the implementation of a new safety management system: The supervision plan. Construction Management and Economics, 19(4), 393–403.

Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., & Gao, X. (2019). A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Automation in Construction, 101, 127–139.

Tatum, M. C., & Liu, J. (2017). Unmanned aircraft system applications in construction. Procedia Engineering, 196, 167–175.

Teizer, J., Cheng, T., & Fang, Y. (2013). Location tracking and data visualization technology to advance construction ironworkers’ education and training in safety and productivity. Automation in Construction, 35, 53–68.

Wang, G., Wang, P., Cao, D., & Luo, X. (2020). Predicting behavioural resistance to BIM implementation in construction projects: An empirical study integrating technology acceptance model and equity theory. Journal of Civil Engineering and Management, 26(7), 651–665.

Wu, C., Li, N., & Fang, D. (2017). Leadership improvement and its impact on workplace safety in construction projects: A conceptual model and action research. International Journal of Project Management, 35(8), 1495–1511.

Xu, W., & Wang, T. K. (2020). Dynamic safety prewarning mechanism of human–machine–environment using computer vision. Engineering, Construction and Architectural Management, 27(8), 1813–1833.

Yahya, M. Y. Bin, Lee Hui, Y., Yassin, A. B. M., Omar, R., Robin, R. O. A., & Kasim, N. (2019). The challenges of the implementation of construction robotics technologies in the construction. In International Conference on Built Environment and Engineering 2018 – “Enhancing Construction Industry Through IR4.0” (IConBEE 2018), MATEC Web of Conferences, Johor, Malaysia, 05012.

Yap, J. B. H., & Lee, W. K. (2020). Analysing the underlying factors affecting safety performance in building construction. Production Planning & Control, 31(13), 1061–1076.

Yap, J. B. H., Chow, I. N., & Shavarebi, K. (2019). Criticality of construction industry problems in developing countries: Analyzing Malaysian projects. Journal of Management in Engineering, 35(5), 04019020.

Yap, J. B. H., Chong, J. R., Skitmore, M., & Lee, W. P. (2020). Rework causation that undermines safety performance during production in construction. Journal of Construction Engineering and Management, 146(9), 04020106.

Yap, J. B. H., Lee, K. P. H., & Wang, C. (2021). Safety enablers using emerging technologies in construction projects: Empirical study in Malaysia. Journal of Engineering Design and Technology.

Yi, W., & Chan, A. P. C. (2014). Critical review of labor productivity research in construction journals. Journal of Management in Engineering, 30(2), 214–225.

You, S., Kim, J. H., Lee, S. H., Kamat, V., & Robert, L. P. (2018). Enhancing perceived safety in human–robot collaborative construction using immersive virtual environments. Automation in Construction, 96, 161–170.

Zhou, Z., Irizarry, J., & Li, Q. (2013). Applying advanced technology to improve safety management in the construction industry: a literature review. Construction Management and Economics, 31(6), 606–622.

Zhou, Z., Goh, Y. M., & Li, Q. (2015). Overview and analysis of safety management studies in the construction industry. Safety Science, 72, 337–350.

Zohar, D. (2010). Thirty years of safety climate research: Reflections and future directions. Accident Analysis and Prevention, 42(5), 1517–1522.

Zou, P. X. W. (2002). Knowledge management practice in two Australian Architecture-Engineering-Construction (AEC) companies. Construction Economics and Building, 4(2), 19–32.

Zou, P. X. W. (2011). Fostering a strong construction safety culture. Leadership and Management in Engineering, 11(1), 11–22.

Zou, P. X. W., & Zhang, G. (2009). Comparative study on the perception of construction safety risks in China and Australia. Journal of Construction Engineering and Management, 135(7), 620–627.