Share:


Global optimization of grillages using simulated annealing and high performance computing

    Dmitrij Šešok Affiliation
    ; Jonas Mockus Affiliation
    ; Rimantas Belevičius Affiliation
    ; Arnas Kačeniauskas Affiliation

Abstract



The aim is to investigate ways of increasing the efficiency of grillage optimization. Following this general aim, two well‐known optimization methods, namely the Genetic Algorithm (GA) and Simulated Annealing (SA), were compared using some standard medium size (10 and 15 piles) examples. The objective function was the maximal vertical reactive force at a support. Coordinates of piles were optimization variables. SA wins and was applied to real‐life problem (55 piles) by parallel computations performed using a powerful cluster. New element is comparison of SA with GA and application of SA to a practical problem of grillage optimization.



Santrauka

Straipsnio tikslas ‐ ištirti galimus rostverkiniu pamatu optimizavimo būdus. Siekiant šio tikslo du gerai žinomi optimizavimo metodai ‐ genetiniai algoritmai ir atkaitinimo modeliavimo algoritmas ‐ buvo palyginti vidutinio dydžio (10 ir 15 poliu) pavyzdžiams išspresti. Tikslo funkcija imama didžiausia atraminI poliaus reakcija. Projektavimo kintamieji ‐ poliu koordinatIs. Atkaitinimo modeliavimo metodas laimi, todel jis buvo pritaikytas praktiniam uždaviniui (55 poliai) spresti. Spresti buvo naudojamas klasteris. Naujumas ‐ genetiniu algoritmu palyginimas su atkaitinimo modeliavimo metodu bei atkaitinimo modeliavimo metodo pritaikymas sprendžiant praktini uždavini.


Published Published Online: 14 Oct 2010




Reikšminiai žodžiai: rostverkaiatkaitinimo modeliavimasglobalus optimizavimasbaigtiniai elementaigenetiniai algoritmai

Keyword : Grillages, Simulated annealing, Global optimization, Finite elements, Genetic algorithms

How to Cite
Šešok, D., Mockus, J., Belevičius, R., & Kačeniauskas, A. (2010). Global optimization of grillages using simulated annealing and high performance computing. Journal of Civil Engineering and Management, 16(1), 95-101. https://doi.org/10.3846/jcem.2010.09
Published in Issue
Mar 31, 2010
Abstract Views
36
PDF Downloads
29