Estimating normal duration of renovation for multistory apartment building considering extension-type renovation projects

    Jongsik Yoon   Affiliation
    ; Ilhan Yu Affiliation


Normal (typical) project duration is estimated at the initial stage of a renovation project and is an important reference for project control. However, its estimation has not been researched extensively owing to the complexity and uncertainties of renovation. Thus, a model was developed for predicting the duration of sustainable apartment renovation. Experts were asked to estimate a baseline schedule for extension-type renovation projects, factors that influence critical path activities, and the range of project durations considering these factors. An equation for estimating the duration of a renovation project was developed, and the range of project durations was derived using a MCS to reflect uncertainty. The proposed model was validated by applying it to actual cases. The case study shows that the model would be more suitable for complex renovation construction (i.e., more than two buildings or vertical extension). The model can be applied to various renovation projects and used as a reference for determining contract time. It can fill the knowledge gap of construction duration forecasting by adapting the concept of control activities to simplify the assessment of uncertainties in renovation of apartments, and can be applied for forecasting sustainable renovation time for other project types or in other locations.

Keyword : sustainable apartment renovation, building renovation, normal project duration, duration estimation, simulation model, MCS (Monte Carlo simulation)

How to Cite
Yoon, J., & Yu, I. (2019). Estimating normal duration of renovation for multistory apartment building considering extension-type renovation projects. Journal of Civil Engineering and Management, 25(2), 156-167.
Published in Issue
Feb 25, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Ahuja, H. N., & Nandakumar, V. (1985). Simulation model to forecast project completion time. Journal of Construction Engineering and Management, 111(4), 325-342.

Ástmarsson, B., Jensen, P. A., & Maslesa, E. (2013). Sustainable renovation of residential buildings and the landlord/tenant dilemma. Energy Policy, 63, 355-362.

Baek, C. H., & Park, S. H. (2012). Changes in renovation policies in the era of sustainability. Energy and Buildings, 47, 485-496.

Bang, J. D., & Park, J. Y. (2017). Structural development in long life housing of LH. Review of Architecture and Building Science, 61(8), 14-17.

Brockhoff, K. (1975). The performance of forecasting groups in computer dialogue and face-to-face discussion. In H. A. Linstone & M. Turoff (Eds.), The Delphi method: Techniques and applications (pp. 285-311). Reading, MA: Addison-Wesley.

Cha, H. S., Kim, K. H., & Kim, C. K. (2011). Case study on selective demolition method for refurbishing deteriorated residential apartments. Journal of Construction Engineering and Management, 138(2), 294-303.

Cho, K., & Yoon, Y. (2016). Decision support model for determining cost-effective renovation time. Journal of Management in Engineering, 32(3), 04015051.

Choi, S. (2013). Remodeling technology practice. Seoul: Kimoondang.

Czarnigowska, A., & Sobotka, A. (2014). Estimating construction duration for public roads during the preplanning phase. Journal of Engineering, Project, and Product Management, 4(1), 26-35.

Edwards, L. (1995). Practical risk management in the construction industry. London: Thomas Telford Ltd.

Hallowell, M. R., & Gambatese, J. A. (2010). Qualitative research: Application of the Delphi method to CEM research. Journal of Construction Engineering and Management, 136(1), 99-107.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306.

Hong, T., Cho, K., Hyun, C., & Han, S. (2011). Simulation-based schedule estimation model for ACS-based core wall construction of high-rise building. Journal of Construction Engineering and Management, 137(6), 393-402.

Hsu, S.-C., & Cui, Q. (2010). A decision model for technology selection in renovation project planning. In Construction Research Congress 2010: Innovation for Reshaping Construction Practice (pp. 1234-1243).

Irfan, M., Khurshid, M. B., Anastasopoulos, P., Labi, S., & Moavenzadeh, F. (2011). Planning-stage estimation of highway project duration on the basis of anticipated project cost, project type, and contract type. International Journal of Project Management, 29(1), 78-92.

Jang, H. J., Kim, T. H., & Chae, C. U. (2016). CO2 emissions and cost by floor types of public apartment houses in South Korea. Sustainability, 8(5), 445.

Jeong, Y. (2015). Architectural remodeling planning and practice. Seoul: Kimoondang.

Jin, R., Han, S., Hyun, C., & Cha, Y. (2016). Application of case-based reasoning for estimating preliminary duration of building projects. Journal of Construction Engineering and Management, 142(2), 04015082.

Juan, Y.-K., Gao, P., & Wang, J. (2010). A hybrid decision support system for sustainable office building renovation and energy performance improvement. Energy and Buildings, 42(3), 290-297.

Kim, G., An, S., & Kang, K. (2004). Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning. Building and Environment, 39(10), 1235-1242.

Kim, J., Cho, K., Kim, T., & Yoon, Y. (2018). Predicting the monetary value of office property post renovation work. Journal of Urban Planning and Development, 144(2), 04018007.

Kim, K. J., Yun, W. G., & Kim, I. K. (2016). Estimating approximate construction duration of CFRD in the planning stage. KSCE Journal of Civil Engineering, 20(7), 2604-2613.

Kim, K., Yoon, Y., & Kim, C. (2016). Improvements in the business process model for the aged apartment remodeling project – In case of the number of units increased. Korean Journal of Construction Engineering and Management, 17, 45-53.

Kim, S., Maghiar, M., Li, L., Bai, Y., & Scott, J. (2014). Developing a knowledge-based information system (KISCCES) for construction cost estimating and scheduling. In Construction Research Congress 2014: Construction in a Global Network (pp. 887-896).

Koo, C., Hong, T., Hyun, C., & Koo, K. (2010). A CBR-based hybrid model for predicting a construction duration and cost based on project characteristics in multi-family housing projects. Canadian Journal of Civil Engineering, 37(5), 739-752.

Kragh, J., & Rose, J. (2011). Energy renovation of single-family houses in Denmark utilising long-term financing based on equity. Applied Energy, 88(6), 2245-2253.

Land & Housing Institute. (2015). A study on the method of estimating the construction duration for apartment to assure quality. Seoul: Korea Land & Housing Corporation.

Lee, B., Kim, K., & Lee, M. (2015). A study on normal project duration for water resource project. Korean Journal of Construction Engineering and Management, 16, 35-43.

Li, Y., Lu, K., & Lu, Y. (2017). Project schedule forecasting for skyscrapers. Journal of Management in Engineering, 33(3).

Ma, Z., Cooper, P., Daly, D., & Ledo, L. (2012). Existing building retrofits: Methodology and state-of-the-art. Energy and Buildings, 55, 889-902.

Martin, J., Burrows, T. K., & Pegg, I. (2006). Predicting construction duration of building projects. In XXIII International FIG Congress: Shaping the Change, Munich, Germany.

McCrary, S. W., Leslie, M. D., Roberts, F. L., & Corley, M. R. (2007). Validation of project time decision-support tools and processes. Journal of Industrial Technology, 23(2), 2-14.

Nguyen, L. D., Phan, D. H., & Tang, L. C. M. (2013). Simulating construction duration for multistory buildings with controlling activities. Journal of Construction Engineering and Management, 139(8), 951-959.

Nielsen, A. N., Jensen, R. L., Larsen, T. S., & Nissen, S. B. (2016). Early stage decision support for sustainable building renovation – A review. Building and Environment, 103, 165-181.

Ökmen, Ö., & Öztaş, A. (2008). Construction project network evaluation with correlated schedule risk analysis model. Journal of Construction Engineering and Management, 134(1), 49-63.

Olsson, S., Malmqvist, T., & Glaumann, M. (2015). Managing sustainability aspects in renovation processes: Interview study and outline of a process model. Sustainability, 7(6), 6336-6352.

Pihelo, P., Kalamees, T., & Kuusk, K. (2017). nZEB renovation with prefabricated modular panels. Energy Procedia, 132, 1006-1011.

Reyers, J., & Mansfield, J. (2001). The assessment of risk in conservation refurbishment projects. Structural Survey, 19(5), 238-244.

Statistics Korea. (2017). Retrieved from

Suschek-Berger, J., & Ornetzeder, M. (2010). Cooperative refurbishment: Inclusion of occupants and other stakeholders in sustainable refurbishment processes in multi-floor residential buildings. Open House International, 35(2), 33–38.

Thuvander, L., Femenías, P., Mjörnell, K., & Meiling, P. (2012). Unveiling the process of sustainable renovation. Sustainability, 4(6), 1188-1213.

Wang, W.-C., & Demsetz, L. A. (2000). Model for evaluating networks under correlated uncertainty – NETCOR. Journal of Construction Engineering and Management, 126(6), 458-466.

Yoon, J., & Yu, I. (2017). A study on estimating normal project duration of apartment remodeling project. Korean Journal of Construction Engineering and Management, 18(2), 12-20.

Yoon, J., Jung, D., & Yu, I. (2017). Factor analysis for development of construction period calculation model in apartment house remodeling. Procedia Engineering, 196, 660-665.

Yoon, J., Yu, I. & Jung, D. (2018, September). Factors needed for the development of a constructability assessment model for building renovation and extension in Korea. In Proceedings of the 34th Annual ARCOM Conference (pp. 806-814), 3–5 September 2018. Belfast, UK: Association of Researchers in Construction Management.