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socio-economic activities (industries, road traffic, waste 
incineration...). Two types of anthropogenic sources can 
be distinguished. On the one hand, the activities that di-
rectly emit pollutants into the atmosphere, such as tires 
and brake pads abrasion or cement plants. On the other 
hand, the particles derived from the gas/particles conver-
sion process which represent most of the anthropogenic 
aerosols (Geraldine, Maul, Ferard, Carrot, & Ayrault, 
2004; Borghezi, Vione, Maurino, & Minero, 2005; Azri, 
Chaabane, Abida, & Medhioub, 2010). They are generally 
formed by metals, sulfur and nitrogen. The atmospher-
ic particles can mak damage not only on human health 
(Rodriguez, Querol, Alastuey, Kallos, & Kakaliagou, 2001; 
Chung, Kim, Park, Jugder, & Tao, 2005) but also on the 
environments at different levels (Azri et  al., 2000; Bond 
et al., 2004; Cao, Yang, Lu, & Zhang, 2011; Ediagbonya, 
Ukpebor, Okiemien, & Okungbowa, 2013; Shokr et  al., 
2016). The particles are polydispersed and heterogeneous. 
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Abstract. In order to better understand the processes of removing atmospheric particles to the surface, dry particle deposi-
tion in Monastir region (eastern Tunisia) has been studied. As a first step, a biweekly monitoring of the particulate deposits 
was carried out in 26 sites from January to August, 2012. Secondly, two particular sites were investigated from October, 
2014 to August, 2015. A very high fluctuation in those particle fluxes, ranging from 0.560 to 2.210 g/m2/14days, was clearly 
observed. The spatial distribution of particulate deposits shows a growing trend from rural to urban (coastal) areas de-
pending on nearby sources (brickyards and clay quarries, road traffic and sebkhas) and meteorological factors (including 
precipitation and wind speed). The combined geochemical-statistical study of the particulate deposits elementary fluxes 
(Cl-, Na+, K+, Ca++, Fe(2,3)+, Cd, Pb, Zn, Ni, Mn and Cu) at the two observed rural and urban sites show a non-negligible 
impact of the anthropogenic component attributed to metals (Pb, Mn, Zn, and Cu). It is linked to the simultaneous effect 
of the urban (mainly road) activities in the Eastern part of the region and the intense fluidity of the motorway and railway 
in its Western part. The importance of the chlorine contributions of the terrigenous circulation has been attributed to the 
effect of sebkhas. The phenomenon of dust resuspension in agricultural areas, clay storage near brickyards and unbuilt sites 
has also been highlighted. The lowest biweekly elementary fluxes are probably due to the effect of rainfall periods which 
causes atmospheric whash-out.

Keywords: Monastir (Tunisia), particulate deposits, anthropogenic sources, sebkhas, meteorology, chemometric approaches.

Introduction

Atmospheric particles are complex mixtures of contribu-
tions from natural emission (marine, terrigenous) and 
anthropogenic sources (Seinfeld & Pandis, 1998; Azri, 
Maalej, & Medhioub, 2000; Allen, Nemitz, Shi, Harrison, 
& Greenwood, 2001; Muhammad,  I. K., Muhammad, I., 
Mubashir, & Ammad, 2017). The marine source is respon-
sible for the entrainment into the air of liquid bubbles rich 
in soluble elements (Ca++, Mg++, Na+, K+, Cl-, SO4

--, etc.), 
(Niemiet et al., 2005; Lu, Shao, Wu, & Jiao, 2006; Bahloul 
et al., 2015a). The terrigenous source brings about crus-
tal elements from soil erosion (Kubilay & Saydam, 1995; 
Guerzoni et al., 1999), which mainly involve metal oxides 
(Fe2O3), aluminosilicates (SiO2, Al2O3) Clays, calcium 
sulfate (CaSO4) and sodium chloride (NaCl). Their pres-
ence in the atmosphere depends on their chemical form, 
the soil nature and the wind strength. The anthropogenic 
source mainly consists of elements resulting from man’s 
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They are unstable and highly variable in time and space. 
The particle composition is in fact continuously modi-
fied by physico-chemical processes of transformation and 
elimination.

Dry deposition is one of the processes for removing 
atmospheric particles. The geochemical behaviour of par-
ticulate atmospheric deposition depends on the emission 
sources (natural and anthropogenic) as well as the local 
and regional or even synoptic meteorology (wind, cy-
clonic or anticyclone situations, precipitation, etc.) (Azri, 
Chaabane, & Medhioub, 2009a; Bahloul et al., 2015b). It 
also depends on the physicochemical transformations to 
which the particles are subjected during their atmospheric 
transport and the characteristics of the receiving environ-
ments (Shahin, Lu, Yi, Paode, & Holsen, 2000; Cindoruk 
& Tasdemir, 2007). This dry atmospheric deposition might 
be particularly important near urban and industrial areas 
than rural ones (Fang & Wu, 1999; Shahin et al., 2000).

This study examines the spatial and temporal evolu-
tion of dry particulate matter fluxes in agricultural lands 
located not far from highly frequented highway and rail-
way and surrounded by sebkhas (Monastir case Region, 
Tunisia).

1. Climatic characteristics of Monastir region

The Monastir region, subject of our study, is located in 
the Tunisian Sahel (latitude 35°47 ‘N, longitude 10°50’ E) 
(Figure 1). It is bordered on by the governorate of Sousse 
to the North and West, the governorate of Mahdia to the 
South and the Mediterranean Sea to the East (Figure 1). 
It lies over an area of 1019 km² and located in the center 
of the large olive grove of the Sahel. The lands of the re-
gion are enriched with metal oxides (Fe2O3), aluminosili-
cates (SiO2, Al2O3) Clays and calcium carbonate (CaCO3) 
(Tagorti, Essefi, Touir, Guellala, & Yaich, 2013). It is sur-
rounded by three sebkhas (Sidi El Hani, ≈370 km², Mok-
nine, ≈50 km² and Sahline ≈ 26 km²). These are endoreic 
depressions (≈0.4 m depth) containing saline water with 
high concentrations of Na+ and Cl-. The water salinity 
is equal to 264  g/l (Tagorti et  al., 2010). In addition to 
its agricultural activity, particularly olive cultivation, the 
region is characterized, by the availability of clay depos-
its exploited for the manufacture of red building prod-
ucts (tiles, bricks, slabs). Actually, eight fully operational 
brickyards occupy the central part of this region today, 
(Figure 1). Their total annual brick production capacity 
is 44 100 00 tons. Heavy fuel (highly-viscous fossil fuel) 
and natural gas are used to dry and bake the bricks. The 
region’s westearn part is proximate to a busy railway and 
motorway (≈10 km) connecting the southern regions to 
the northern one of Tunisia.

Monastir is characterized by a relatively mild Medi-
terranean climate in its eastern part and a dry and arid 
climate in its western part. Air temperatures varied be-
tween 8 and 17 °C in winter and 25 and 29 °C in summer 
(Tagorti et  al., 2013). The average annual rainfall is 270 
and 400 mm in the western and eastern parts, respectively. 

The monthly average of relative humidity varies between 
69 and 75%. The winds blow from all sectors, with varying 
frequencies. The prevalent winds are mainly from the east-
ern sector with average speeds around 4 m/s. The Saha-
ran winds (Sirocco) threaten the whole region, especially 
during the summer season. These winds accentuate the 
evaporation phenomenon when it is accompanied with 
high temperatures above 40 °C.

Regarding to the urban planning over the region, the 
citizens distribution shows a high popular density in the 
eastern coastal part characterized by two touristic cities 
(Monastir and Mahdia) as well as marked by a small to 
medium density of population at other communities of 
the region (not exceeding 31 000 inhabitants).

2. Materials and methods

The spatial and temporal variation of the particulate 
deposits fluxes has been studied in 26 collection sites (Ur-
ban/periurban/rural, S1 to S26) in the Monastir region 
(Figure 1). The study was achieved over two seperate pe-
riods: the first covered the period going from January to 
August 2012 while the second started in October 2014 and 
ended in August 2015. This second period was devoted to 
a further study focusing particularly on the quantitative 
and qualitative aspects of the particulate deposits harvest-
ed at two particular sites namely S14 and S23 receiving the 
highest average deposit fluxes.

The sampling procedure was carried out according to 
the NF standard 43-007, 2008, using DIEM plates. “Air 
Quality-Ambient Air-Determination of the Mass of Dry 
Atmospheric Depositions-Sampling on Deposit Plates-
Preparation and Treatment” clearly described the plates 
placement, coated with petroleum jelly, to analyze and sub-
sequently treat the collected dust fall samples. This method 
was detailed in several studies such as those of (Orange & 
Gac, 1990; Marx & McGowan, 2005; Bahloul et al., 2015a; 
Dammak, Bahloul, Chabbi, & Azri, 2016).
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Figure 1. Map of the study area and sampling location in 
Monastir region, Tunisia
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Measurement campaigns were carried out covering the 
selected periods on a biweekly basis. The choice of this 
period sample (a biweekly basis) is based on preliminary 
studies in the region of Monastir (Chabbi, 2012) testifying 
that 14-day periods are far enough to get deposits which 
go with trace elements (heavy metals) easily exceed the 
adopted analytical apparatus detection thresholds. The 
fluxes of atmospheric particulate deposits were then ex-
pressed in g/m2/14days. The meteorological data such as 
air temperature, humidity, atmospheric pressure, wind ve-
locity and dominant wind direction were gathered from 
the meteorological station of “Monastir-Skanes” aero-
port (ID: 60 740 DTTM; latitude 35°40’N and longitude 
10°45’E; altitude:10m), the nearest meteorological station 
to the sampling sites.

The soluble fraction (Fe(2;3)+ = Fe2+ + Fe3+, Ca++, Na+, 
Cl–, K+) of the obtained liquid after filtration was acidified 
to pH < 2 with HNO3 and were analyzed by an Ion chroma-
tography system (Compact IC Flex Metrohm). The analysis 
of the metals (Cd, Pb, Zn, Ni, Mn and Cu) of insoluble frac-
tion trapped in the filter were analyzed by atomic absorp-
tion spectroscopy AAS with the air-acetylene flame (Analy-
tik Jena model ZEEnit 700PC). The samples were digested 
with in a mixture of HNO3 + HF according to the US EPA 

method 3050B (US EPA, 1999). The detection limits (mg/l) 
were 0.015 for Cd, 0.01 for Pb, 0.002 for Zn, 0.001 for Ni, 
for 0.001 for Mn, 0.004 for Cu and 0.044 for Fe, 0.024 for 
Ca, 0.015 for Na, 0.010 for Cl and 0.001 for K.

3. Results and discussion

3.1. Spatial and temporal variations of atmospheric 
particulate deposits over Monastir region

The study of the particulate deposits fluxes in the 
Monastir region during the January-August 2012 pe-
riod shows a very noticeable spatial variability (Table 1). 
The average deposition fluxes range between 0.560 and 
2.210 g/m2/14days. The recorded deposit fluxes seem to 
be very different when compared to other Tunisian sites 
and those of various regions of the world, (Table 2). This 
difference can be explained by such factors as the variety 
of the sampling techniques, the characteristics of the study 
areas (rural, peri-urban, urban) and sampling periods. Re-
ferring to the guide values of the AFNOR standards (set 
at 14 g/m2/14days) and TA-LUFT (German air law set at 
4.9  g/m2/14days), the recorded average biweekly fluxes 
are noticed to be well below the limit values of these two 
standards.

Table 1. Variation of the fluxes (g/m2/14days) of dry particulate deposits during the first period (from January to August, 2012)

Campaigns / 
sites C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 Average fluxes 

(g/m2/14days)

S1 0.176 0.366 0.821 1.214 0.698 0.433 0.291 0.385 1.07 1.755 0.732 1.382 1.472 1.561 1.3 1.997 0.256 0.940
S2 0.458 0.356 0.342 0.601 0.769 0.593 0.95 0.715 1.401 1.6 1.564 1.122 1.307 1.515 1.578 0.716 0.909 0.970
S3 0.172 0.376 0.581 0.845 0.783 0.285 1.438 1.51 1.583 1.406 1.512 1.156 1.202 1.429 1.356 0.732 0.325 0.980
S4 0.168 0.493 0.483 1.618 0.598 0.456 0.476 1.214 1.49 1.306 1.967 1.218 0.103 1.365 1.821 0.651 0.319 0.930
S5 0.161 0.584 0.385 1.168 1.254 0.627 1.966 1.172 1.131 0.348 1.339 1.179 1.023 0.627 0.14 0.569 0.313 0.820
S6 0.191 0.598 1.111 0.92 0.265 1.561 0.111 1.131 0.348 1.342 0.598 0.826 0.741 0.598 0.855 0.513 0.301 0.710
S7 0.131 0.148 0.501 1.225 0.248 1.926 0.513 1.207 0.541 2.051 1.114 0.342 1.197 0.94 0.387 1.385 0.277 0.830
S8 0.094 0.103 0.162 0.182 0.182 0.1 1.581 1.283 0.899 2.068 1.147 1.661 1.137 1.575 0.385 2.256 0.229 0.890
S9 0.174 0.131 0.197 0.729 0.553 0.199 0.641 0.088 1.256 1.023 1.179 1.077 0.168 0.858 0.741 0.262 0.231 0.560

S10 1.707 1.843 0.515 1.959 0.434 1.037 1.786 1.801 0.624 0.484 1.181 0.698 0.816 1.252 0.698 0.299 0.439 1.030
S11 0.801 1.081 0.666 0.189 0.468 0.883 0.937 1.613 0.602 1.473 1.202 1.405 1.464 1.847 1.656 0.336 0.646 1.020
S12 0.895 0.319 1.818 2.246 0.131 0.829 0.937 0.399 1.248 1.39 0.442 1.194 1.373 0.929 1.242 0.649 1.062 1.010
S13 0.489 0.895 0.909 1.501 0.682 1.65 1.829 0.937 0.989 1.248 1.339 1.442 1.194 0.373 0.929 0.962 0.894 1.070
S14 1.279 1.976 0.711 1.809 0.719 1.453 0.909 0.550 1.595 1.988 1.097 1.529 1.803 1.464 1.987 1.897 1.557 1.430
S15 1.167 1.291 1.1 1.57 1.541 1.259 0.427 0.855 0.923 1.342 0.989 0.949 0.929 1.786 0.731 1.783 1.308 1.170
S16 1.054 2.439 1.667 2.222 0.399 0.305 1.957 2.105 1.607 0.157 2.06 0.558 0.655 0.382 2.479 0.724 1.177 1.290
S17 0.829 0.912 1.114 1.812 0.148 0.912 1.997 1.994 2.212 0.516 1.798 1.772 2.137 2.145 0.912 2.103 1.046 1.430
S18 0.379 0.584 1.282 0.718 0.766 1.302 1.672 2.764 0.818 2.91 1.197 1.812 2.308 0.53 0.497 2.689 0.955 1.360
S19 0.397 0.711 0.507 1.144 1.078 0.889 0.875 1.066 1.85 2.905 1.068 2.35 1.097 0.598 0.541 2.458 0.865 1.200
S20 0.415 0.838 1.43 1.239 0.937 2.832 0.963 1.496 3.614 0.937 0.291 2.472 1.111 0.487 1.046 1.954 0.684 1.340
S21 0.508 1.872 1.333 1.65 1.496 3.074 3.393 3.373 0.824 0.952 0.599 0.471 1.288 1.114 1.439 1.768 0.627 1.520
S22 0.523 2.906 0.98 3.561 2.45 3.789 1.709 0.977 0.963 1.453 0.94 1.527 0.956 0.513 1.833 1.581 0.57 1.600
S23 0.666 3.436 0.627 2.67 1.453 1.105 3.393 3.026 3.282 1.587 0.379 0.481 2.097 3.681 4.062 2.208 3.456 2.210
S24 1.147 1.953 1.688 2.51 1.446 1.272 1.23 1.102 1.023 2.054 0.439 1.145 1.786 3.173 2.409 1.527 1.928 1.640
S25 1.628 0.47 2.75 2.351 1.439 1.439 1.496 1.411 2.009 2.522 0.499 1.809 1.476 2.664 0.755 0.846 0.4 1.530
S26 2.928 0.677 1.304 2.574 1.356 1.434 1.422 1.504 1.304 2.298 0.449 2.857 1.761 1.264 1.015 0.766 0.622 1.500
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Table 2. Fluxes of particulate deposits (g/m2/14days) measured at different conditions from several areas over the world

Study area

Average of dry 
particulate deposits 

measured at different 
conditions  

(g/m2/14days)

Study Period References

Monastir region (Eastern 
Tunisia)

0.56/2.21 Rural/urban From January to August 
2012

This work

Sfax city (Southern Tunisia) 5.56 Urban From April to November 
2014

Dammak et al. (20016)

2.49 Suburban
Southern urban of Sfax (Tunisia) 3.5 Urban (coastal) From April to November 

2012
Bahloul et al. (2015a)

Vegoritis (western Greece) 1.54 Rural (coastal) From January to October 
2001

Terzi and Samara (2005)

Petrana(western Greece) 1.582 Rural

Kozani (western Greece) 2.66 Urban

Mallorca (Balearic Islands, 
Spain)

0.238 Rural From September 2010 to 
August 2012

Cerro et al. (2014)

Tafira , Gran Canaria, Canary 
Islands (Spain)

0.35 Rural From February 2009 to 
February 2012

López-García et al. (2013)

Montiers-sur-Saulx 
(Northeastern of France)

0.066 Rural From September 2011 to 
March 2012

Lequy, Calvaruso, Conil, 
& Turpault (2014)

Lyon (France) 0.85 Rural 1993–1994 Gabet (1999)
Costantine (Algeria) 15.471 Urban 2004–2006 Serghani (2009)
Dakar (Sénégal) 7.92 Urban 1984–1988 Orange and Gac (1990)
Mazowieckie Province (pologne) 3.38 Urban 1995–1998 Królak (2000)
Jersey City((New York, USA ) 1.372 urban/

industrial
From August 2001 to 
August 2002

Yi et al. (2006)

Taichung Harbor (western side 
of central, Taiwan)

0.823 Coastal From March 2004 to 
January 2005

Fang, Wu, Wen, Huang, 
& Rau (2006)

Wuchi (Taiwan) 0.728 Urban (traffic)
Yangpyoung (Korea) 0.448 Rural From February to May 

2000
Bae, Yi, & Kim (2002)

Gaomei wetland (western 
Taïwan)

13.18 Coastal From October to 
December 2001

Yang et al. (2004)

Chaoyang University (Taichun, 
Taïwan)

16.32 Suburban

Figure 2. Intersite distribution of biweekly dust fall rate above Monastir region, Tunisia
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The spatial evolution of the particulate deposits flux-
es shows very distinct patterns with varying amplitudes 
(Figure 2). The average trend of deposit fluxes shows an 
increasing trend going from rural to urban (coastal) sites. 
Based on their behavior (i.e., trends and amplitudes), spa-
tial distribution of particulate fallout fluxes can be classi-
fied into three main groups (Figure 2):

 – A first group covering 35% of the studied sites (S1 to 
S9) recording the lowest deposit fluxes characterized 
by mean values close to 1  g/m2/14days. The repre-
sentative sites in this area are rural, located in the 
western part of the region;

 – A second group extending over 42% of the studied 
sites (S10 to S20) with medium average fluxes fluc-
tuating between 1 and 1.5 g/m2/14days. It lies in the 
central area of the study region, close to brickyards 
and clay quarries. In this area, S14 records the high-
est average deposit flow;

 – A third group covering 23% of the studied sites (S21 to 
S26) with the highest average fluxes ranging between 
1.5 and 2.21 g/m2/14days. The representative sites of 
this area are urban, located on the coastal zone (East) 
of the region. It should be noted that the highest aver-
age biweekly flow in this zone, is recorded at site S23.

Temporal variation of particulate deposit fluxes dem-
onstrated an average value of 0.710 and 1.560 g/m2/14days, 
showing large fluctuations (Figure 3) within the same site 
and between sites. These fluctuations can be attributed to 
the combined effect of both neighboring sources and the 
airflow properties which have been governed by meteoro-
logical conditions for a long time.

The spatial distribution of the mean particulate depo-
sition fluxes highlights the importance of the peaks at the 
sites S14 and S23. The first, (S14), is located near brick kilns 
and clay quarries (Figure 1). Referring to the wind rose (Fig-
ure 4), this site was frequently exposed to brick plumes (24% 

out of the total number of observations). Moreover, because 
of its proximity to the clay quarries (about 20 m), this site 
seems to be also threatened by the surge of a mechanical 
dust emanating from both clay storage and transport. As for 
the site S23, its locality in an urban area could testify the ob-
vious effect of the road traffic in this location, in the absence 
of significant industrial sources. For a better understanding 
of the particulate deposit specificities at the two aforemen-
tioned sites, a further study focusing on their quantitative 
and qualitative aspects was conducted during a second pe-
riod (from October 2014 to August 2015). The main results 
of this study are detailed in the following paragraphs.
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Figure 3. Temporal variations of biweekly dust fall rate
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3.2. Water-soluble/insoluble components in 
atmospheric particulate deposits at the two 
particular sites (S14 and S23)
The main reason for the particulate deposits quantitative 
study of the S14 and S23 sites is their high average fluxes 
recorded above these sites. Therefore, they were selected 
for the soluble (Fe(2;3)+, Ca++, Na+, K+, Cl–) and insoluble 
(Pb, Cu, Cd, Zn, Mn) phases investigation of the particu-
late deposits. This specific study covered a second period 
from October 2014 to August 2015. The responsible sourc-
es for the enrichment of the sedimentable particles and 
their rates of contribution have been detailed. A statistical 
study based on simple linear regressions and a factorial 
analysis of the correspondences was adopted.

3.2.1. Temporal evolution of particulate deposits 
constituents
The biweekly fluxes of the main particulate deposits 
(Fe(2;3)+, Ca++, Na+, K+, Cl–, Pb, Cu, Cd, Zn, Ni et Mn) 
at the two selected sites (S14 and S23) show considerable 
variability (Tables  3 and 4). These fluxes vary between 
0.017 and 2.006  g/m2/14days at (S14), the agricultural 
site representative of the central sector, while they range 
between 0.019 and 1.863 g/m2/14days at S23 the coastal 
urban site.

Furthermore, the S14 average elementary fluxes of the 
soluble phase (Fe(2;3)+, Ca++, Na+, K+, Cl–) are ranked in the 
following descending order: Ca++>Fe(2;3)+>Cl–>Na+>K+. As 
for those of S23, they are distinguished by a decreasing or-
der of the type: Cl– > Na+ >Ca++> Fe(2;3)+>K+.

Table 3. Dry deposition fluxes of analyzed constituents (g/m2/14days) over S14 during the second period  
(from October, 2014 to August, 2015)

Campaigns Ca++ Fe (2;3)+ K+ Cl- Na+ Zn Pb Cd Cu Ni Mn

C1 0.124 0.111 0.009 0.098 0.04 0.011 0.012 0.008 0.001 0.002 0.009

C2 0.018 0.016 0.002 0.029 0.009 0.001 0.001 0.001 0.001 0.001 0.001

C3 0.103 0.092 0.020 0.124 0.056 0.020 0.005 0.002 0.003 0.008 0.007

C4 0.203 0.181 0.001 0.108 0.049 0.012 0.020 0.002 0.001 0.010 0.015

C5 0.769 0.684 0.110 0.014 0.001 0.026 0.077 0.042 0.011 0.066 0.055

C6 0.060 0.053 0.008 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004

C7 0.124 0.111 0.001 0.151 0.099 0.018 0.012 0.001 0.001 0.001 0.009

C8 0.750 0.668 0.102 0.013 0.0056 0.110 0.102 0.031 0.089 0.083 0.053

C9 0.001 0.001 0.001 0.010 0.005 0.001 0.001 0.001 0.001 0.001 0.001

C10 0.009 0.008 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

C11 0.078 0.070 0.001 0.174 0.102 0.006 0.054 0.001 0.001 0.009 0.006

C12 0.047 0.042 0.001 0.201 0.092 0.004 0.001 0.001 0.001 0.001 0.003

C13 0.667 0.603 0.023 0.010 0.005 0.088 0.088 0.007 0.021 0.080 0.048

C14 0.125 0.111 0.001 0.150 0.069 0.011 0.013 0.001 0.001 0.002 0.009

C15 0.537 0.505 0.003 0.031 0.014 0.046 0.057 0.006 0.011 0.065 0.040

C16 0.536 0.503 0.135 0.01 0.007 0.011 0.057 0.006 0.011 0.099 0.040

C17 0.091 0.111 0.001 0.098 0.04 0.008 0.009 0.001 0.001 0.006 0.007

C18 0.754 0.572 0.039 0.018 0.008 0.060 0.112 0.010 0.009 0.049 0.054

C19 0.793 0.784 0.004 0.009 0.001 0.0578 0.072 0.008 0.081 0.056 0.052

C20 0.542 0.482 0.003 0.047 0.022 0.042 0.054 0.006 0.001 0.009 0.039

C21 0.652 0.510 0.003 0.009 0.002 0.052 0.065 0.007 0.001 0.010 0.046

C22 0.762 0.678 0.004 0.001 0.001 0.061 0.076 0.008 0.001 0.012 0.054

Average 0.352 0.313 0.022 0.060 0.029 0.029 0.040 0.007 0.011 0.026 0.025

Maximum 0.793 0.784 0.135 0.201 0.102 0.110 0.112 0.042 0.089 0.099 0.055

Minimum 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Standard 
deviation

0.313 0.278 0.040 0.065 0.03 0.031 0.038 0.010 0.025 0.033 0.022
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Similarly, the mean biweekly fluxes of metal deposits 
are relatively greater and with the following descending 
order: Pb>Zn> Ni > Mn> Cu >Cd at S14. At S23, however, 
they are in a descending order of this type: Cu> Mn > Zn 
> Ni >Pb >Cd.

The obtained orders for both soluble and insoluble 
phases are different for the two sites. This difference in 
order is mainly related to the positions occupied by the 
elements Cl, Na, Mn, Pb and Cu.

This change in fluxes order could be attributed to the 
influence of nearby sources and weather conditions. The 
importance of Cl and Na fluxes in the S23 deposits (coastal) 
site could possibly be attributed to the maritime influence. 
However, the Sahline, El Moknine and Sidi El Hani Seb-
khas’ impact hypothesis can not be excluded. These sebkhas 
are located in the Northern, Southeastern and Southwestern 
parts of the Monastir region. The importance of the Pb flux-
es in the S14 deposits and Cu and Mn in the S23 deposits 

may reflect the distinct influence of the above-mentioned 
sites considered as emission sources of these metals.

During this second study period, winds blew from all di-
rections, with varying frequencies and speeds, similar to those 
observed in the first period. Their speed fluctuated between 
1.6 and 17.2 m/s with an average of 6 m/s. Relying on the 
antagonistic “terrigenous/maritime” wind circulations, they 
can be seen to be characterized by frequencies equal to 52 
and 48%, respectively (compared to the total observations). At 
the first site (S14), the predominantly terrigenous circulation 
is responsible for a high Ca++ (39%) and Fe(2;3)+ (34%) con-
tribution rate compared to other constituents of the selected 
deposits (Figure 5a). The chlorine supply comes second with 
a rate of 6%. The rates of the other items do not exceed 4%. 
At the urban (coastal) S23 site (≈1.5 km off the coastline), 
the predominantly terrigenous circulation is responsible for a 
supply of Ca++ (21%), Fe(2;3)+ (20%), Cl– (20%), K+ (17%) and 
Na+ (11%). The other items’ rates are below 4% (Figure 6a).

Table 4. Dry deposition fluxes of analyzed constituents (g/m2/14days) over S23 during the second period  
(from October, 2014 to August, 2015)

Campaigns Ca++ Fe (2;3)+ K+ Cl– Na+ Zn Pb Cd Cu Ni Mn

C1 0.023 0.020 0.007 0.868 0.530 0.001 0.001 0.001 0.009 0.011 0.006

C2 0.315 0.189 0.032 0.150 0.019 0.006 0.032 0.007 0.130 0.017 0.061

C3 0.538 0.431 0.378 0.110 0.053 0.063 0.038 0.008 0.098 0.047 0.053

C4 0.432 0.390 0.099 0.124 0.097 0.042 0.016 0.010 0.018 0.038 0.026

C5 0.320 0.289 0.008 0.112 0.020 0.031 0.009 0.006 0.134 0.028 0.031

C6 0.10 0.091 0.002 0.091 0.012 0.019 0.001 0.001 0.068 0.005 0.002

C7 0.425 0.384 0.298 0.050 0.042 0.034 0.030 0.007 0.031 0.039 0.044

C8 0.449 0.305 0.378 0.047 0.031 0.022 0.017 0.004 0.031 0.022 0.032

C9 0.151 0.137 0.024 0.033 0.097 0.001 0.001 0.001 0.002 0.001 0.001

C10 0.114 0.103 0.036 0.030 0.060 0.010 0.004 0.002 0.078 0.013 0.011

C11 0.063 0.057 0.012 0.232 0.180 0.005 0.001 0.002 0.040 0.005 0.005

C12 0.013 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001

C13 0.090 0.282 0.172 0.451 0.246 0.028 0.012 0.001 0.061 0.007 0.018

C14 0.057 0.052 0.064 0.665 0.420 0.005 0.006 0.001 0.035 0.004 0.005

C15 0.081 0.074 0.063 0.551 0.325 0.007 0.009 0.001 0.054 0.006 0.007

C16 0.033 0.031 0.016 0.761 0.530 0.002 0.002 0.001 0.017 0.002 0.002

C17 0.112 0.102 0.092 0.30 0.147 0.024 0.023 0.006 0.077 0.016 0.046

C18 0.111 0.101 0.229 0.448 0.136 0.010 0.010 0.001 0.076 0.006 0.010

C19 0.100 0.091 0.153 0.451 0.179 0.009 0.013 0.001 0.068 0.008 0.009

C20 0.089 0.081 0.123 0.553 0.380 0.008 0.009 0.001 0.059 0.007 0.008

C21 0.113 0.103 0.269 0.761 0.496 0.010 0.012 0.002 0.078 0.009 0.010

C22 0.142 0.119 0.353 0.334 0.220 0.018 0.015 0.002 0.099 0.012 0.013

Average 0.176 0.156 0.128 0.326 0.192 0.016 0.012 0.003 0.058 0.014 0.018

Maximum 0.538 0.431 0.378 0.868 0.530 0.063 0.038 0.010 0.134 0.047 0.061

Minimum 0.013 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001

Standard 
deviation

0.158 0.129 0.132 0.276 0.178 0.016 0.011 0.003 0.038 0.013 0.018
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At S14, the predominantly maritime circulation 
is responsible for a strong Ca++  (38%),  Fe(2;3)+ (33%), 
Cl– (10%), Na+ (5%.) The percentages of the other items 
remain below 3% (Figure  5b). On the other hand, it is 
responsible, at S23, for a high contribution of Cl– (31%) 
(Figure  6b). The conributions of Na+,  Ca++,  Fe(2;3)+, Cu 
and K+ come in second place, with distribution rates vary-
ing from 8 to 19%. The percentages of other items do not 
exceed 2%.

The terrigene Cl– contribution rate, 6 and 20% respec-
tively at S14 and S23, is relatively high. Its maximum value 
is comparable to those supposed to be of terrigenous ori-
gin (case of Fe(2;3)+ = 20% for the case of S23).

Because of the maritime circulation prevalence, the 
importance of the contribution of elements believed to 
be originate of crustal source such as Ca++ and Fe(2;3)+ at 
S14 is possibly related to sea winds that have drained with 
them a crustal component emanating from eroded soils 
during transport. At site S23, their importance is possibly 
related to the phenomenon of road dust resuspension. This 
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Figure 5. Repartition rate (%) of biweekly fluxes constituents of particle deposition by terrigenious (a) and  
marine (b) circulations (Case of S14 site)
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Figure 6. Repartition rate (%) of biweekly fluxes constituents of particle deposition by  
terrigenious (a) and marine (b) circulations (Case of S23 site)

result has already been proved by Bahloul et al. (2015b).
The temporal evolution of the particulate deposits con-

stituents at the two sites S14 and S23 also shows a great 
fluctuation (Tables 3 and 4). The lowest biweekly fluxes of 
the elements are attributed to rainy periods (in the case of 
campaigns C2, C6, C9, C10 and C12).

In order to investigate the influence of some meteoro-
logical parameters such as wind velocity, relative humidity 
and atmospheric pressure on the behaviour of particulate 
deposits in the selected sites, simple linear regression anal-
ysis was adopted. The main obvious results were as follows 
(Figures 7, 8 and 9):

 – No significant correlations between wind speed and 
particulate deposit fluxes could be explained by the 
prevalence of the resuspension phenomenon effect 
(Figure 7). The marked frequency of relatively high 
wind speeds exceeding 7 m/s (25% of the total ob-
servations) in the Monastir region could reinforce 
this phenomenon. Bahloul et al. (2015b) showed that 
velocities greater than 7 m/s significantly accentuate 
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Figure 7. Regressions between wind velocity and biweekly flow deposits trough the two studied sites (S14 and S23)

Rural site S14
Y= –1.20x + 7.83

R 2 = 0.22

Urban site S23
y = –0.77x + 6.96

R2 = 0.12

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

Dust fall rate (g/m²/14days)

W
in

d 
ve

lo
ci

ty
 (m

/s
)

S14 S23

 

Rural site S14
y = –4.75x + 69.21

R² = 0.40

Urban site S23
y = –1.30x + 65.46

R² = 0.02

0
10
20
30
40
50
60
70
80
90

100

0 0.5 1 1.5 2 2.5 3

Re
la

tiv
e H

um
id

ity
 (

%
)

Dust fall rate (g/m²/14days)

S14 S23

 
Figure 8. Regressions between relative humidity and biweekly flow deposits trough the two studied sites (S14 and S23)
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the phenomenon of dust resuspension. The relatively 
high velocities normally promote the dilution of air 
components (including suspended particulate mat-
ter). In our case, the accentuation of deposits by such 
velocities is possibly linked to the obstacles effect (ol-
ive trees in the rural area and buildings in the urban 
sites) which, through the effect of winds enhance the 
poor diffusion of suspended solids, reinforcing their 
transfer to the ground. This result was already proved 
elsewhere (Azri, Abida, & Medhioub, 2009b);

 – No significant positive correlations between relative 
humidity and particulate deposits fluxes were ob-
served (Figure 8). This could also testify for the non 
significant role of humidity in the gathering process 
reinforcing thereafter their transfer to the ground;

 – The significant correlations between atmospheric 
pressure and particulate deposit fluxes (Figure  9) 
could be attributed first, to the turbulence action in 
the dilution of air constituents in the case of unsta-
ble meteorological conditions and second, to their 
accumulation in the case of stable meteorological 
conditions. For more refined analysis, a representa-
tion quality of the above meteorological parameters 
was also performed (Tables 5 and 6). The software 
used is the STATIT-CF (1986). The representation 
quality of parameters is identified by a coefficient, 
which explains its position in the factorial plane 
having the maximum of variance (in our case the 
F1xF2 plane has the maximum of variance). It is 
given by the sum of the squares of the correlation 
coefficients between each parameter and the facto-
rial axis of the considered plan (Dutot, Elichegaray, 

& Vie Le Sage, 1983; Azri et al. 2009a), as shown in 
the following Eq. (1):

2QLT (j) ( )
1

n
r ji

j
= ∑

=
, (1)

where:
QLT (j) – the representation QuaLiTy of the parameter 

j (‰);
rj– the correlation coefficient between the parameter j 

and the factorial axis i;
n – the number of considered factorial axes.
This exercise showed that the atmospheric pressure is 

the parameter that had the best quality of representation 
both in the case of stable and unstable conditions. In these 
latter, the wind velocity has also a significant quality of 
representation. In this study, its role is reflected not only 
in the dilution phenomenon of airborne particulate matter 
but also in their fall to the surface (dust fall), reinforced 
by the presence of obstacles (olivetrees in rural zone and 
human dwellings in urban cities).

In order to more refine the above results and allow a 
better understand of the input sources effect, the use of 
chemometric approaches based on the enrichment factor 
calculation, the source contribution rate and the factorial 
analysis of correspondences remain of great interest.

3.2.2. Chemometric approaches

3.2.2.1. Enrichment factor analysis
Dealing with particulate deposits, several studies have 
shown that iron (Fe) can be considered as a representa-
tive indicator of the terrigenous source. This element is 

Table 5. Representation qualities (QLT) of selected meteorological parameters as a function of the two first axes of the (1x2)  
factoriel plane (‰) (Case of S14 site- the threshold of significance = 250 for p < 0.05 and n = 22)

S14 Meteorological 
parameters

Factor 1
r1

Factor 2
r2

F1 x F2 Factorial plane
QLT (‰)

Stable conditions Atmospheric pressure
Wind speed
Relative Humidity

0.478
0.179
0.128

0.149
0.014
0.003

626.646
212.901
169.523

Unstable conditions Atmospheric pressure
Wind speed
Relative humidity

0.391
0.088
0.128

0.296
0.228
0.005

686.762
316.746
133.127

Table 6. Representation qualities (QLT) of selected meteorological parameters as a function of the two first axes of the (1x2)  
factoriel plane (‰)(Case of S23 site- the threshold of significance = 250 for p < 0.05 and n = 22)

S23 Meteorological 
parameters

Facto 1
r1

Factor 2
r2

F1 x F2 Factorial plane
QLT (‰)

Stable conditions Atmospheric pressure
Wind speed
Relative Humidity

0.049
0.211
0.165

0.720
0.002
0.005

769.302
212.901
169.523

Unstable conditions Atmospheric pressure
Wind speed
Relative humidity

0.505
0.257
0.154

0.0001
0.047
0.026

505.567
304.798
180.813
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widely used as a crustal reference (Feng, Cochran, Lwiza, 
Brownawell, & Hirschberg, 1998; Schiff & Weisberg, 
1999; Mucha, Vasconcelos, & Bordalo, 2003; Zhou, Guo, 
& Hao, 2007; Zhang et al., 2007). It is very abundant in 
the earth’s crust (50000 ppm) and slightly emitted by the 
marine source (0.002 ppm). In Monastir crust (regional 
background), it is also abundant (Table 7). Furthermore, 
its anthropogenic emissions are negligible (Chabbi, 2012). 
Consequently, this element is considered in our study as a 
crustal reference to study the enrichment of the particu-
late deposits with respect to the crust.

Because of their abundance in the marine source, so-
dium and chlorine can be considered as marine bench-
marks. However, the availability of sodium of terrigenous 

origin in a non-negligible quantity (Na/Fe = 0.56, Mason, 
1966) has led us to opt for chlorine as a marine refer-
ence element. This element is scarce in the earth’s crust 
(130 ppm, Mason, 1966) and very abundant in seawater 
(18800 ppm, Brewer, 1975). Its selection in this study is 
also based on the analysis of its particular temporal evolu-
tion, which is different from that of other elements sup-
posed to be mostly of crustal origin.

Thus, referring to the selected Cl and Fe, chosen re-
spectively as marine and terrigenous source references, 
the enrichment factors (EF) of the various elements are 
determined by formulae (2 and 3):

( )
( )background

X/Fe
EF/crust

X/Fe
deposits= ⋅  (2)

( )
( )

deposits

sea water

X/Cl
EF/sea water

X/Cl
= ⋅  (3)

and can be classified into three categories:
 – little or no enriched: EF < 10;
 – enriched: 10 < EF < 1000;
 – highly enriched: EF > 1000.

Table 7. Background levels of some heavy metals in Monastir 
region (mg/kg) (Serbaji, 2000)

Elements Monastir background levels (mg/kg)

Fe
Zn
Ni
Cu
Cd

10000
61
7

10
4

Figure 11. Enrichment factors of particle deposition constituents referred to Fe and Cl (for S23 site)
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 Figure 10. Enrichment factors of particle deposition constituents referred to Fe and Cl (for S14 site)
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Generally, an element is assumed to be of a natu-
ral origin if its enrichment factor (EF) is less than 10 
(Chester, Nimmo, & Preston, 1999; Saliba, Kouyoum-
djian, & Roumie, 2007). Based on Monastir crust, as 
a regional background (Serbaji, 2000) and averages of 
chemical constituents in sea water (Brewer, 1975), the 
enrichment factors of the different analyzed elements 
have been computed. These factors corresponding data 
are illustrated in Figures 10 and 11. From this data, one 
can deduce:

 – Fe(2; 3)+, Ca++, and K+ are essentially of crustal ori-
gin. They are slightly enriched relative to the crust 
(EF < 10) and enriched to highly enriched with re-
spect to sea water (10 < EF < 108);

 – Cl– is typically marine. It is non-enriched with re-
spect to sea water (EF < 10) and enriched with re-
spect to the crust (EF > 10);

 – Na is slightly enriched in relation to both crust and 
sea water. It has a mixed origin related to these two 
sources.

Pb, Mn, Zn, and Cu are enriched relative to the 
crust (EF > 10) and highly enriched refering to seawater 
(10 < EF < 1010). They come from other sources than ter-
rigenious and marine. In the absence of nearby industrial 
sources, the anthropogenic component attributed to the 
aforementioned metals is possibly due to the traffic activ-
ity. The two main medium-population density of touristic 
towns (Monastir and Mahdia) together with the various 
small urban agglomerations spread along the coast in the 
eastern part of the region, can fully justify the importance 
of the traffic activity in this area. With the agricultural 
character of its western part, the railway and motorway 
with their intense fluidity (≈10 km) linking the Southern 
Tunisia regions with those of the North, can enrich the 
atmosphere of this zone by such metals. Although the un-
leaded petrol has significantly reduced lead emissions in 
the air today, this substance still remains in exhaust emis-
sions and brake pads. Therefore, it is still a road transport 
marker (Kummer, Pacyna, & Friederich, 2009). As a Pb 
substitute, Methylcyclopentadienyl Manganese Tricarbo-
nyl (MMT) is now an additive of unleaded petrol as an 
anti-detoning agent. The Mn concentration has increased 
in the atmosphere since its introduction as one of the 
components of this petrol (Joly et  al., 2011). It is toxic 
and may lead to psychiatric and neurological disorders 
or even mental retardation (Zayed, Hong, & Espérance, 
1999). Zn and Cu emissions are due to lubricant leakage, 
exhaust emission and erosion of the security guardrails 
(Hueglin et al., 2005).

The enrichment factor results and those of the afore-
mentioned descriptive study showed that under the pre-
dominantly terrigenous wind circulations, the Cl– contri-
bution rates (6 and 20% at S14 and S23, respectively) are 
relatively important. Its maximum value is comparable to 
those of terrigenous origin elements (Fe(2;3)+  =  20%, at 
S23). This was mainly attributed to the significant effect 

of the sebkhas located in the Tunisian Sahel (Sidi El 
Hani ≈ 370 km², El Moknine ≈50 km², Sahline ≈ 26 km²) 
(Figure 1). Their contribution in chlorine was developed 
in the following paragraph.

3.2.2.2. The Sebkha’s chlorine contribution rate
Several analytical approaches have been adopted to es-
timate the chlorine contribution rate of the above-men-
tioned sebkhas. Such approaches have already been pub-
lished in Bahloul et al. (2015b). They are based on the use 
of the following formulae (4 and 5):

Relying on the assumption that 100% of Fe originates 
from the crust; the biweekly estimated fluxes of crustal 

chlorine ( )crustal
depositsCl  (expressed in g/m²) in atmospheric 

particulate deposits are first given by equation (4):

( )

( ) ( )crust"Mason model"

Cl

Cl/Fe Fe

crustal
deposits

depositsx

=

. 

(4)

( )depositsFe : Fe Biweekly fluxes measured in atmos-
pheric particulate deposits (g/m²).
and second, the crust source contribution rate in chlorine 
is determined by formula (5):

( ) ( )
(%)

[ Cl / Cl ] 100crustal
deposits deposits

Crustal rate

x

=

. 
(5)

( )depositsCl : Biweekly fluxes of total Cl measured in 

atmospheric particulate deposits (g/m²).
The estimated crustal source contribution rates in 

terms of chlorine, related to S14 and S23 sites, are pre-
sented in Tables 8 and 9 respectively. The results show that 
the crustal source contribution rate in terms of Cl is vari-
able under the terrigenious wind directions. Indeed, it is 
demonstrated that the contribution rate is relatively high 
with winds blowing “from SSW to W directions”, for S14 
and “from S to WSW directions” for S23 (80 and 82% of 
total crustal chlorine for S14 and S23, respectively).

The above wind sectors are defined as the meteoro-
logical factor in which the study sites (S14 and S23) were 
placed downstream the Sidi El Hani and Moknine sebkhas 
(Figure 1).

The rather high crustal chlorine contribution rate re-
corded at S23 compared to that recorded at S14 could be 
explained by the relatively high exposure frequency of S23 
to the terrigenious winds blowing over Sidi El Hani and 
Moknine sebkhas (31% of total observations) compared to 
those relative to S14 (16% of total observations).

On the other hand, the estimated chlorine contribu-
tion rate of marine source was based on formulae (6) and 
(7) (Belghith, 1999; Azri et al., 2009b):
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First, the biweekly estimated marine chlorine fluxes of 
atmospheric particulate deposits ( )marine

depositsCl  (expressed 
in g/m²) are given by Eq. (6):

( ) ( ) ( )measured
marine crustal
deposits depositsCl Cl Cl= − ⋅  (6)

measured( )Cl : Biweekly fluxes of total Cl measured in 
atmospheric particulate deposits (g/m²)

Second, the estimated contribution rate of marine 
source is determined by Eq (7):

( ) ( )(%) [ / ] 100.marine
deposits depositsMarine rate Cl Cl x=  (7)

The results show rates nearly equal to 98.8 and 94.9% 
of total chlorine for the S14 and S23 respectively. Based 
on these results, we can deduce that, in spite of the weak 
chlorine crustal contribution rate compared to that of ma-
rine source (1.2 and 5.12% against 98.8 and 94.9% of total 
chlorine for S14 and S23, respectively), its highest value 
(80 and 82% of the total crustal chlorine for S14 and S23, 
respectively) was computed under the terrigenious winds 
blowing over the previously cited sebkhas.

In order to refine the obtained results by the en-
richment factors and to better identify the contribution 
sources, a factorial analysis of correspondences has been 
performed.

3.2.2.3. Factorial analysis of correspondences
The factorial analysis of correspondences applied to all 
data: Biweekly fluxes of analyzed elements (g/m2) of dry 
particulate deposits and principal meteorological parame-
ters) using the ITCF statistical software package (STATIT-
CF, 1986), resulted essentially in three main components. 
A varimax rotation with Kaiser Normalization was used 
for all data. The considered significance threshold (r) for 
p < 0.05 is equal to 0.42, after a test of Student’s (n = 22). 
The significant correlations between the selected param-
eters (variables) and the components represent approxi-
mately 64.43 and 63.95% of the total variance for S14 and 
S23, respectively. For S14, the first, second and third FACs 
explained, 34.79, 19.19 and 10.45% of the total variance. 
For S23, they explained 34.88, 18.26 and 10.81% of the 
total variance.

The projections over the 1×2 factorial planes (present-
ing the maximum of inertia; = 53.98 and 53.14% for S14 
and S23, respectively) of all selected variables show a simi-
lar distribution for the two sites with distinct data groups 
(Figures 12 and 13):

 – A first group (G1) consists of Fe(2;3)+, Ca++, K+, Mn, 
Ni, Cd, Zn, Pb, Cu, V1, V2, P3, S3, RH1. It is char-
acterized by the effect of terrigenous winds distin-
guished by a very steady atmosphere (P3) associated 
with low and moderate velocities (V1 and V2) fa-
vourable to the accentuation of both crustal (Fe(2;3)+, 

Table 8. Estimated crustal source contribution rate in terms of chlorine (S14)

Predominantly wind circulation
Distribution frequency (% 

with respect to total
observations)

Contribution crustal source rate in 
terms of Cl (%)

Terrigenious 52 1.20 (of total chlorine)
South south west to west dominant wind sector 
(meteorological condition in which the study site 
was placed downstream Sidi El Hani sebkha)

16 0.96 (80% of total crustal chlorine)

Other terrigenious wind directions (case in which 
the study site cannot be placed downstream 
sebkhas)

36 0.24 (20% of total crustal chlorine)

Table 9. Estimated crustal source contribution rate in terms of chlorine (S23)

Predominantly wind circulation Distribution frequency (% 
with respect to total

observations)

Contribution crustal source rate in 
terms of Cl (%)

Terrigenious 52 5.12 (of total chlorine)
South dominant wind direction (meteorological condition 
in which the study site was placed downstream Moknine 
sebkha) and dominant wind sector from south south west 
to west south west (impact of Sidi El Hani sebkha on 
study site)

31 4.20 (82 % of total crustal chlorine)

Other terrigenious wind directions (case in which the 
study site cannot be placed downstream sebkhas)

21 0.92 (18% of total crustal chlorine)
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Ca++, K+) and man-made (Mn, Ni, Cd, Zn, Pb, Cu) 
elements. The association of these elements is clear 
enough under the prevalence of the western sector 
wind (S3) which carries especially the highway traffic 
emissions to the study sites. These terrigenous winds 
are demonstrated to be relatively dry (RH < 50%);

Figure 13. Distribution of biweekly fluxes constituents of particle deposition in the correlation circle (for 
S23 site; r = 0.42 for p < 0.05 and n = 22)
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Figure 12. Distribution of biweekly fluxes constituents of particle deposition in the correlation circle (for 
S14 site; r = 0.42 for p < 0.05 and n = 22)

 – A second group (G2) includes Na+, Cl–, RH2, V3, 
P1 and S1, S2. It is representative of marine circula-
tion effect characterized by the dominance of eastern 
winds with relatively high velocities. These are dis-
tinct under unstable meteorological conditions.
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Conclusions

The particulate deposit fluxes study in the Monastir re-
gion shows an obvious spatio-temporal variability. These 
deposit spatial evolution shows very distinct patterns with 
variable amplitudes. Zonal differentiation is eventually at-
tributed to the effect of nearby sources (brick kilns and 
clay quarries, road traffic and sebkhas), obstacles and 
meteorological factors (including precipitation and wind 
speed).

The temporal evolution of the particulate deposit com-
ponents (Fe(2;3)+, Ca++, Na+, K+, Cl–, Pb, Cu, Cd, Zn, Ni et 
Mn) at two particular sites receiving the highest particu-
late fluxes (S14 and S23) also shows a large fluctuation.

The enrichment factor results of the source contribu-
tion rate as well as the descriptive study show that, un-
der predominantly terrigenous winds, the Cl– contribu-
tion rate (6 and 20% at S14 and S23 sites, respectively) 
is relatively noticeable. Its maximum value is comparable 
to those of the supposed elements of terrigenous origin 
(Fe(2;3)+ = 20%, at site S23). This is attributed to the sig-
nificant effect of sebkhas located in the Tunisian Sahel, 
namely (Sebkha Sidi El Hani ≈ 370 km², Sebkha El Mok-
nine ≈ 50 km², and Sebkha Sahline ≈ 26 km²).

The factorial analysis of correspondences applied to 
the atmospheric data (soluble and insoluble fractions of 
particulate deposits and meteorological parameters) reveal 
similar groups for the two sites S14 and S23. It also shows, 
on one hand, the effect of terrigenious winds blowing from 
the western sector under the steady atmospheric situations 
associated with low and moderate velocities favourable to 
the accentuation of both crustal (Fe(2;3)+, Ca++, K+) and 
man-made (Mn, Ni, Cd, Zn, Pb, Cu) elements. On the 
other hand, it confirms the effect of marine circulation 
characterized by the dominance of eastern winds with 
relatively high velocities. These are obvious under unstable 
meteorological conditions.

Consequently, we can conclude that particle deposi-
tion even at rural areas is most influenced by closed man-
made sources, obstacles and meteorological patterns, with 
the largest influence by the traffic sources and the reshuf-
fle phenomenon. The relatively high contribution rate of 
crustal chlorine under terrigenious wind’s direction can 
be then attributed to nearby sebkhas. Therefore, they may 
be considered as nonnegligible feeding sources of airborne 
particulate matter enriched with chlorine.

More in-depth studies can provide evidence about the 
challenges related to environmental sustainability and the 
implementation of active measures to reduce the adverse 
effects of particulate deposition. It is therefore to take the 
following considerations into account:

 – strengthening the control network of both dry and 
wet particulate deposition;

 – brickyards and clay quarries are required to install 
dedusting tools;

 – pragrammes aimed at modernize the fleets as well 
as at rehabilitate the railways by the acquisition of 
unused trains (in Tunisia, some trains have already 

been used for more than fifty years);
 – encouraging the use of public transit;
 – more encourage the use of environmentally friendly 
fuel such as LPG (Liquefied Petroleum Gas) which 
considred as an alternative fuel. In Tunisia, while the 
abundance of distribution stations of this type of fuel, 
its use remains limited with the exception of some 
kinds of car (taxis and older vehicles).

Conflict of Interests
The authors declare that there is no conflict of interests 
regarding the publication of this paper.

Acknowledgements

The authors would like to thank Mrs Abdelmajid Dam-
mak and Fathi Bourmech, English language Professors, 
respectively, at the National School of Engineers at Sfax 
and the Faculty of Arts at Sfax for careful editing and 
proofreading of this paper.

References
Allen, A. G., Nemitz, E., Shi,  J. R., Harrison, R. M., & Green-

wood, J. C. (2001). Size distribution of trace metals in atmos-
pheric aerosols in the United Kingdom. Atmospheric Environ-
ment, 35(27), 4581-4591. 
https://doi.org/10.1016/S1352-2310(01)00190-X

Azri, C., Abida, H., & Medhioub, K. (2009b). Geochemical be-
havior of the Tunisian background aerosols in sirocco wind 
circulations. Advances in Atmospheric Sciences, 26(3), 390-
402. https://doi.org/10.1007/s00376-009-0390-8

Azri, C., Chaabane, M., Abida, H., & Medhioub, K. (2010). Wa-
ter-soluble components in PM10 aerosols over an urban and 
a suburban site in the city of Sfax (Tunisia). Atmosfera, 23(2), 
197-211.

Azri, C., Chaabane, M., & Medhioub, K. (2009a). Diurnal evo-
lutions of Nitrogen oxides (NOx), Ozone (O3) and PM10 
particles at a busy traffic cross-road in the city of Tunis. En-
vironmental Progress & Sustainable Energy, 28(1), 143-154. 
https://doi.org/10.1002/ep.10315

Azri, C., Maalej, A., & Medhioub, K. (2000). Etude de la variabi-
lité des constituants de l’aérosol dans la ville de Sfax (Tunisie), 
Pollution Atmosphérique, (165), 121-129. 
https://doi.org/10.4267/pollution-atmospherique.3021

Bae, S. Y., Yi, S. M., & Kim, Y. P. (2002). Temporal and spatial 
variations of the particle size distribution of PAHs and their 
dry deposition fluxes in Korea. Atmospheric Environment, 
36(35), 5491-5500. 
https://doi.org/10.1016/S1352-2310(02)00666-0

Bahloul, M., Chabbi, I., Dammak, R., Amdouni, R., Medhioub, K., 
& Azri, C. (2015b). Geochemical behaviour of PM10 aerosol 
constituents under the influence of succeeding anticyclonic/
cyclonic situations: case of Sfax City, southern Tunisia. Envi-
ronmental Monitoring and Assessment, (187), 1-17. https://doi.
org/10.1007/s10661-015-4980-x

Bahloul, M., Chabbi, I., Sdiri, A., Amdouni, R., Medhioub, K., 
& Azri, C. (2015a). Spatiotemporal variation of particulate 
fallout instances in Sfax City, Southern Tunisia: influence of 
sources and meteorology. Advances in Meteorology, Article 
ID 471396, 11 p.



156 I. Chabbi et al. Dust particle deposition quality assessment in rural areas located not far from a congested highway...

Belghith, I. (1999). Study of the atmospheric aerosol in the region 
of Sfax: influence of local and synoptic meteorological condi-
tions: PhD dissertation. University of Tunis II.

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., 
& Klimont, Z. (2004). A technology-based global inventory of 
black and organic carbon emissions from combustion. Jour-
nal of Geophysical Research, 109(D14), 1029-14203. 
https://doi.org/10.1029/2003JD003697

Borghezi, D., Vione, D., Maurino, V., & Minero, C. (2005). Trans-
formation of benzene photo induced by nitrate salts and iron 
oxide. Journal of Atmospheric Chemistry, 52(3), 259-281. 
https://doi.org/10.1007/s10874-005-5304-2

Brewer, P. G. 1975. Minor elements in sea water, chemical ocean-
ography. In Riley JPO. G. Skirrow (Eds). (2nd ed.). London: 
Academic Press, 80, 415-495.

Cao, Z., Yang, Y., Lu, J., & Zhang, C. (2011). Atmospheric par-
ticle characterization, distribution, and deposition in Xi’an, 
Shaanxi Province, Central China. Environmental Pollution, 
159(2), 577-584. https://doi.org/10.1016/j.envpol.2010.10.006

Cerro,  J. C., Caballero, S., Bujosa, C., Alastuey, A., Querol, X., 
& Pey, J. (2014). Aerosol Deposition in Balearic Islands as 
Overview of the deposition in the Western Mediterranean. In 
Proceedings of the 2nd Iberian Meeting on Aerosol Science and 
Technology, 2014, RICTA, Tarragona, Spain.

Chabbi, I. (2012). Etude de la variabilité spatio-temporelle des re-
tombées atmosphériques au dessus d’une zone rurale-cas de la 
région de Zéramdine (Monastir). Mastère en sciences géolo-
giques de la Faculté des Sciences de Sfax. Tunisie.

Chester, R., Nimmo, M., & Preston, M. R. (1999). The trace met-
al chemistry of atmospheric dry deposition samples collected 
at Cap Ferrat: a coastal site in the Western Mediterranean. 
Marine Chemistry, 68(1-2), 15-30. 
https://doi.org/10.1016/S0304-4203(99)00062-6

Chung, Y. S., Kim, K. S., Park, K. H., Jugder, D., & Tao, G. (2005). 
Observations of dust storms in China, Mongolia and associated 
dust falls in Korea in spring 2003. Water, Air, & Soil Pollution, 
5(3-6), 15-35. https://doi.org/10.1007/s11267-005-0724-1

Cindoruk, S. S., & Tasdemir, Y. (2007). Deposition of atmospher-
ic particulate PCBs in suburban site of Turkey. Atmospheric 
Research, 85(3-4), 300-309. 
https://doi.org/10.1016/j.atmosres.2007.02.002

Dammak, R., Bahloul, M., Chabbi, I., & Azri, C. (2016). Spatial 
and temporal variations of dust particle deposition at three 
“urban/suburban” areas in Sfax city (Tunisia). Environmental 
Monitoring and Assessment, (188), 1-14. 
https://doi.org/10.1007/s10661-016-5341-0

Dutot, A. L., Elichegaray, C., & Vie Le Sage, R. (1983). Application 
de l’analyse des correspondances à l’étude de la composition 
physico-chimique de l’aérosol urbain. Atmospheric Environment, 
17(1), 73-78. https://doi.org/10.1016/0004-6981(83)90009-4

Ediagbonya,  T.  F., Ukpebor,  E.  E., Okiemien,  F.  E., & Okung-
bowa, G. E. (2013). Spatio-temporal distribution of inhalable 
and respirable particulate matter in rural atmosphere of Ni-
geria. Environmental Skeptics and Critics, 2, 20-29.

Fang, G. C., & Wu, Y. S. (1999). Modeling dry deposition of total 
particle mass in trafficked and rural sites of Central Taiwan. 
Environment International, 25(5), 625-633. 
https://doi.org/10.1016/S0160-4120(99)00021-5

Fang, G. C., Wu, Y. S., Wen, C. C., Huang, S. H., & Rau,  J. Y. 
(2006). Ambient air particulate concentrations and metallic 
elements principal component analysis at Taichung Harbor 
(TH) and WuChi Traffic (WT) near Taiwan Strait during 
2004–2005. Journal of Hazardous Materials, 137(1), 314-323. 
https://doi.org/10.1016/j.jhazmat.2006.02.017

Feng, H., Cochran,  J. K., Lwiza, H., Brownawell, B., & Hirsch-
berg, D. J. (1998). Distribution of heavy metal and PCB con-
taminants in the sediments of an urban estuary: the Hudson 
River. Marine Environmental Research, 45(1), 69-88. 
https://doi.org/10.1016/S0141-1136(97)00025-1

Gabet, M. C. (1999). Dépôt de poussières au voisinage des tunnels 
routiers. Centre d’étude des tunnels, Lyon (France).

Geraldine, A., Maul, A., Ferard, J., Carrot, F., & Ayrault, S. 
(2004). Spatial variability of sampling : impact on atmos-
pheric metals and trace elements deposition mapping with 
mosses. Journal of Atmospheric Chemistry, 49(1-3), 39-52. 
https://doi.org/10.1007/s10874-004-1213-z

Guerzoni, S., Molinaroli, E., Rossini, P., Rampazzo, G., Quarantot-
to, G., De Falco, G., & Cristini, S. (1999). Role of desert aerosol 
in metal fluxes in the Mediterranean area. Chemosphere, 39(2), 
229-246. https://doi.org/10.1016/S0045-6535(99)00105-8

Hueglin, C., Gehriga, R., Baltenspergerb, U., Gyselc, M., Monnd, 
C., & Vonmonta, H. (2005). Chemical characterisation of 
PM2.5, PM10 and coarse particles at urban, near-city and 
rural sites in Switzerland. Atmospheric Environment, 39(4), 
637-651. https://doi.org/10.1016/j.atmosenv.2004.10.027

Joly, A., Lambert, J., Gagnon, C., Kennedy, G., Mergler, D., Ad-
am-Poupart, A., & Zayed, J. (2011). Reduced atmospheric 
Manganese in Montreal following removal of Methylcyclo-
pentadienyl Manganese Tricarbonyl (MMT). Water, Air, & 
Soil Pollution, 219(1), 263-270. 
https://doi.org/10.1007/s11270-010-0704-6

Królak, E. (2000). Heavy metals in falling dust in Eastern Ma-
zowieckie Province. Polish Journal of Environmental Studies, 9, 
517-522.

Kubilay, N., & Saydam, A. C. (1995). Trace elements in atmos-
pheric particulates over the Eastern Mediterranean; concen-
trations, sources, and temporal variability. Atmospheric Envi-
ronment, 29(17), 2289-2300.
https://doi.org/10.1016/1352-2310(95)00101-4

Kummer, U., Pacyna, E., & Friederich, R. (2009). Assessment of 
heavy metal releases from the use phase of road transport en 
Europe. Atmospheric Environment, 43(3), 640-647. 
https://doi.org/10.1016/j.atmosenv.2008.10.007

Lequy, E., Calvaruso, C., Conil, S., & Turpault,  M.  P. (2014). 
Atmospheric particulate deposition influence by tree canopy 
in beech forests in the north of France. Science of the Total 
Environment, 487, 206-215. 
https://doi.org/10.1016/j.scitotenv.2014.04.028

López-García, P., Gelado-Caballero, M. D., Santana-Castellano, D., 
Suarez de Tangil, M., Collado-Sanchez, C., & Hernandez-Bri-
to, J. J. (2013). A three-year time-series of dust deposition flux 
measurements in Gran Canaria, Spain: a comparison of wet 
and dry surface deposition samplers. Atmospheric Environment, 
79, 689-694. https://doi.org/10.1016/j.atmosenv.2013.07.044

Lu, S., Shao, L., Wu, M., & Jiao, Z. (2006). Mineralogical charac-
terization of airborne individual particulates in Beijing PM10. 
Journal of Environmental Sciences, 18(2), 323-328.

Marx, S. K., & McGowan, H. A. (2005). Dust transportation and 
deposition in a superhumid environment, West Coast, South 
Island, New Zealand. Catena, 59(2), 147-171. 
https://doi.org/10.1016/j.catena.2004.06.005

Mason,  B.  H. (1966). Principles of geochemistry (3rd ed.). New 
York: Wiley and Sons.

Mucha, A. P., Vasconcelos, M. T. S. D., & Bordalo, A. A. (2003). 
Macro benthic community in the Douro Estuary: relations 
with trace metals and natural sediment characteristics. Envi-
ronmental Pollution, 121(2), 169-180. 
https://doi.org/10.1016/S0269-7491(02)00229-4



Journal of Environmental Engineering and Landscape Management, 2018, 26(2): 141–157 157

Muhammad, I. K., Muhammad, I., Mubashir A., & Ammad H. K. 
(2017). Geotechnical characteristics of effluent contaminated 
cohesive soils. Journal of Environmental Engineering and 
Landscape Management, 25(1), 75-82.

Niemiet, J., Tervahattu, H., Virkkula, A., Hillamo, R., Teinita, K., 
Koponen, I., & Kulmala, M. (2005). Continental impact on ma-
rine boundary layer coarse particles over the Atlantic Ocean 
between Europe and Antarctica. Atmospheric Research, 75(4), 
301-321. https://doi.org/10.1016/j.atmosres.2005.01.005

Orange, D., & Gac, J. Y. (1990). Bilan géochimique des apports 
atmosphériques en domaines sahélien et soudano-guinéen 
d’Afrique de l’Ouest (bassins supérieurs du Sénégal et de la 
Gambie). Géodynamique (Paris), 5, 51-65.

Rodriguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. 
(2001). Saharan dust contributions to PM10 and tsp level s in 
Southern and Eastern Spain. Atmospheric Environment, 35(14), 
2433-2447. https://doi.org/10.1016/S1352-2310(00)00496-9

Saliba, N. A., Kouyoumdjian, H., & Roumie, M. (2007). Effect 
of local and long-range transport emissions on the elemental 
composition of PM10 and PM2.5 in Beirut. Atmospheric En-
vironment, 41(31), 6497-6509. 
https://doi.org/10.1016/j.atmosenv.2007.04.032

Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element 
for determining trace metal enrichment in Southern California 
coast shelf sediments. Marine Environmental Research, 48(2), 
161-176. https://doi.org/10.1016/S0141-1136(99)00033-1

Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and 
physics: From air pollution to climate change, (pp. 714-722). New 
York: John Wiley ans Sons. https://doi.org/10.1063/1.882420

Serbaji, M. M. (2000). Utilisation d’un SIG multi-sources pour la 
compréhension et la gestion intégrée de l’écosystème côtier de la 
région de Sfax (Tunisie). Thèse de Doctorat de l’Université de 
Tunis II, Tunisie.

Serghani, N. (2009). Mesure de la pollution particulaire et mé-
tallique dans l’air au niveau de trios sites urbaines de la ville 
de Constantine. In Colloque International Environnement et 
Transports Dans des Contextes Différents (pp. 157-162), Ghar-
daia, Algerie, Février, E.N.P. Actes, Ed.

Shahin, U., Lu, J., Yi, S. M., Paode, R. D., & Holsen, T. M. (2000). 
Long-term elemental dry deposition fluxes measured around 
Lake Michigan with an automated dry deposition sampler. 
Environmental Science & Technology, 34(10), 1887-1892. 
https://doi.org/10.1021/es9907562

Shokr, M. S., El Baroudy, A. A., Fullen, M. A., El-Beshbeshy, T. R., 
Ali,  R.  R., Elhalim, A., Guerra, A.  J.  T. & Jorge, M.  C.  O. 
(2016). Mapping of heavy metal contamination in alluvial 
soils of the Middle Nile Delta of Egypt. Journal of Environ-

mental Engineering and Landscape Management, 24(3), 218-
231. https://doi.org/10.3846/16486897.2016.1184152

STATIT-CF. (1986). Services des études statistiques de l’I.T.C.F. 
Boigneville.

Tagorti,  M.  A., Essefi, E., Touir, J., Guellala, R., & Yaich, C. 
(2013). Geochemical controls of groundwaters upwelling in 
saline environments: Case study the discharge playa of Sidi 
El Hani (Sahel, Tunisia). Journal of African Earth Sciences, 86, 
1-9. https://doi.org/10.1016/j.jafrearsci.2013.05.004

Tagorti, M. A., Gam, W., Mathlouthi, W., Barka, S., Achour, L., & 
Kacem, A. (2010). Etude des bioressources des tables salantes 
de la société Saida à sebkha Sidi El Hani. Première journée 
scientifique sur la valorisation des bioressources à intérêt ali-
mentaire de GEDIV, Monastir le 08 mai 2010, Tunisie.

Terzi, E., & Samara, C. (2005). Dry deposition of polycyclic 
aromatic hydrocarbons in urban and rural sites of Western 
Greece. Atmospheric Environment, 39(34), 6261-6270. 
https://doi.org/10.1016/j.atmosenv.2005.06.057

US EPA. (1999). SW-846 reference methodology: Method 3050 B. 
Standard operating procedure for the digestion of soil/sediment 
samples using a hotplate/beaker digestion technique. Chicago, IL.

Yang, H. H., Hsieh, L. T., Lin, M. C., Mi, H. H., & Chen, P. C. 
(2004). Dry deposition of sulfate-containing particulate at 
the highway intersection coastal and suburban areas. Chem-
osphere, 54(3), 369-378. 
https://doi.org/10.1016/S0045-6535(03)00655-6

Yi, S. M., Totten, L. A., Thota, S., Yan, S., Offenberg, J. H., Eisen-
reich, S.  J., Graney, J., & Holsen, T. H. (2006). Atmospheric 
dry deposition of trace elements measured around the urban 
and industrially impacted NY–NJ harbour. Atmospheric En-
vironment, 40(34), 6626-6637. 
https://doi.org/10.1016/j.atmosenv.2006.05.062

Zayed, J., Hong, B., & Espérance, G. (1999). Characterization of 
Manganese-containing particles collected from the exhaust 
emissions of automobiles running with MMT additive. Envi-
ronmental Science & Technology, 33(19), 3341-3346. 
https://doi.org/10.1021/es990709+

Zhang, L., Xin, Y., Feng, H., Jing, Y., Ouyang, T., Yu, X., Liang, R., 
Gao, C., & Chen, W. (2007). Heavy metal contamination in 
western Xiamen Bay sediments and its vicinity, China. Ma-
rine Pollution Bulletin, 54(7), 974-982. 
https://doi.org/10.1016/j.marpolbul.2007.02.010

Zhou, F., Guo, H., & Hao, Z. (2007). Spatial distribution of heavy 
metals in Hong Kong’s marine sediments and their human 
impacts: a GISbased chemometric approach. Marine Pollution 
Bulletin. 54(9), 1372-1384. 
https://doi.org/10.1016/j.marpolbul.2007.05.017


