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in alterations in the biotic communities in urban areas 
(White et al. 2002). Additionally, the UHI effect could lead 
to the increase in the ground level ozone, which directly 
threatens human health (Akbari et al. 2001). In consider-
ing rapid urbanization and the importance of UHI effects, 
monitoring the UHI effects and exploring their character-
istics are increasingly important, as is adopting appropri-
ate sustainable land use plans to mitigate UHI effects. 

The UHI effect is often captured by land surface tem-
perature (LST) measurements (Kikon et al. 2016; Kumar, 
Shekhar 2015). LST is a key physical indicator of land sur-
faces directly influenced by urban land-cover changes and 
has implications for the research of urban climate change 
(Huang, Cadenasso 2016; Weng 2009). Continal, histori-
cal, and precise information about the LST is a prerequi-
site for further analysis and sustainable development, as 
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Abstract. Urban heat islands (UHIs) are a worldwide phenomenon that have many ecological and social consequences. It 
has become increasingly important to examine the relationships between land surface temperatures (LSTs) and all related 
factors. This study analyses Landsat data, spatial metrics, and a geographically weighted regression (GWR) model for a case 
study of Hangzhou, China, to explore the correlation between LST and urban spatial patterns. The LST data were retrieved 
from Landsat images. Spatial metrics were used to quantify the urban spatial patterns. The effects of the urban spatial pat-
terns on LSTs were further investigated using Pearson correlation analysis and a GWR model, both at three spatial scales. 
The results show that the LST patterns have changed significantly, which can be explained by the concurrent changes in 
urban spatial patterns. The correlation coefficients between the spatial metrics and LSTs decrease as the spatial scale in-
creases. The GWR model performs better than an ordinary least squares analysis in exploring the relationship of LSTs and 
urban spatial patterns, which is indicated by the higher adjusted R2 values, lower corrected Akaike information criterion 
and reduced spatial autocorrelations. The GWR model results indicate that the effects of urban spatial patterns on LSTs are 
spatiotemporally variable. Moreover, their effects vary spatially with the use of different spatial scales. The findings of this 
study can aid in sustainable urban planning and the mitigation the UHI effect.
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Introduction 

As urbanization has occurred, the natural resource base, 
such as the lands used for agriculture, forests and wet-
lands, have been replaced by urban lands (Jantz et al. 
2004). Although urban land covers a very small percent-
age of the world’s land surface in comparison with other 
land-cover types, their rapid expansion with continued 
urbanization has had marked effects on the environment 
and our socio-economy. One particularly significant con-
sequence of urbanization is the formulation of urban heat 
islands (UHIs), where the atmospheric and surface tem-
peratures above and around densely built cities are higher 
than those in nearby rural areas (Voogt, Oke 2003). In-
creased temperatures in urban areas could contribute to 
increasing water and energy consumption and could result 
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has been stated previously. Satellite images have become 
an effective tool for retrieving the LST of wide spatial and 
temporal regions. The increasing availability of satellite 
images with significantly improved spectral and spatial 
resolutions has played an important role in more detailed 
LST maps. Numerous studies have validated the use of 
various satellite thermal infrared (TIR) datasets, includ-
ing AVHRR (Streutker 2002), MODIS (Buyantuyev, Wu 
2010), Landsat TM/ETM+ (Zhang et al. 2013), ASTER 
(Mallick et al. 2013), supported by their low cost, large 
area spatial coverages, and high temporal resolutions. 

To mitigate the UHI effect, numerous studies have 
been conducted to investigate the correlation between 
LST and various spatial factors in different study areas. 
The spatial patterns of UHIs are affected by weather con-
ditions, land surface characteristics, and human activities 
(Li et al. 2012; Voogt, Oke 2003; Wu et al. 2013). Among 
these factors, land surface characteristics, represented by 
land use and land cover (LULC), are identified as the main 
reasons for the UHI effect. The relationship between LSTs 
and LULC has been the focus of numerous UHI centered 
studies (Buyantuyev, Wu 2010; Guo et al. 2016; Song et al. 
2014; Zhou et al. 2017). LST data derived from remote 
sensing images capture the radiative energy emitted from 
the land surface, including that from buildings, vegetation, 
bare land, and water (Voogt, Oke 2003). Thus, LST could 
be affected by the spatial patterns of urban areas (Forman 
1995). Two types of indicators have been applied to char-
acterize these spatial pattern: spatial compositions (the 
variety and abundance of patch types) and spatial con-
figurations (the spatial characteristics and arrangements) 
(Gustafson 1998). Numerous studies were conducted to 
investigate the qualitative relationships between LSTs and 
urban spatial patterns. By adopting a sample set, the spa-
tial metric values of each sample can be plotted against 
the relevant LST values. Different quantitative methods, 
including Pearson correlations (Li et al. 2013), and global 
regression models (Connors et al. 2013), were adopted to 
measure the extent of the impact of urban spatial patterns 
of land-cover types on LSTs. A negative correlation has 
been observed between vegetation abundance and LSTs in 
urban areas (Li et al. 2011; Liang, Weng 2008). However, 
LSTs are often found to be positively correlated with the 
percentage of the built-up land (Li et al. 2011; Kikon et al. 
2016). Landscape configurations can influence the energy 
exchange and the efficiency of surface energy fluxes (For-
man 1995; Song et al. 2014). Maimaitiyiming et al. (2014) 
indicated that LST is negatively related with vegetation 
edge density in Aksu City. The patch density of vegetation 
had a significant negative relationship with LSTs. Increas-
ing the vegetation patch density could result in significant-
ly higher LSTs (Li et al. 2012; Zhou et al. 2011). Vegetation 
and impervious surfaces are two key urban components 
in UHI dynamics (Ridd 1995). There is growing concern 
about the effects of urban spatial patterns on LSTs, which 
can help to provide information for urban planning and 
sustainable development. Furthermore, recent works have 

only focused on describing the characteristics of LST 
distributions and their relationships with underlying de-
terminants for an entire study area. As such, the studies 
failed to address the spatial heterogeneities in the effects 
of urban spatial patterns on LSTs. Spatial and temporal 
heterogeneities usually exist in the relationships between 
spatial patterns of land-cover types and the local LSTs 
(Buyantuyev, Wu 2010; Li et al. 2011; Zhou et al. 2014). In 
addition, analyzing the LSTs at a single time point would 
ignore the fact that the area experiencing the most intense 
UHI effect is not always located at the center of the city, 
but can change its location with the progression of urbani-
zation. Therefore, the impacts of urban spatial patterns on 
LSTs cannot be fully understood. To address these gaps in 
the existing studies, there is an urgent need to quantify the 
relationships between LSTs and the spatial patterns of land 
cover considering the spatiotemporal variations of the ef-
fects of the driving factors on LST.

Scale is an important aspect of investigating and ana-
lyzing the hierarchical organization of the geographic fea-
tures (Marceau 1999). It has been widely acknowledged 
that LST and urban spatial patterns are scale-dependent 
since they change with the scale of the observation or 
analysis. Therefore, the impacts of different spatial scales 
on the correlation between urban spatial patterns and 
LSTs must be analyzed. However, previous studies have 
mainly examined these relationships for a single scale, 
which is often dependent on the spatial resolution of the 
remote sensing and other data sources (Maimaitiyiming 
et al. 2014; Zhou et al. 2011). 

Using Hangzhou City,  China as a case study, the over-
all objective of this study is to improve the understanding 
of the spatiotemporal variations of LSTs and the effects 
of urban spatial patterns on LSTs, as well as to provide 
recommendations for urban planning in order to miti-
gate UHI effects. The specific steps in this study are as 
follows: (1) to derive the multitemporal LST data from 
remote sensing images for the study area, (2) to quantify 
the urban spatial patterns using a set of spatial metrics, 
and (3)  to explore the quantitative relationship between 
LST and urban spatial patterns with consideration of scal-
ing effects and spatiotemporal heterogeneities.

1. Study area and material

1.1. Study area 

Hangzhou City (located between 29°11′ and 30°33′ N and 
118°21′ and 120°30′ E) is located in the southern part of 
the Yangtze River Delta (Figure 1). It has a total adminis-
trative area of approximately 16,596 km2, with 4,876 km2 
designated as the area of the city proper. The city has a 
northern-monsoon-influenced humid subtropical climate, 
with an average annual temperature of 15.7–17.2 °C. The 
annual precipitation varies from 1352 to 1600 mm. The 
Qiantang River is the major river in this area. Most of 
the city area is flat, with elevation value ranging from 2 
to 10 m. Hilly and mountainous areas account for 29% of 
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Hangzhou City. The major land-cover types in Hangzhou 
City include built-up land, farmland, vegetation, and wa-
ter bodies.

As the capital of Zhejiang Province, Hangzhou is well 
known as one of the most developed cities in mainland 
China. Since the implementation of the Reform and 
Opening policy, Hangzhou City has experienced a rapid 
urbanization process. Its gross domestic product (GDP) 
increased from 178 billion RMB in 2002 to 834 billion 
RMB in 2013, placing it 10th among all cities in China. 
The population increased by 27.2% from 6.95 million in 
2002 to 8.84 million in 2013. The developmental charac-
teristics and land-cover changes in Hangzhou City provide 
useful representations of the economically developed cit-
ies throughout China.

1.2. Data

Although most developed countries have comprehensive 
land-cover information, a relative lack of geospatial data 
is a common occurrence in developing countries, particu-
larly in China. In addition to the common advantages of 
remote sensing images, Landsat images, with their me-
dium spatial resolutions and multiple spectra, provide an 
appropriate data source for land cover and LST studies 
because they are free and maximize the possible temporal 
monitoring period (Patino, Duque 2013). 

The Landsat Enhanced Thematic Mapper Plus (ETM+) 
image from July 13, 2002, and Landsat 8 image from July 
19, 2013, were acquired from the U.S. Geological Sur-
vey (USGS). The related average daily temperatures are 
32 °C and 30 °C, respectively. Landsat data were applied 
for mapping land cover and retrieving the LSTs of the 
study area. An improved dark-object subtraction atmo-
spheric correction was carried out to eliminate the impact 
of atmospheric disturbance on the pixel values (Chavez 
1988). The calculation of the at-sensor spectral radiance 

is conducted to convert the images acquired from mul-
tiple sensors into a common radiometric scale. Using the 
parameters in the metadata, a radiometric calibration was 
carried out to transform the digital number value for both 
the reflective and thermal bands into at-sensor radiance 
values (Eq. (1)). The image processing was performed us-
ing the ENVI 5.1 software.
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where Lλ represents the spectral radiance value at the 
sensor’s aperture in W/(m2·sr·µm), LMAXλ and LMINλ 
represent the calibration constants of the sensor, which 
are equal to the maximum and minimum values of the 
spectral radiance detectable for each band. Qcalmax and 
Qcalmin are the maximum and minimum calibrated pixel 
value, respectively. Qcal represents the quantized calibrated 
pixel value.

2. Methodology

2.1. Land cover classification

Maximum likelihood classification (MLC) was applied to 
conduct the classification. For each image, 40–60 train-
ing samples for each class were adopted to train the im-
age. A total of 200 random points generated by stratified 
random sampling method were adopted to assess classi-
fication accuracy. The classified image extracted by MLC 
inculde four classes: built-up land, farmland, forest and 
water body. 

Hierarchical classifications are applied to improve 
the classification accuracy after MLC. The performance 
of these methods are dependent on the designs of their 
decision trees, including the tree structures, the choice of 
the features at each node, and the decision rules (Setiawan 
et  al. 2006; Lu, Weng 2004). Digital Elevation Model 

Figure 1. Location of study area (Hangzhou) and its topography
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(DEM) as well as the tasseled cap transformation were 
involved in the decision tree to refine the classification 
results (Li, Thinh 2013). The degrees of the slopes were 
extracted from the DEM data. Farmland and built-up pix-
els with slopes higher than 10 degrees were reclassified as 
forest. The brightness band has higher values for surfaces 
with little or no vegetation; the greenness band is associ-
ated with green vegetation; and the wetness band is asso-
ciated with soil moisture, water, and other moist features. 
We can refine the classification results through defining 
the specific rules of the decision tree.

2.2. Retrieval of LSTs

The LST data can be derived from the TIR band of the 
Landsat images. So far, there are several well-documented 
methods for the retrieval of LST values from at-sensor 
and auxiliary data, including a single-channel algorithm 
(Jimenez-Munoz, Sobrino 2003) and a mono-window al-
gorithm (Qin et al. 2001). However, their applications are 
limited due to the limited availability of the atmospheric 
parameters required by these algorithms (Li et al. 2012). 
Therefore, the image-based method, which has been suc-
cessfully applied to retrieve LST data in previous studies, 
is used in this study because it does not require atmos-
pheric parameters.

By adopting the Plank function (Eq. (2)), the spectral 
radiance was further converted into the brightness tem-
perature (Chander et al. 2009):
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where TB represents the brightness temperature in Kelvin, 
and Lλ means the spectral radiance at the satellite’s aper-
ture. K1 and K2 mean the calibration constants, which are 
listed in Table 1.

Table 1. The calibration constants for Landsat images.

K1  
(W/(m2×sr×µm))

K2 
(K)

Landsat 7 ETM+ 666.09 1282.71
Landsat 8 TIRS 10 774.89 1321.08

The brightness temperature is calculated with refer-
ence to a black body. Therefore, corrections of their spec-
tral emissivities need to be conducted. The emissivity-cor-
rected LST was generated using Eq. (3) (Artis, Carnahan 
1982):
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     (3)

where ρ = h×c/σ (1.438×10–2 mK), h is the Planck’s constant 
(6.626×10–34 Js), c is the velocity of light (2.998×108 m/s), 
σ is the Boltzmann constant (1.38×10–23 J/K), TB repre-
sents the brightness temperature value, and λ represents 
the wavelength of emitted radiance (11.5 µm) (Markham, 

Barker 1985). ε means the land surface emissivity, which 
was calculated using NDVI threshold method proposed 
by Sobrino et al. (2004):

soilε = ε  (NDVI<0.2);    (4)

vegε = ε  (NDVI>0.5);    (5)

(1 )veg v soil vP Pε = ε × + ε × −  (0.2NDVI0.5),   (6)

where εsoil and εveg represent the soil emissivity and veg-
etation emissivity, respectively. Soil and vegetation emis-
sivity are estimated to be 0.97 and 0.99, respectively (Li 
et al. 2004). Pv represents the vegetation proportion based 
on NDVI (Carlson, Ripley 1997):
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where NDVImax = 0.5, NDVImin = 0.2.
NDVI was calculated from the pixel value of the Land-

sat images using the Eq. (8):
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where ρ(NIR) and ρ(RED) represent the reflectance val-
ues in the NIR and RED bands, respectively. These values 
were calculated using the following equation (Chander, 
Markham 2003):
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where ρλ is the planetary reflectance value, Lλ represents 
spectral radiance at sensor’s aperture. ESUNλ is the mean 
exoatmospheric solar irradiance in W/(m2µm), θ is the 
solar angle at zenith, d represents the earth-sun distance 
in astronomical units.

2.3. Measures of the spatial pattern

Spatial metrics are commonly used to quantify the spa-
tial patterns of individual patches, of patches belonging 
to a specific class, and of an entire landscape consisting 
of all types of patches. To describe and analyze spatial 
patterns, three class-level spatial metrics, which are sensi-
tive to changes in landscape composition and spatial con-
figuration, were calculated using Fragstats 4 (McGarigal 
et al. 2012). The selection of the metrics was based on the 
research objective and their values in representing spe-
cific spatial characteristics as already explored in previous 
studies on urban areas (Herold et al. 2005; Luck, Wu 2002; 
Schwarz 2010). Table 2 provides a description of the spa-
tial metrics used in this study.

One of the most important issues in spatial metrics is 
defining the spatial extent of the study, as the extent di-
rectly affects the spatial metrics. The spatial domain refers 
to the geographic extent of the analysis. This study adopt-
ed block-based subdivisions for the metric calculations 
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examining the relationship between the urban spatial pat-
terns and LSTs. The study area was divided into several 
subregions. The square block used in this study is the most 
commonly used shape in the field of spatial pattern analy-
sis (Luck, Wu 2002; Weng 2007). The study area was first 
divided into several square blocks, 2×2 km, 3×3 km, and 
4×4 km. A block size of 1 km could lead to the situation 
that no urban patch or only a few urban patches exist in 
some blocks, which generates noise in the spatial pattern 
analysis. Therefore, the study area was firstly divided into 
several square blocks of 2×2 km. The selected metrics 
(PLAND, PD, and SHAPE_MN) were then calculated for 
every block. A statistical relationship can be explored us-
ing each block as a data point.

Table 2. Description of the spatial metrics used in this study.

Spatial 
metrics Abbre viation Description

Percent 
of lands-
cape

PLAND PLAND is the areas (m2) of all 
patches belonging to the same type, 
divided by the total landscape area 
(m2) and multiplied by 100.

Patch 
density

PD PD is the patches number in the 
landscape, divided by the landscape 
area (m2), and multiplied by 10,000 
and 100.

Mean 
shape 
index

SHAPE_MN SHAPE index describes the 
complexity of a patch shape. This 
index is set to one when the patch 
has a square shape and increases 
as the irregularity of the shape 
increases.
SHAPE_MN is the sum of the 
shape index of the patches, divided 
by the number of patches of the 
same type.

2.4. Statistical analysis

Regression models were applied to quantify the effects of 
the urban spatial pattern on LSTs. In contrast to OLS, a 
geographically weighted regression (GWR) is conducted 
using localized points to investigate the spatially vary-
ing relationships between explanatory variables and LST. 
Thus, instead of producing a global parameter for each 
relationship, GWR can estimate a set of local parameters 
that can be mapped for insight into hidden possible causal 
mechanisms. In other words, GWR can be used to inves-
tigate the spatially varying relationships between urban 
spatial patterns and LSTs by generating a set of local pa-
rameter estimates (Brunsdon et al. 1996; Fotheringham 
et al. 1996; Li et al. 2014). Moreover, the GWR model re-
sults are mappable and can be combined with GIS, which 
offers a powerful tool for analyzing spatially dependent 
relationships (Tu 2011).

The GWR model can be expressed as follows:

    0( , ) ( , ) ,i i i k i i ik iky a a x= µ ν + µ ν + ε∑      (10)

where (µi,vi) is the coordinate location of the ith point. a0 

(µi,vi) and αk (µi,vi) are the intercept and local parameter 
estimate for independent variable xik at location i respec-
tively. εi represents the random error term at location i.

In GWR, parameters for each observation at location 
i can be estimated by weighting all observations around a 
specific point i according to their spatial proximity, which 
is calculated as the Euclidean distance in this study. Ob-
servations that are spatially closer to location i will have a 
greater impact on its local parameter estimates than those 
from more distant points. A Gaussian distance-decay can 
be used to express the weighting function:
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where wij is the weight of observation j for location i. dij is 
the Euclidean distance between points i and j. h represents 
a kernel bandwidth that affects the distance-decay of the 
weighting function.

The results generated from GWR are sensitive to band-
width (Gao, Li 2011). Therefore, it is necessary to iden-
tify the optimum bandwidth when estimating the model. 
There are three choices of bandwidth methods: the cor-
rected Akaike information criterion (AICc), cross valida-
tion and bandwidth parameter. If the bandwidth is known 
a priori, the bandwidth parameter can be applied. If it is 
unknown, the former two types use an automatic method 
to find the optimum bandwidth. In this study, the AICc 
method was used with the GWR model. The AICc method 
finds the bandwidth that minimizes the AICc value. Mod-
els with lower AICc values suggest a higher likelihood of 
the regression model reflecting reality.

For comparison purposes, OLS models were also em-
ployed to investigate the relationships between the urban 
spatial patterns and LSTs. To compare the performances 
of these two models (GWR and OLS), three statistical pa-
rameters were used: the adjusted R², AICc, and Moran’s 
I. The adjusted R² and AICc values provide some indica-
tions of the goodness of fit of the corresponding model. A 
higher adjusted R² value indicates that more variances can 
be explained for the dependent variable. Moran’s I is an 
indicator of spatial autocorrelation ranging from –1 to 1. 
The larger the value of the Moran’s I, the more significant 
the spatial autocorrelation. Residuals are defined as the 
differences between predicted and observed values. The 
Moran’s I value was employed to investigate the spatial 
autocorrelations based on the residuals, and thus the mod-
els abilities to address the spatial autocorrelations can be 
evaluated and compared.

3. Results

3.1. Land cover dynamics

The multitemporal land-cover classification maps for 
Hangzhou City are shown in Figure 2. The overall classi-
fication accuracies calculated for 2002 and 2013 were 86% 
and 90%, respectively. The urban expansion in Hangzhou 
was focused on the development of new built-up land, as 
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well as in the expansion of the existing city core. To pro-
mote regional economic integration, polycentric develop-
ment has been proposed to guide the future development 
of Hangzhou. 

The individual class areas are presented in Table 3. As 
an overall trend, intense land-cover changes in Hangzhou 
City was characterized by a dramatic growth in built-up 
land and a gradual reduction in farmland and vegetation. 
The area of built-up land, which had the largest growth of 
all land-cover types, increased from 305.40 km2 in 2002 
to 1002.35 km2 in 2013. It suggests that Hangzhou City 
experienced rapid urban growth processes over the study 
period. The great pressure of rapid urban growth on non-
urban land was reflected by the reduction in farmland 
and vegetation area. The farmland and forest decreased 
by 482.87 km2 and 127.3 km2, respectively.

Table 4 indicates that a total of 696.95 km2 of land 
was converted into built-up land, accounting for approx-
imately 67.0% of the total land-cover change area during 
2002–2013. As indicated, the majority of the additional 
built-up land came from the conversion of farmland for 

urban uses. In particular, 89.3% of the increase in built-
up land was due to converted farmland during the period 
of 2002–2013. This change reflects the conflict between 
the increasing demand for built-up land and the limited 
land resources of the city.

3.2. Spatial distribution of LST

The two Landsat images were taken in the mid-summer. 
Figure 3 shows the spatiotemporal distribution of the 
LSTs in Hangzhou City. A clear temperature gradient was 
observed in each LST image. Across the study area, LST 
values decreased gradually from the central urban area to 
the rural areas. The UHI was extensively distributed in 
the built-up area, while cold spots were distributed in the 
western region, which was covered by forest and farm-
land. Furthermore, the results also present a continuously 
increasing extent of areas with higher LST values during 
the study period. 

In 2002, the areas with higher LST values were mainly 
located in the city core and some of its major centers, with 

Figure 2. Classified land cover maps of Hangzhou city in 2002 and 2013

Table 3. Land cover statistical data of Hangzhou city

Built-up Farmland Forest Water body

Area (km2) Percent (%) Area (km2) Percent (%) Area (km2) Percent (%) Area (km2) Percent (%)

2002 305.4 9.09 1792.88 53.38 868.76 25.87 391.63 11.66
2013 1002.35 29.84 1310.01 39.00 741.46 22.08 304.84 9.08

Table 4. Matrices of land cover changes in Hangzhou city from 2002 to 2013 (unit: km2)

Built-up Farmland Forest Water body

2002

2013

Built-up 305.4 622.68 17.90 56.36
Farmland 0.00 1071.15 149.14 89.72
Vegetation 0.00 40.08 699.18 2.20
Water body 0.00 58.97 2.54 243.34
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a typical strip-shaped related to the roads. Outside the city 
core, the areas with higher LSTs were mainly located in in-
dustrial parks, which are characterized by intensive tradi-
tional industries. Compared to the LST map of Hangzhou 
in 2002, the extent of the areas with higher LST values in 
2013 increased dramatically, accompanying the rapid ur-
banization. The span of the UHI expanded outward from 
the city core to the fringe areas as the main urban area 
grew. Due to the implementation of the developmental 
strategy of “great-leap-forward development along the 
Qiantang River”, rapidly developed infrastructures, in-
dustrial parks, and other built-up land emerged along the 
Qiantang River, leading to the southward and eastward 
expansion of the built-up regions. The closer link between 
the city core and small connected regions resulted in the 
significant development of these areas. This development 
strategy may help to explain the observed change in the 
LST patterns. Note that some cold spots, although small, 
exist within the city core and newly developed regions 
with higher LST values. This could be attributed to the 
public green space restructuring policy. Some new green 
space patches, such as forest parks and urban parks, were 
developed in order to create a better living environment. 
In addition, the magnitude of the LST values between the 
UHI and other areas varied remarkably, depending on the 
different years and their land-cover types. 

The summarized characteristics of the LSTs on the two 
dates used in this study are shown in Table 5. The average 
LST value increased from 28.15 °C in 2002 to 30.20 °C 
in 2013. The standard deviation of the LSTs in 2013 was 
higher than that of the LSTs in 2002, suggesting higher 

variations of LSTs in 2013. Although the minimum tem-
perature value decreased over the study period, the maxi-
mum value increased dramatically. 

Distinctive LST patterns are related to the thermal 
characteristics of the individual land-cover types. To 
better understand the effects of the land-cover types 
on LSTs, the LST values of each land-cover type were 
acquired by overlaying an LST image with a land-cover 
map of the same date. The mean and standard deviation 
values of the LSTs for the different land-cover types are 
summarized in Table 6. Note that the built-up area ex-
hibited the highest average LST values, followed by those 
of the farmlands, but the lowest average temperature 
was recorded in the forest area. All the built-up areas 
had relatively high temperatures. The differences in the 
LST patterns over the study period reflect the impacts of 
land-cover changes on thermal environments. The differ-
ent impacts of varying landscape compositions on LSTs 
can be attributed to the fact that each land-cover type 
exhibits unique thermal, radiation, and moisture char-
acteristics (Oke 1982). Given the growing extents and 
magnitudes of hot spots during the study period, rapid 
urbanization and land-cover changes intensified the UHI 
effect in the rapidly developing region. As shown in the 
results, the variations of the vegetation cover and built-
up areas have significant effects on the thermal condi-
tions of cities and the formation of UHIs.

Table 6. Average LST associated with land cover types (unit: °C)

LST2002 LST2013 

Mean Std dev Mean Std dev

Built-up 31.41 1.21 33.82 1.98
Cropland 28.42 1.37 29.79 2.17
Vegetation 26.79 1.26 27.18 2.03
Water body 27.34 1.43 27.14 2.15

Figure 3. Spatial pattern of LST derived from Landsat images

Table 5. Descriptive statistics of LST (unit: °C)

Max Min Mean Std dev
2002 39.09 23.88 28.15 1.64
2013 45.27 14.24 30.20 3.32
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3.3. Effects of urban spatial patterns on LST

To correlate the LSTs with the spatial metrics, the mean 
LST values and spatial metrics were calculated for each 
2×2 km, 3×3 km, and 4×4 km block.

As shown in Figure 4, the LST values and the selected 
spatial metrics varied significantly across spatial scales. 
The maximum value of the LST in 2002 was 35.45 °C when 
using 2-km blocks but was 33.59 °C and 33.05 °C when 
using the 3-km and 4-km blocks, respectively. In contrast, 
the maximum temperature in 2013 increased with increas-
ing block size. However, the mean temperature still in-
creased at all spatial scales from 2002 to 2013. This could 
be due to the expansion of the UHI. As demonstrated by 
the results, the mean values of PLAND and PD dramati-
cally increased with the continued urbanization process, 
which is consistent with the land-cover change analysis. 
Additionally, the maximum PLAND, PD, and SHAPE_
MN declined with increased block sizes. The larger blocks 
could inadvertently cover non-urban land in addition to 
urban land, which could cause the observed decrease in 
the metric values as the total block area increased. 

Urban patterns are not only an indicator of urban 
development but also a contributor to the impacts of ur-
ban development (Arnold, Gibbons 1996). Therefore, it 
is important to analyze the relationship between urban 
spatial patterns and LSTs. Pearson correlation analysis 
(Table 7) shows that all of the spatial metrics were sig-
nificantly related to the LSTs. However, according to the 
correlation coefficients, none of the spatial metrics had 
consistent correlations with the LSTs across spatial scales 
and time. The relationships between the LSTs and urban 
spatial metrics were stronger at finer spatial scales because 
the finer blocks retain more of the details of the spatial 
patterns. Further, the selected urban spatial metrics have 
stronger relationships with the LSTs in 2013. The dramatic 

land-cover change resulted in fundamental changes of the 
urban spatial pattern since 2002, which significantly af-
fected the variations of the LSTs. 

PLAND is positively correlated with LST. In other 
words, LST increased with increase in the proportion of 
urban land cover. This could be explained by the fact that 
impervious surfaces can increase the LST through chang-
es in the evapotranspiration process (Yuan, Bauer 2007). 
High LSTs were usually observed in urban areas with high 
patch densities. In addition, the LST had a positive re-
lationship with the mean patch shape index. Urban ar-
eas with complex patch shapes tended to have high LSTs. 
Furthermore, the correlation coefficient of SHAPE_MN 
varied from 0.323 to 0.491 between 2002 and 2013, which 
implies that the effects of the urban patch shapes became 
stronger over time. Pearson correlation analysis results 
also show that the effect of SHAPE_MN on LSTs was not 
as strong as the effects of the other two spatial metrics, 
although there is a heating effect associated with an in-
crease in the mean urban patch shape index. The coef-
ficients of SHAPE_MN at the 4-km scale are statistically 
significantly correlated with energy consumption at the 
95% confidence level in 2002.

Figure 4. Maximum, minimum and mean value of variables at different spatial scales

Table 7. Pearson correlation between LST and spatial metrics

PLAND PD SHAPE_MN

2km
2002 0.590** 0.402** 0.323**

2013 0.775** 0.569** 0.491**

3km
2002 0.548** 0.366** 0.287**

2013 0.723** 0.564** 0.463**

4km
2002 0.444** 0.356** 0.142*

2013 0.640** 0.516** 0.416**

Note: ** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
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In addition to Pearson correlation analysis, OLS and 
GWR were also used in this study. The OLS model uses 
the entire region to investigate the impacts of the urban 
spatial patterns on LSTs. The results provide only a single 
statistical average parameter for the whole area; in contrast, 
the GWR results suggest the variable changes throughout 
the study area. The adjusted R² and AICc values generated 
by the GWR and OLS models for the different periods are 
shown in Tables 8–9. In all cases, the results obtained by 
GWR are characterized by higher adjusted R² and lower 
AICc values than those of the corresponding OLS models. 
The adjusted R2 values of GWR ranged from 0.462 to 0.740 
at the 2-km scale, which are considerably higher than those 
of the corresponding OLS. This indicates that more than 
46.2% of the variations in LSTs can be explained by the se-
lected spatial metrics at the 2 km GWR model. However, 
this value declines for spatial scales coarser than 2 km. The 

comparison of these two indicators suggests that the GWR 
models perform better than OLS models for investigating 
the relationships between LSTs and urban spatial patterns. 
The GWR model explained more of the variance in the 
LSTs than the OLS model did. The results generated from 
GWR indicate that the variations of LST are significantly 
associated with urban spatial patterns. 

Moreover, Table 10 also summarizes the Moran’s I val-
ues of the model residuals from both the GWR and OLS 
models. The higher Moran’s I values ranging from 0.103 
to 0.563 indicates the significant positive spatial autocor-
relations in all the OLS models. In contrast, the Moran’s 
I values of the GWR models are lower than 0.100, which 
indicates that the spatial autocorrelation can be better 
simulated by the GWR models. 

Urban spatial patterns exhibit different characteristics, 
depending on the scale of the observations and analyses 

Table 8. Comparison of coefficient of determination (adjusted R2) between GWR and OLS

2002 2013

PLAND PD SHAPE_MN PLAND PD SHAPE_MN

2 km
Adjusted R2G 0.537 0.483 0.462 0.740 0.657 0.622

Adjusted R2O 0.348 0.128 0.104 0.257 0.001 0.241

3 km
Adjusted R2G 0.447 0.436 0.363 0.664 0.598 0.505
Adjusted R2O 0.301 0.162 0.082 0.223 0.005 0.214

4 km
Adjusted R2G 0.287 0.349 0.136 0.585 0.566 0.387
Adjusted R2O 0.197 0.120 0.020 0.109 0.002 0.173

Note: R2G is the R2 for GWR model; R2O is the R2 for OLS model.

Table 9. Comparison of AICc between GWR and OLS

2002 2013

PLAND PD SHAPE_MN PLAND PD SHAPE_MN

2 km
AICcG 2607.509 2757.304 2802.591 3464.309 3781.822 3822.441
AICcO 2793.155 3038.310 3061.106 3674.442 4448.771 4216.959

3 km
AICcG 1199.726 1239.802 1255.225 1526.892 1596.883 1633.077
AICcO 1247.119 1311.482 1343.676 1598.606 1860.362 1776.275

4 km
AICcG 699.839 711.256 734.052 942.571 970.917 991.849
AICcO 708.508 727.100 749.009 967.525 1073.963 1035.917

Note: AICcG is the AICc for GWR model; AICcO is the AICc for OLS model.

Table 10. Comparison of Moran’s I of the residuals from GWR and OLS

2002 2013

PLAND PD SHAPE_MN PLAND PD SHAPE_MN

2 km
Moran’s IG 0.019 0.007 0.009 0.005 0.003 0.046
Moran’s IO 0.147 0.103 0.132 0.107 0.389 0.227

3 km
Moran’s IG 0.027 0.034 0.026 0.012 0.010 0.072
Moran’s IO 0.160 0.260 0.260 0.229 0.507 0.316

4 km
Moran’s IG 0.035 0.091 0.041 0.085 0.084 0.098
Moran’s IO 0.206 0.293 0.288 0.280 0.563 0.356

Note: Moran’s IG is the Moran’s I for GWR model; Moran’s IO is the Moran’s I for OLS model.
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(Wu et al. 2002). The variations of the adjusted R2, AICc, 
and Moran’s I over the different block scales showed these 
characteristic differences. As the block scales increased, 
the adjusted R2 values decreased. The adjusted R2 values 
of the GWR and OLS models at the 3 km and 4 km scales 
were generally lower than those at the 2-km scale. Thus, 
the 2 km GWR models are better able to explain the rela-
tionships between urban spatial patterns and LSTs. More-
over, the Moran’s I values were higher at 3 km and 4 km 
scales than at the 2-km scale.

The spatial patterns of the coefficients estimated by the 
GWR model are shown in Figures 5–7. As indicated by 
the results, the spatially varying coefficients show spatial 
variations of the relationships between the three spatial 
metrics and LSTs across the study area. Thus, the homo-
geneities and heterogeneities in the relationships between 
the LSTs and spatial metrics were sensitive to the spatial 
scales analyzed.

Though the magnitude of the correlations varied across 
the study area, a positive relationship between PLAND 
and LST was consistently observed. At the finest spatial 
scale (2 km), PLAND can explain 53.7% and 74.0% of the 
variations in the LSTs of 2002 and 2013, respectively. In 
2002, a significant positive correlation coefficient smaller 
than 0.10 is observed for a large part of Hangzhou City, 
implying that accelerating urbanization could result in an 
increase in LST. This is consistent with several previous 
studies, which demonstrated positive correlations be-
tween LSTs and the abundance of urban areas, as well as 
negative correlations between LSTs and the abundance of 
green spaces. Green space can lower surface temperature 
because of the modification of the land surface charac-
teristics such as evapotranspiration and albedo (Hamada, 
Ohta 2010; Zhou et al. 2011). The temporal variation in 
the effects of urban expansions were also investigated in 
this study. Along with urbanization processes, the magni-
tude of the effects of PLAND on the LSTs increased. The 
variations in LSTs in the fringe areas showed strong effects 
from the urban expansion.

The correlations between PD and LST are shown in 
Figure 6. Importantly, the coefficients of the explanatory 
variables took positive or negative values according to 
their spatial locations. For both observed dates, the PD 
had a significant negative impact on the LSTs in the city 
core, as evidenced by coefficients lower than 0.0. This in-
dicates that decreasing patch densities could lead to in-
creased LSTs. The continuous expansions of the existing 
urban patches in the city core lead to decreased patch den-
sities. Some individual urban patches continued to grow 
together to form larger patches. Decreases in patch density 
may increase LSTs because larger, continuous urban ar-
eas produce stronger UHI effects than those from several 
small pieces of urban areas. In the fringe area, however, 
the PD was positively related to the LSTs. In 2013, the area 
with negative coefficients is larger than that in 2002. In the 
fringe areas, the estimated coefficients changed from posi-
tive to negative. The massive constructions of infrastruc-
ture and factories connected many isolated urban patches 

Figure 6. Spatial distributions of the correlation coefficients 
obtained from GWR for PD at three scales  

(2 km, 3 km, and 4 km)

Figure 5. Spatial distributions of the correlation coefficients 
obtained from GWR for PLAND at three scales  

(2 km, 3 km, and 4 km)
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in fringe areas, which has been a key factor in the rapid 
expansion of urban areas. Therefore, the decrease in PD is 
accompanied with the increase in urban land, which can 
be used to explain the negative effects of PD on LST. The 
results suggest that fragmented urban areas are better than 
aggregated urban area for decreasing LSTs in intensive ur-
banization area. The relationship between LST and PD of 
urban land, however, is not consistent. LST is positively 
correlated with PD in less urbanized area.

The mean urban patch shape index significantly affects 
the magnitude of the LSTs. As shown in Figure 7, the spa-
tial patterns of the coefficients of variable SHAPE_MN ex-
hibit significant regional and temporal variations. In 2002, 
there were strong positive trends closer to the city core. In 
other words, an increase in the SHAPE_MN around the 
city core is significantly associated with an increase in LST. 
Increasing the SHAPE_MN values around the city core by 
one results in an at least 2 °C increase in LSTs. Notably, the 
relationship between SHAPE_MN and LST is stronger in 
2013 than that in 2002. During the period of 2002–2013, 
Hangzhou experienced rapid urbanization. The potential 
for further urbanization in the city center was exhausted 
after this rapid development. Therefore, the vacant land in 
the fringe areas received more attention. As such, a strong 
relationship, with the coefficient values larger than 2.0, was 
identified between the LSTs and SHAPE_MN values in the 
fringe area in 2013, which indicates that increasing the ir-
regularities and complexities of urban patches could cause 
higher LSTs in fringe areas than those produced in other 

areas. The positive correlation coefficient of SHAPE_MN 
indicates that LST increases when urban patches are more 
irregular. The expanded urban areas in the fringe areas 
are always highly irregular in shape. As a new develop-
ment area, the fringe area of Hangzhou City experienced a 
significant increase in SHAPE_MN with its urbanization, 
which could result in a strong relationships between LSTs 
and SHAPE_MN values in the fringe areas. 

The effects of the different scales cannot be underes-
timated when analyzing the relationships between differ-
ent variables. The variational trends of the coefficients for 
three spatial metrics exhibited significant scale depend-
ence, which implies that the effects of the spatial patterns 
of these coefficients on LSTs vary have a similar scale de-
pendence. Specifically, the area where PLAND has slight 
effects on LST became larger as the scale increased. A larg-
er area showing the positive effect of PD on LST can be 
identified when using the scale of 4 km. Although similar 
changes of the effects of SHAPE_MN on LST were found 
at different scales, the strong relationship of LST with 
SHAPE_MN was found for a larger areas at larger scales.

4. Discussion 

4.1. Effects of urban spatial patterns on LST

The results indicate that the abundance of urban land plays 
a more important role in influencing LST values than the 
fragmentation and irregularity of urban land, which is 
consistent with previous studies (Zhou et al. 2011). De-
creasing the area of urban land could significantly de-
crease LST, likely because changing the urban land area 
could result in variations of land surface characteristics. 
An increase in urban land is also positively related to the 
rising production of waste heat from refrigeration systems, 
air conditioners and vehicular traffic, all of which could 
intensify the UHI effect.

Unlike previous studies, which only analyzed the com-
position indicators related to land cover and the abun-
dance indicators, a set of spatial metrics were applied in 
this study to describe the detailed urban spatial patterns. 
Modifying the fragmentation and irregularity of a fixed 
urban land area is also an effective way to mitigate UHI 
effects, since varying spatial configurations affect the flow 
of energy and the energy exchange (Forman 1995). 

However, previous studies have demonstrated that the 
relationship between LST and land cover spatial patterns 
is not consistent. LST is negatively correlated with patch 
density in Shanghai (Li et al. 2011), but a positive relation-
ship between them was reported in Beijing (Li et al. 2012). 
The different effects of spatial patterns on LSTs could be 
attributed to regional difference among different cities. In 
addition to the regional differences, our study investigates 
the spatiotemporally varying effects of urban spatial pat-
terns instead of just the global effects. The magnitude of 
the effects of urban spatial patterns on LSTs appear com-
plicated within Hangzhou City. LST increases with a de-
crease in PD in the city core in 2002. In the fringe areas, 

Figure 7. Spatial distributions of the correlation coefficients 
obtained from GWR for SHAPE_MN at three scales  

(2 km, 3 km, and 4 km)
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an increase in PD could lead to an increase in LST. In 
2013, however, a negative effect of PD was found in the 
fringe area. The increase in the shape complexity of the 
urban patch in the city core led to a dramatic increase 
in LST in 2002. In contrast to the situation in 2002, a 
dramatic increase in LST caused by the increase in patch 
shape complexity was found in the fringe and rural areas 
in 2013. The positive correlation between SHAPE_MN 
and LST could be because an increase in shape complex-
ity may increase the solar heat gain due to an increased 
exposed surface (Voogt, Oke 1998). 

The spatiotemporally varying relationship between 
LST and urban spatial patterns also demonstrated urban 
growth processes in rapid urbanization areas, such that 
the urban land expanded from the city core to the fringe 
and rural areas (Dewan, Yamaguchi 2009; Pham et al. 
2011). The expansion of new urban lands tended to be 
clustered around the city core, while new developments 
in open areas were rather scarce. Afterward, a larger pro-
portion of urban expansion in Hangzhou was focused on 
the development of new urban patches in the fringe and 
rural areas, rather than on the expansion of the existing 
urban patches in the city core. As the new planning policy, 
polycentric development policy has been implemented to 
guide the future development of Hangzhou. The newly de-
veloped areas in the fringe and rural areas can be used to 
improve the infrastructures and facility conditions during 
further developments.

4.2. Methodology implication

Our study indicates that the integration of remote sensing, 
spatial metrics, and spatial models is effective for monitor-
ing LST and analyzing the effects of urban spatial patterns 
on LST. 

PLAND, PD, and SHAPE_MN were used in this study, 
thus focusing this work on three aspects of urban spatial 
patterns: the abundance of urban land, its fragmentation 
and its irregularity. These spatial metrics were calculated 
based on blocks, making it possible to discover and locate 
patterns in different locations. Moreover, the local scale 
allowed us to better evaluate small-scale urbanization pro-
cesses, which cannot be detected at the global scale.

Choosing an appropriate model is important to un-
derstand the relationship between urban spatial pattern 
and LST. However, many studies examined these pattern-
process relationships using traditional regression models, 
which estimated the global relationship over the entire 
study area (Batisani, Yarnal 2009; Weng 2007). Conse-
quently, any spatially varying effects of the driving factors 
on the urban spatial patterns are lost. 

One of the crucial findings in the study is the use of 
the GWR model, which enables analysis of the spatial var-
iability of the results. The result indicates that the coeffi-
cients vary by geographical location. The results show that 
GWR models can provide better insight into the different 
roles of urban spatial patterns in different locations rather 
than generating an average coefficient for the entire area. 

This regionality can provide an improved explanation of 
the local variations of LSTs. The comparison of the GWR 
and OLS models suggests that the GWR models perform 
better than the OLS models in explaining the variances of 
the urban spatial pattern and LST relationship. It has been 
widely acknowledged that LST is spatially autocorrelated 
to or dependent on the land surface heat fluxes (Song et al. 
2014). The spatial autocorrelation of LST suggests that the 
LST value at a specific location is correlated with those 
of its neighboring locations. Therefore, using traditional 
regression models without considering the autocorrelation 
of the spatial variable can cause misleading results. GWR 
models improve the reliability of these relationships by 
effectively addressing spatial autocorrelations. Therefore, 
the GWR model is useful for establishing effective urban 
plans towards mitigating the UHI effects by reducing the 
LST values. 

One of the differences from previous studies is that 
this work shows a combined analysis of spatiotemporal 
changes of the relationships between urban spatial pat-
terns and LSTs. This study added a temporal dimension 
to the GWR model. The result reveals not only how the 
relationships change spatially over the study area but also 
when the relationships change temporally in response to 
urbanization. The temporal changes of the effects of the 
urban spatial patterns on LSTs is missing in traditional 
analyses.

It has been widely recognized that urban spatial pat-
terns are dependent on the scale of observation and analy-
sis (Wu et al. 2002). Much attention has been paid to ana-
lyzing the spatial scales in remote sensing and landscape 
ecology. However, one important problem that has been 
often ignored by previous studies, which is the scale ef-
fects on the relationship between LSTs and urban spatial 
patterns. After all, the analysis of the relationship between 
LSTs and urban spatial patterns has usually been conduct-
ed at only one scale (Maimaitiyiming et al. 2014; Zhou 
et al. 2011). This study extends these previous studies by 
examining their relationships at multiple scales. 

The findings provide the specific examples of the ef-
fects of different spatial scales. It indicates that the LST 
values and spatial metrics varied significantly across spa-
tial scales. The advantage of GWR over OLS was demon-
strated at all spatial scales since the former has larger ad-
justed R2, lower AICc and Moran’s I values. Furthermore, 
the GWR model performs better at the 2-km scale when 
exploring the relationship between LSTs and urban spatial 
patterns than it does at other scales. 

Spatial scales can lead to variations not only in the val-
ues of the dependent and independent variables but also 
in the relationships between these variables. Our findings 
generally agree with the reported findings, such that our 
results show that the relationships have different behaviors 
at various scales (Su et al. 2011). The relationship between 
LST and PLAND was positive across spatial scales. This is 
consistent with the well known positive relationship be-
tween LST and urban abundance (Bokaie et al. 2016). In 
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addition, the results demonstrate that the correlation coef-
ficients change significantly as a result of the spatial scale 
effect. The correlation coefficients between the individual 
spatial metrics and LST decreased as the spatial scales in-
creased. This indicates that, as the scale becomes coarser, 
the impact of the urban spatial pattern on LST becomes 
weaker. Furthermore, by combining the spatial scale anal-
ysis with the GWR model, this study examines how spatial 
scales influenced the relationship between LST and urban 
spatial patterns at different locations. For example, the to-
tal fringe areas with negative correlations between PD and 
LST decreased as the scale increased from 2 km to 4 km. 
Differing from the previous studies of the effects of scale 
on correlation magnitudes (Li et al. 2013), this study pro-
vides an improved understanding of the scaling effects on 
the spatially varied relationships between LST and urban 
spatial patterns. Hence, spatial scales should be treated as 
a factor that influences the magnitude of the UHI effect, 
and studies should address how the scale affects the rela-
tionships between spatial metrics and LSTs differentially 
across space and time.

4.3. Development implication

The continuous increase in LST associated with rapid ur-
ban development has negative effects both on the human 
population and the ecosystems within cities. This threat 
poses huge challenges for the city planners and decision 
makers attempting to implement a sustainable urban de-
velopment strategy. The results of this study reveal that 
urban areas strongly influence LST. Appropriate planning, 
such as reducing urban land cover and creating vegetation 
cover in urban areas, should be designed and implement-
ed in order to mitigate UHI effects. This corresponds with 
the findings in the literature related to other cities in the 
world (Bokaie et al. 2016; Li et al. 2013).

However, urbanization is a never-ending process. Fast 
economic growth and urbanization are currently the main 
goals of the Chinese government (Fang et al. 2015). The 
conflict between rapid urban development and limited 
land resources becomes more apparent in the rapidly de-
veloping cities in China. However, the reduction of the 
UHI effect must be maintained during rapid urbanization. 
Given this situation, the government faces the tremendous 
challenges in balancing the continual increase in the LSTs 
and rapid economic growth with environmental respon-
sibility. 

Importantly, the dynamics of the changes of urban 
spatial configurations underlying rapid urbanization have 
a significant impact on LST values. Even if we cannot de-
crease the percentage of urban areas in cities where the 
land resources are valuable and scarce, an optimization of 
urban spatial patterns through spatial planning and urban 
land use management can be an effective way to reduce 
the UHI effect while maintaining rapid economic growth.

Although significant effects of urban spatial patterns 
on LSTs were found in Hangzhou City, the effects of urban 
spatial patterns on LSTs varied spatiotemporally, which 

can be explained by the different levels of urban devel-
opment. The planners and managers should use a set of 
locally specific coefficients to investigate the impacts of 
spatial patterns on LSTs in their own local settings. The 
planning measures should not be the same within Hang-
zhou City. The design and implementation of the planning 
and land use management should consider the disparities 
of the regions within the study area in order to effectively 
mitigate UHI effects.

4.4. Outlook

The methodological framework proposed in this study has 
demonstrated its use in analyzing the relationship between 
the urban spatial patterns and LSTs in Hangzhou City and 
in providing support for decision making to mitigate UHI 
effects. The valuable results provide an insight into the 
spatiotemporal variations of LSTs and the effects of urban 
spatial patterns on LST. However, there are several limita-
tions that need to be addressed by further studies.

Considering the relatively low spatial resolution of 
Landsat images, this study only generated urban land 
data without considering detailed land use classes, i.e., 
industrial, residential and commercial lands. However, 
the spatial distributions of the detailed land use catego-
ries are also important for analyzing the impacts of urban 
spatial patterns on LSTs (Zhou et al. 2011). It would be 
valuable to extract these land use categories using high-
spatial-resolution remote sensing images and to examine 
the relationships between the spatial patterns of the de-
tailed land use categories and LSTs. In addition, all LST 
data used in this study were obtained in the summer. Pre-
vious studies have proven that seasonal variations exist in 
the relationships between LSTs and urban spatial patterns 
(Buyantuyev, Wu 2010; Zhou et al. 2014). Therefore, it is 
necessary to conduct further studies using multiple LST 
datasets acquired in different seasons.

Conclusions

In this paper, Landsat data were used to map and extract 
land cover information as well as LSTs in Hangzhou over 
the period of 2002–2013. In addition, the relationships be-
tween the urban spatial patterns and LSTs were explored 
using Pearson correlation analysis and GWR model. The 
results show that the LST patterns have changed signifi-
cantly, which can be explained by the concurrent changes 
in urban spatial patterns. The correlation coefficients be-
tween the spatial metrics and LSTs decrease as the spatial 
scale increases. The GWR model performs better than an 
ordinary least squares analysis in exploring the relation-
ship of LSTs and urban spatial patterns, which is indicated 
by the higher adjusted R2 values, lower corrected Akaike 
information criterion and reduced spatial autocorrela-
tions. The GWR model results indicate that the effects of 
urban spatial patterns on LSTs are spatiotemporally vari-
able. Moreover, their effects vary spatially with the use of 
different spatial scales. 
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