
 

Journal of Environmental Engineering and Landscape Management  ISSN 1648–6897 print / ISSN 1822-4199 online  
http:/www.jeelm.vgtu.lt/en  doi:10.3846/jeelm.2010.29 

251 

       

JOURNAL OF ENVIRONMENTAL ENGINEERING  
AND LANDSCAPE MANAGEMENT 

2010 

18(4): 251–258 

 

 

ULTRASOUND-ASSISTED TREATMENT OF KAOLIN ARTIFICIALLY 

CONTAMINATED WITH PHENANHTRENE, FLUORANTHENE AND 

HEXACHLOROBENZENE 

Pham Thuy Duong
1
, Reena Amatya Shrestha

2
, Mika Sillanpää

3
, Jūratė Virkutytė

4
 

1, 2, 3
Laboratory of Applied Environmental Chemistry, Dept of Environmental Sciences,  

University of Kuopio, Patteristonkatu 1, FI-50100 Mikkeli, Finland  
4
Dept of Environmental Sciences, University of Kuopio, Yliopistonranta 1E, 70211 Kuopio, Finland  

E-mails:
 1
Duong.Pham@uku.fi; 

4
virkutyte.jurate@epa.gov (сorresponding author) 

Submitted 20 Apr. 2009; accepted 26 Mar. 2010 

Abstract. Application of ultrasound in decontamination of polluted soil is a new and promising technology. The feasibili-

ty of ultrasonic treatment of clayey soil (kaolin) highly contaminated with persistent organic pollutants (POPs), such as 

phenanthrene (PHE), fluoranthene (FLU), hexachlorobenzene (HCB), was the main target of the work. The laboratory ex-

periments were conducted at various conditions (moisture, power, irradiation duration and the initial concentration of con-

taminants) and the effects of these parameters on the process efficiency were examined. Experimental results showed that 

ultrasonication alone has a potential to remove POPs, although the removal efficiencies were relatively low when a short 

irradiation duration (1–6 hours) was adopted. Intermittent ultrasonication over longer periods (up to the total of 46 hours) 

increased the removal efficiencies to 45% of HCB and nearly 100% of PHE. The optimum moisture content of the slurry 

was found to be in the range of 50–70%. The total electric energy consumption during the experiments using the optimum 

operational conditions (100 W and above ultrasound irradiation power and 67% moisture content) was 1.5 kWh in compa-

rison to 1.84 kWh during experiments utilizing minimum operational conditions.  

Keywords: ultrasonication, soil remediation, persistent organic pollutants (POPs). 

 

1. Introduction 

Ultrasound is sound waves at frequencies greater than the 

upper limit of human hearing (>16 kHz) and may be uti-

lized for diverse purposes in many different areas. The 

application of ultrasound  may be divided broadly into 

two areas: i) high frequency (2–10 MHz), and ii) low 

frequency ultrasound (20–100 kHz), which is often used 

for the environmental purposes (Mason and Lorimer 

1988).  

When the solution is irradiated with ultrasound, tiny 

bubbles are formed that grow and subsequently collapse 

in a liquid producing local temperature up to 5000 K and 

pressures up to hundreds of atmospheres (Gedanken 

2003). These extreme conditions may break chemical 

bonds by pyrolysis. In addition to thermal decomposition 

mechanism, ultrasonic irradiation can be an effective 

oxidation method for destruction of organic pollutants 

because of localized high concentrations of oxidizing 

species (Hoffmann et al. 1996). The water vapors and 

oxygen in the cavitation bubbles undergo thermal disso-

ciation to yield oxygen atoms, as well as hydroxyl (HO
•
) 

and hydroperoxyl (HOO
•
) radicals. Hydrogen peroxide is 

formed as a consequence of hydroxyl and hydroperoxyl 

recombination outside the cavitation bubbles and may be 

used to rapidly degrade the contaminants. The formation 

and recombination of radicals is following (Rokhina et al. 

2009): 

 HOHOH2 , (1) 

OHHOH 2 , (2) 

22 O
2

1
OH2OH  , (3) 

22OH2OH  . (4) 

In general, the relative dominance of pyrolysis or ra-

dical oxidation mechanisms depends on the volatility, 

hydrophobicity and concentration of the contaminants 

and pH of the solution (Dewulf et al. 2001). While hyd-

rophilic compounds are mainly oxidized by the highly 

reactive radicals, volatile substrates are destroyed predo-

minantly by direct pyrolytic decomposition (Jiang et al. 

2002). Pyrolysis is prevalent at high solute concentrations 

while at low solute concentrations, free radical oxidation 

is likely to predominate (Hoffmann et al. 1996). 

In the past several years, there was a constant search 

for remediation methods that are not only able to reduce 

the amount of contaminants in the soil and sediments but 

are also technologically sound, cost and time efficient 

(Virkutyte et al. 2002). Utilization of ultrasound in envi-

ronmental remediation has emerged as one of the advan-

ced oxidation processes (AOP) for the destruction of 

hazardous organic compounds in aqueous solutions (Jo-

seph et al. 2000). Moreover, ultrasound has been used as 

the pre-treatment process to improve wastewater (Blume 

et al. 2004) and saline solution disinfection (Joyce et al. 
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2003), enhance membrane filtration of wastewater 

(Kyllönen et al. 2005) and sludge stabilization (Hogan et 

al. 2004; Yin et al. 2004).  

Ultrasonication exhibits a great potential of being an 

environmental friendly, clean, energy efficient, economi-

cally competitive treatment method, which does not cause 

a secondary contamination when compared with other 

technologies of organic pollutant treatment such as UV 

light, high voltage corona, incineration and solvent 

extraction (Mao et al. 2004).  

Ultrasound irradiation is also an efficient alternative 

for conventional soil washing methods (Mason 2007). 

Ultrasonication induces high fluid-solid shear stresses, 

which promotes mechanical detachment and removal of 

contaminants (Newman et al. 1996; Kyllönen et al. 2004; 

Mason et al. 2004; Collings et al. 2006). Ultrasound may 

also be used as an enhancement method for electrokinetic 

treatment of heavy metals and polycyclic aromatic hydro-

carbon in contaminated soils (Chung and Kamon 2005; 

Flores et al. 2007).  

Soil contamination is a critical issue because of its 

significance as a threat to human and animal health 

through food system and ground water and may finally 

result in the loss of entire ecosystems (Virkutyte and 

Sillanpää 2007). Among soil contaminants, persistent 

organic pollutants (POPs), such as hydrophobic organic 

compounds, are of particular concern because of their 

long life-time and toxicity. Their solubility in pure water 

is low, usually less than 10
−4

 M and they are strongly 

adsorbed in soils,  especially onto terrestrial colloids 

(McKay et al. 2002). POPs adsorption onto soils  

strongly limits the efficiency of remediation  techniques 

(Petitgirard et al. 2009). Although many remediation 

technologies are currently available, the treatment of 

these organic pollutants, especially in low permeable 

clayey soils, still remains a problem.  

In general, the potential of ultrasound in soil reme-

diation has not been much studied yet. Therefore, the 

objective of this laboratory-scale study was to investigate 

the effect of ultrasound and various experimental condi-

tions on clayey soils contaminated with three persistent 

organic compounds: hexachlorobenzene (HCB), phe-

nanthrene (PHE) and fluoranthene (FLU). Because of 

their low permeability, clayey soils are often very diffi-

cult media to treat. Therefore, cavitation produced in clay 

by ultrasonication was assumed to increase its porosity 

and permeability (Kim 2000) and, thus, aid the remedia-

tion process.  

 

2. Methods 

The representative persistent organic compounds were 

hexachlorobenzene (HCB, 99%), a typical polychlorinat-

ed hydrocarbon and two polycyclic aromatic hydrocar-

bons (PAHs): phenanthrene (PHE, 97%) and fluoranthene 

(FLU, 98%) purchased from Sigma-Aldrich, Germany. 

N-hexane, acetone and other chemicals were from Merck, 

Germany. Chemicals were of analytical grade and used 

without further purification. All the solutions were pre-

pared using high purity deionized water (0.055 μS, 

18 mΩ, T = 22 ± 1°C, pH 7.1).  

Laboratory scale experiments were performed in 

triplicates in a closed Pyrex glass reactor (0.004 m
3
) with 

no head-space, equipped with a temperature controller 

and ultrasonic transducers with 0–100% duty cycles 

UP 100 and UP 200 (Dr. Hielscher, Germany) with a 

horn-type sonotrodes (titanium, tip diameter 22 mm), 

capable of operating either continuously or in a pulse 

mode at a fixed frequency of 24 to 30 kHz and a maxi-

mum electric power output of 200 and 100 W, respective-

ly.  

When indicated, an immersion circulator unit (Mo 

1112A, VWR, UK) was used to maintain a constant tem-

perature throughout experiments. The actual ultrasonic 

power dissipated in the reactor (85 and 160 W, respec-

tively) was determined according to Hageson and 

Doraiswamy (1998).  

White kaolin (VWR, Finland) was used as a model 

clayey soil throughout the tests. Main characteristics of 

kaolin are summarized in Table 1. The pH of the soil was 

measured by mixing 10 g of dry sample and 25 ml 1 M 

KCl as reported by Alshawabkeh and Sarahney (2005). 

Organic matter content was measured by loss of ignition 

at 550 °C for 1 h as suggested by Nystroem et al. (2005). 

The cation exchange capacity of air dried sample was 

determined with 1 M ammonium acetate diffusion at 

pH 7 according to Koivula et al. (2009).  

 
Table 1. Main characteristics of kaolin 

pH 4.8 

Dry bulk density (g cm–3) 0.508 

Moisture (%) 1.03 

Electrical conductivity (μS cm–1) 448 

Cation exchange capacity (cmol kg–1) 3.1 

Organic content (%) 0 

Particle size distribution: 

% sand ( > 0.05 mm) 3.9 

% silt (0.05–0.002 mm) 20.2 

% clay ( < 0.002 mm) 75.9 

 

POPs removal efficiency from artificially contami-

nated kaolin was calculated: 

 Removal efficiency = 
nc

cc 100)( 0 
, (i) 

where 0c  was the initial and c was the final POPs con-

centration (mg kg
–1

).  

Kaolin was artificially contaminated with HCB, 

PHE and FLU at target concentrations of 500 mg kg
–1

 

(Phase 1 – high initial concentration, continuous ultraso-

nication) and 100 mg kg
–1

 (Phase 2 – low initial concent-

ration, intermittent ultrasonication) as may be seen in 

Table 2.  

Because of the low solubility in water, n-hexane was 

used as a solvent to dissolve POPs required to yield the 

target concentrations (Saichek and Reddy 2003). Kaolin 

was stirred well to obtain homogeneous contamination. 

The mixtures were kept in a fume-hood nearly a week for 

solvents to evaporate entirely. Un-sonicated samples 
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spiked with appropriate levels of contaminants showed no 

evaporation, degradation or sorption of contaminants to 

the container during the course of the contamination pro-

cess. 

 
Table 2. Summary of experimental conditions for ultrasound-

assisted tests during Phase 1 and Phase 2 

PHASE 1 

High initial POPs concentration 

Short time, continuous ultrasonication  
100 g kaolin/test 

Test 
V–water 

(ml) 

Frequency 

(kHz) 

Power  

(W) 

Duration  

(h) 

Water  

content 

W1 100 30 100 1 

W2 200 30 100 1 

W3 300 30 100 1 

W4 400 30 100 1 

Time  

T1 300 30 100 6 

T2 300 24 100 6 

Power  

P11 200 30 20 1 

P12 200 30 40 1 

P13 200 30 60 1 

P14 200 30 80 1 

P15 200 30 100 1 

P21 200 24 40 1 

P22 200 24 60 1 

P23 200 24 80 1 

P24 200 24 100 1 

P25 200 24 140 1 

P26 200 24 200 1 

PHASE 2 

Low initial POPs concentration 

Long time, intermittent ultrasonication 

500 g kaolin/test  

Experiments 

Pulse 

mode 

V–water 

(ml) 

Frequency 

(kHz) 

Power 

(W) 

Total hours 

(h) 

1. Minimum 

conditions 0.5 500 24 40 46 

2. Optimum 

conditions 1 1000 24 100 15 

 

The amount of kaolin used for each test was about 

100 g in Phase 1 and 500 g in Phase 2. Experimental condi-

tions are summarized in Table 2. Prior experiments, kaolin 

was mixed with deionized water to make slurry as proposed 

by Pham et al. (2009). The slurry was subjected to ultra-

sound irradiation at the desired frequency and power amp-

litude during a designated period of time. The ultrasound-

assisted slurry treatment reactor is sketched in Fig. 1.  

During Phase 1, initial concentrations of 500 mg kg
–1

 

to investigate the effect of water ratio, irradiation duration 

and power were used. First, experiments were conducted 

using various volumes of water at the same (30 kHz) 

frequency and (100 W) power applied for 1 hour, to deter-

mine the optimum moisture content.  

Second, experiments were conducted with 300 ml 

water per 100 g kaolin at both, 30 kHz and 24 kHz 

frequencies and 100 W for 6 hours to study the effects of 

ultrasound irradiation on temperature in the medium and 

the POPs removal efficiencies. Samples were analyzed 

after 1, 2, 4 and 6 hours of experiments for residual POPs 

concentrations.  

 

Fig. 1. Ultrasound-assisted slurry treatment reactor: 1) ultraso-

nic processor, 2) power amplitude control, 3) pulse mode cont-

rol, 4) reactor, 5) ultrasonic horn submerged in slurry, 6) holder 

 

During Phase 2, experiments were conducted: at 

(1) minimum and (2) optimum operational conditions. In 

each experiment, 500 g kaolin contaminated with HCB 

and PHE at initial concentration of 100 mg kg
–1

 were 

used. Samples were intermittently ultrasonicated for 1–4 

hours per day, for 15–30 days.  

Evaporation was monitored and water was added du-

ring experiments to keep the same moisture content as 

initial experimental conditions. Control test showed that 

no significant HCB or PHE evaporation (the loss of HCB 

and PHE was in the range of 5–7%) was observed when 

artificially contaminated kaolin was left uncovered for 30 

days to ensure that POPs removal during the ultrasonica-

tion process may be attributed to the effect of ultrasound 

and not to the natural evaporation of contaminants. The 

first test of the second phase was carried out at the lowest 

power amplitude (20%) applying 24 kHz frequency and 

40 W (as stated by the manufacturer not calorimetric 

values) and in a 0.5 pulse mode for 30 days.  

During the first 4 days, kaolin was irradiated for 4 

hours per day, then 2 hours per day for the next 4 days, 

and finally 1 h per day for the subsequent 22 days of the 

experiment. Samples were analyzed after 10, 20, 30 days, 

corresponding to total 26, 36, 46 hours of ultrasound 

irradiation duration. During the second test, experimental 

slurry was irradiated at a 1 pulse mode applying 24 kHz 

frequency and 100 W (as stated by the manufacturer, not 

calorimetric values), and intermittently 1 h per day for 15 

days. Samples were analyzed after 15 days, correspon-

ding to the total of 15 hours of ultrasound irradiation 

duration. 

After experiments, the slurry samples were dried in 

the oven at 80 °C for 24 hours and pulverized for analy-
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sis. Samples were analyzed in duplicates for the quality 

assurance. 1 g of the sample was mixed with 5 ml  

n-hexane/acetone (3:1) mixture and contaminants were 

extracted according to Guerin (1999). The glass tubes 

containing samples were then centrifuged at 5000 rpm for 

10 minutes (Yuan et al. 2006). The supernatants were 

transferred into 2 ml glass vials for GC–MS analysis 

(Agilent 5975 with inert XL mass selective spectrometer, 

equipped with HP–5 column (Agilent, 5% phenyl methyl 

siloxane, capillary 30.0 m × 320 μm × 0.25 μm nominal). 

Carrier gas was helium argon (99.999% at 1.0 mL min
–1

) 

with the flow of 1.2 ml min
–1

.  

The following chromatographic conditions were 

adopted: the temperature was from 80 °C (1 min) to 

150 °C at 15 °C min
–1

, then from 150 °C to 200 °C at 

5 °C min
–1

, and finally from 200 °C to 300 °C at 10 °C min
–1

. 

The injector temperature was set at 250 °C and 1 μL solu-

tion was injected in splitless mode. The electron impact 

energy was 70 eV, and the ion source and quadruple tem-

peratures were set at 280 °C and 230 °C, respectively. 

 

3. Results and discussion 

3.1. Effect of water content  

Ultrasound irradiation of water produces hydroxyl radi-

cals that are responsible for the degradation of many toxic 

organic compounds, thus, sonochemical oxidation can 

only happen in aqueous solution (Adewuyi 2001). Since 

kaolin has a high water absorption capacity, the tests 

were initiated at 50% moisture content. Fig. 2 shows 

POPs removal rates at various added water amounts.  
 

 

Fig. 2. POPs residual concentration (%) in kaolin at various 

initial moisture contents after 1 hour of ultrasound irradiation at 

30 kHz and 100 W 

 

Although it is beneficial to have high water ratio 

since more hydroxyl radicals can be produced and thus 

higher degradation efficiencies can be achieved (Mason 

2007), the too high water content might impair practical 

application of the process, especially in the field-scale. 

The results showed that there was no significant differen-

ce in removal efficiencies of a single contaminant when 

various amounts of water were added to the kaolin sam-

ples (Fig. 2).  

However, FLU exhibited the highest removal effi-

ciency of 40%, followed by PHE (up to 30%) and HCB 

(up to 15%) when 200 ml and/or 300 ml was added to 

100 g of kaolin. Therefore, the 67% moisture content 

(200 ml added to 100 g kaolin) was chosen for the 

subsequent 1 hour – power series and 75% moisture con-

tent (300 ml added to 100 g kaolin) was chosen for 2–6 

hours experiments series. 

 

3.2. Effect of ultrasound irradiation duration and 

temperature 

It was observed that at above 100 W and when no cooling 

was employed in an open reactor, kaolin slurries eventu-

ally dried out. Therefore, ultrasound irradiation experi-

ments should not be carried out continuously over a very 

long time. Moreover, when considering efficient energy 

expenditure, it is important to choose the optimal reactor 

operation time. 

Since ultrasound irradiation induces high concentra-

tion of energy, one of its physical effects is heating, i.e. 

the increasing temperature of the bulk solution (Suslick 

2001). Fig. 3 shows the variation in experimental medium 

temperature during ultrasonication without the cooling 

used. In general, the temperature of slurries around the 

sonotrode increased significantly (up to 80 °C), in com-

parison to up to 60 °C in the bulk slurries. Moreover, the 

increase in temperature remained constant until the ter-

mination of the experiments.  

 

 

Fig. 3. Variation in temperature in kaolin slurries during ultra-

sound irradiation process 

 

Therefore, in order to maintain sufficient moisture 

conditions and ensure the efficient degradation of con-

taminants, cooling must be employed. The use of a recy-

cled flow of slurry through the reactor in addition to the 

external cooling from the immersion circulator would 

ensure the constant low temperature throughout the ex-

periments and would aid the ultrasound-assisted remedia-

tion of the soil slurry.  

 
3.3. POPs degradation 

Degradation of organic compounds in aqueous phase or 

slurries in the presence of ultrasound occurs through 

complex mechanisms involving thermal decomposition 

(pyrolysis) and oxidation by the formed hydroxyl radi-

cals. Selected POPs have a very low solubility in water, 

therefore it is expected that target contaminants will be 

adsorbed on to the kaolin surfaces. Since the white kaolin 

does not contain organic matter (Table 1), the binding of 

POPs to kaolin surface is expected to be weak. This is in 
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a good agreement with the work performed by Thanga-

vadivel and co-workers (2009) who researched the ultra-

sound-assisted removal of DDT from artificially 

contaminated sand.  

Differences in ultrasound irradiation frequency (and 

power) will consequently result in various wavelenghts, 

formed bubble size and its life time, which in turn will 

affect the effective mass transfer to the bubbles and 

subsequent energy release, hydrolysis of water and con-

taminants„ degradation mechanisms (Thangavadivel et al. 

2009). According to Keck and co-authors (2002), the 

applied ultrasound irradiation will induce cavitation on 

the kaolin particles surface as well as in the liquid.  

Moreover, higher frequency ultrasound has lower 

wave length and less intensity than lower frequency ultra-

sound hence, attenuation is proportional to the square of 

frequency. In slurry treatment, with increase in frequency 

and slurry percentage the attenuation energy increases, 

which produce the intense cavitation at the slurry surface 

(Keck et al. 2002). Thus, due to very severe localized 

energy and temperature changes, the adsorbed POPs will 

be subjected to to chemical and physical processes that 

induce their desorption and decomposition via pyrolysis 

and/or radical mechanism (Adewuyi 2001).  

The results indicated that the removal of POPs did 

not differ significantly after 1 hour and 6 hours (except 

for PHE, when 24 kHz, 200 W was applied) ultrasound 

irradiation. This could be explained by the fact that these 

recalcitrant hydrocarbons were present in very high initial 

concentrations (approximately 500 mg/kg as target con-

centration with variation less than 10%) mimicking in-

dustrially contaminated sites and thus maximum 6 h of 

irradiation did not result in a significant formation of 

oxidative species (hydrogen peroxide and hydroxyl radi-

cals) that were responsible for the POPs degradation.  

Indeed, Rehorek et al. (2004) reported that e.g. the 

rate of OH• radicals formation was only 14.9 μM min
–1

, 

4 μM min
–1

, and 0.1 μM min
–1

 at 120 W, 90 W and 60 W, 

respectively, of applied ultrasound irradiation under air 

atmosphere. Therefore, a rather low degradation of POPs 

may be attributed to the lack of formed radicals during 

ultrasound irradiation when no additional oxidation 

agents were employed. Fig. 4 presents the removal of 

POPs after 6 hours of ultrasound irradiation.  

 

 

Fig. 4. POPs remaining (%) in kaolin after ultrasound irradia-

tion process 

According to Fig. 4, the lower frequency (24 kHz) 

but higher power (200 W) resulted in approximately 5–

15% higher POPs reduction. Moreover, lower frequency 

and higher power ultrasound produces more violent cavi-

tation, leading to higher localized temperatures and pres-

sures that favor the thermal decomposition of organic 

compounds; on the other hand, higher frequency may 

lead to higher reaction rates because of increased free 

radicals in the system (Adewuyi 2001). Based on the 

nature of POPs and the reaction conditions, degradation 

favored the pyrolytic mechanism rather than the free 

radical oxidation. Among the three compounds, PHE had 

the highest removal efficiencies (15–50%), followed by 

HCB (5–20%) and FLU (5–15%) after 6 hours of conti-

nuous ultrasound irradiation.  

Relatively low POPs removal efficiencies may also 

be attributed to the attenuation of ultrasound phenomenon 

when high slurry densities are used for the remediation as 

suggested by Thangavadivel and co-workers (2009). 

Thus, to overcome such drawback it is advisable to use 

lower slurry densities. 

 
3.4. Intermittent ultrasound irradiation treatment 

Due to the heating effect, especially when there is an 

open experimental system employed, ultrasound irradia-

tion cannot be continuously carried out over a very long 

operation time. However, longer times may be achieved 

through intermittent operation of the system, e.g. 1 to 4 

hours of ultrasound irradiation per day for a designated 

number of days. During the intermittent ultrasound irra-

diation process, experiments using 500 g kaolin contami-

nated with only HCB and PHE (100 mg kg
–1

) were 

conducted. 

First, experiments were carried out to examine the 

feasibility of ultrasound irradiation to remove selected 

POPs using minimum operational conditions: 40 W ultra-

sonic intensity (20% amplitude), 0.5 pulse mode and 50% 

moisture content. The amounts of POPs remained in kao-

lin after 10, 20, 30 days corresponding to the total 26, 36, 

46 hours of ultrasound irradiation are presented in Fig. 5. 

It may be observed that nearly 100% removal efficiency 

of PHE was achieved after 46 hours of the experiments. 

However, the highest HCB removal was only 31%.   
 

  

Fig. 5. HCB and PHE residuous concentrations in kaolin with 

increasing intermittent ultrasound irradiation duration 
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Then experiments were carried out to determine the 

optimum operational conditions utilizing higher ultra-

sound power intensity (above 100 W), higher water ratio 

(67%) and a full pulse mode (1). These conditions provi-

ded significantly higher removal efficiencies for HCB 

(45%) and a complete PHE removal with 3-times shorter 

ultrasound irradiation time (15 hours). The total electric 

energy consumption applying optimum conditions 

(1.5 kWh) was lower than using the minimum operational 

conditions (1.84 kWh).  

 

4. Conclusions 

Ultrasound proved to have a high potential in environ-

mental applications, however, its science and technology 

is still in the developing stage. Most existing information 

available is mainly on the laboratory scale, and little pro-

cessing on the pilot and/or industrial-scale is being car-

ried out (Gogate and Pandit 2004).  

The number of studies on applications of ultrasound 

in soil remediation is even fewer. Although the present 

laboratory-scale study showed that ultrasonic irradiation 

may be used to remove selected POPs from soils, future 

research is highly warranted considering current limita-

tions, especially the formation of reactive species when 

no other oxidative agents are present and the reactor de-

sign. Therefore: 

1. Ultrasound irradiation has a potential to reduce 

the high concentrations of persistent organic compounds 

in soils. However, for the complete removal, the applica-

tion of ultrasound should not be considered a single 

treatment process but rather as an enhancement for ap-

propriate technique. Moreover, ultrasound irradiation 

treatment was found to be more effective to polycyclic 

aromatics hydrocarbon than polychlorinated hydrocarbon 

like hexachlorobenzene, which may be attributed to the 

different chemical composition of these contaminants.  

2. The efficient treatment of soil by ultrasound 

requires a certain amount of water. The moisture content 

was the most effective in the range of 50–70%. 

3. Despite the use of various ultrasound irradiation 

intensities (20–200 W), the removal efficiencies were only 

5–20% for HCB, 15–50% for PHE and 5–15% for FLU 

after 6 hours of the experiment. Thus, to achieve higher 

removal efficiencies, longer ultrasound irradiation duration 

or the addition of oxidative agents should be applied. 

4. Because of the intense localized heating, ultraso-

nication should not be carried out over a very long time. 

Therefore, intermittent ultrasound irradiation as an effec-

tive means to increase the removal efficiencies may be 

adopted. It was found that with intermittent ultrasonica-

tion 45% of HCB and 100% of PHE may be removed. 
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DIRBTINAI FENANTRENU, FLUORANTENU IR HEKSACHLOROBENZENU UŢTERŠTO KAOLINO 

VALYMAS ULTRAGARSU  

P. T. Duong, R. A. Shrestha, M. Sillanpää, J. Virkutytė 

S a n t r a u k a   

Ultragarsinės radiacijos taikymas dirvai valyti yra nauja, tačiau sparčiai plėtojama technologija. Pagrindinis šio darbo tiks-

las buvo įvertinti ultragarso poveikį atsparių organinių teršalų, tokių kaip: heksachlorobenzenas (HCB), fenantrenas (PHE) 

ir fluorantenas (FLU), – degradavimui dirbtinai užterštame kaoline. Laboratoriniai eksperimentai atlikti pasirenkant įvairų 

dirvos drėgnumą, ultragarso intensyvumą, stiprumą, radiacijos trukmę ir pradines organinių teršalų koncentracijas bei 

įvertinant jų poveikį kaolino valymo efektyvumui. Rezultatai įrodė, kad ultragarsas gali būti taikomas dirvai valyti, tačiau 

efektyvumas nebuvo itin didelis kaoliną švitinant nuo 1 iki 6 valandų. Taikant kintamą radiaciją (iki 46 valandų), HCB 

šalinimas pagerėjo iki 45 %, o PHE – net iki 100 %. Valant organinius teršalus optimali kaolino drėgmė buvo  

50–70 %. Taikant optimalias reakcijos sąlygas (100 W ir daugiau, 67 % drėgmės), elektros energijos sunaudota mažiau 

(1.5 kWh) nei kai reakcijos sąlygos minimalios (1,84 kWh). 

Reikšminiai ţodţiai: ultragarsas, dirvos valymas, atsparūs organiniai teršalai. 
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ОЧИСТКА УЛЬТРАЗВУКОМ КАОЛИНА, ИСКУССТВЕННО ЗАГРЯЗНЕННОГО ФЕНАНТРЕНОМ, 

ФЛУОРАНТЕНОМ И ГЕКСАХЛОРОБЕНЗЕНОМ 

П. Т. Дуонг, Р. А. Шреста, М. Силланпаа, Ю. Виркутите 

Р е з ю м е  

Применение ультразвуковой радиации для очистки почв является новой, быстро развивающейся технологией. 

Основной целью работы было оценить воздействие ультразвука на деградацию устойчивых органических загряз-

няющих веществ, таких, как гексахлоробензен, фенантрен и флуорантен, в искусственно загрязненном каолине. 

Лабораторные исследования проводились при разной влажности почвы, интенсивности ультразвука, его мощно-

сти, длительности радиации и начальных концентрациях органических соединений, а также при учете их воздей-

ствия на эффективность очистки каолина. Результаты показали, что ультразвук может применяться для очистки 

почв, однако эффективность не была высокой при воздействии излучением в течение от одного до шести часов. 

При применении меняющейся радиации (до 46 часов) эффективность очистки от гексахлоробензена увеличилась 

до 45%, а от фенантрена даже до 100%. Оптимальной для очистки от органических соединений оказалась 50–

70%-ая влажность каолина. Потребление электроэнергии при оптимальных условиях реакции (100 W и больше, 

67%-ая влажность) было меньшим, чем при минимальных условиях реакции (1.84 kWh).  

Ключевые слова: ультразвук, очистка почв, устойчивые органические соединения.    
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