Share:


Investigation of physical-mechanical properties and impact on soil of granulated manure com-post fertilizers

    Ramūnas Mieldažys Affiliation
    ; Eglė Jotautienė Affiliation
    ; Algirdas Jasinskas Affiliation
    ; Juozas Pekarskas Affiliation
    ; Raimonda Zinkevičienė Affiliation

Abstract

In recent years, the European countries recycle only 5−7% of bio-waste. One activity of the biological waste disposal is granulation. The production of fertilizer from animal manure with supplement represents an important area of environmentally friendly bio-fertilizer production. This paper presents an investigation of estimation manure compost physical-mechanical properties for reuse of organic waste − cattle and cow manure, sugar production waste − molasses through new technology pellets production and of granulated fertilizer impact on soil. The experimental manure samples produced by industrial methods and samples produced in the laboratory from the time period of 2014 to 2017 were investigated. The following physical – mechanical characteristics were estimated: biometric indicators (dimensions, mass), volume and density of raw material and pellets, material and pellet’s humidity and pellets strength. Experiments results have shown that the difference in limit strength between experimental and industrial organic compost pellets was about 5%. Experiments of fertilizers on the impact on soil shown that the amount of nutrients added to the soil depends on the rate of the granulated compost fertilizer. As the norm increases, organic carbon, humus, mobile phosphorus and potassium increase in soil. Increases in soil fertility, improved agrochemical properties, soil organic matter accumulation and humus increase. Granulated compost fertilizers have no effect on soil acidity. The presented results could be helpful to the development of the fertilizing process by the granulated compost fertilizer for improvement of soil quality in small farms.

Keyword : manure compost fertilizer, organic waste management, raw material, granulation, physical-mechanical properties, molasses, soil fertility

How to Cite
Mieldažys, R., Jotautienė, E., Jasinskas, A., Pekarskas, J., & Zinkevičienė, R. (2019). Investigation of physical-mechanical properties and impact on soil of granulated manure com-post fertilizers. Journal of Environmental Engineering and Landscape Management, 27(3), 153-162. https://doi.org/10.3846/jeelm.2019.10794
Published in Issue
Aug 29, 2019
Abstract Views
51
PDF Downloads
38
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abelha, P., Gulyurtlu, I., Boavida, D., Seabra Barros, J., Cabrita, I., Leahy, J., Kelleher, B., & Leahy, M. (2003). Combustion of poultry litter in a fluidised bed combustor. Fuel, 82, 687-692. https://doi.org/10.1016/S0016-2361(02)00317-4

Al-Bataina, B. B., Young, T. M., & Ranieri, E. (2016). Effects of compost age on the release of nutrients. International Soil and Water Conservation Research, 4(3), 230-236. https://doi.org/10.1016/j.iswcr.2016.07.003

Baniūnienė, A., & Žėkaitė, V. (2005). Vasarinių kviečių vystymosi priklausomumas nuo sėjos laiko, sėklos normos ir meteorologinių sąlygų [Dependence of summer wheat development on sowing time, seed rate and meteorological conditions]. Žemdirbystė. Mokslo darbai, 92(4), 80-92.

Bhattacharya, S. C., Sett, S., & Shrestha, R. M. (1989). State of the art for biomass densification. Energy Sources, 11(3), 161-182. https://doi.org/10.1080/00908318908908952

Bolan, N. S., Wong, L., & Adriano, D. C. (2004). Nutrient removal from farm effluents. Bioresource Technology, 94, 251-260. https://doi.org/10.1016/j.biortech.2004.01.012

Brazas, A. (2012). Reikalavimai kompostui ir kompostavimui [Requirements for compost and composting] (Project report). Lithuanian Ministry of the Environment.

Chen, Y., & Inbar, Y. (1993). Chemical and spectroscopic analysis of organic matter transformations during composting in relation to compost maturity. In Science and engineering of composting: design, environmental, microbiological and utilization aspects (pp. 551-600). Washington, OH: Renaissance.

Chew, K. W., Chia, S. R., Yap, Y. J., Ling, T. C., Tao, Y., & Show, P. L. (2018). Densification of food waste compost: effects of moisture content and dairy powder waste additives on pellet quality. Process Safety and Environmental Protection, 116, 780-786. https://doi.org/10.1016/j.psep.2018.03.016

European Commission. (2014). Commission Decision 2014/955/ EU of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA relevance. Retrieved from https://publications.europa.eu/en/publication-detail/-/publication/bb120f99-8ff5-11e4-b8a501aa75ed71a1/language-en

European Commission. (2016). Circular economy: new Regulation to boost the use of organic and waste-based fertilisers. Retrieved from http://europa.eu/rapid/press-release_IP-16827_en.htm

Fogarassy, C., Czikkely, M., & Tóth, Z. (2018). Alternative utilization options in multi-function composting techniques. Hungarian Agricultural Engineering, 33, 11-16. https://doi.org/10.17676/HAE.2018.33.11

International Organization for Standardization. (1995). Soil quality − Determination of organic and total carbon after dry combustion (elementary analysis) (ISO 10694). Retrieved from https://www.iso.org/standard/18782.html

Jasinskas, A., Pekarskas, J., Kucinskas, V., & Aboltins, A. (2016). Investigation of natural magnesium mineral fertilizer granulation and determination of granule qualitative indicators. In Engineering for rural development: 15th international scientific conference proceedings (pp. 647-652). Jelgava, Latvia.

Latifian, M., Liu, J., & Mattiasson, B. (2012). Struvite-based fertilizer and its physical and chemical properties. Environmental Technology, 33(24), 2691-2697. https://doi.org/10.1080/09593330.2012.676073

Lima, I. M., & Marshall, W. E. (2005). Granular activated carbons from broiler manure: physical, chemical and adsorptive properties. Bioresource Technology, 96(6), 699-706. https://doi.org/10.1016/j.biortech.2004.06.021

Lithuanian Standards Board. (2002). Trąšos. Sutankintų trąšų piltinio tankio nustatymas (LST EN 1237) [Fertilizers − Determination of bulk density (tapped)]. Retrieved from http://www.lsd.lt

Lithuanian Standards Board. (2007). Dirvožemio gerinimo medžiagos ir auginimo terpės. Mėginių paruošimas cheminiams ir fizikiniams tyrimams, sausųjų medžiagų kiekio, drėgnio ir laboratorijoje tankinto piltinio tankio nustatymas (LST EN 13040) [Soil improvers and growing media − Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density]. Retrieved from http://www.lsd.lt

Lithuanian Standards Board. (2005). Dirvožemio kokybė. pH nustatymas (LST ISO 10390) [Soil quality – Determination of pH]. Retrieved from http://www.lsd.lt

Miikki, V., Senesi, N., & Hanninen, K. (1997). Characterization of humic material formed by composting of domestic and industrial biowastes. Part 2. Spectroscopic evaluation of humic acid structures. Chemosphere, 34, 1639-1651. https://doi.org/10.1016/S0045-6535(97)00021-0

Mišljenović, N., Čolović, R., Vukmirović, Đ., Brlek, T., & Bringas, C. S. (2016). The effects of sugar beet molasses on wheat straw pelleting and pellet quality. A comparative study of pelleting by using a single pellet press and a pilot-scale pellet press. Fuel Processing Technology, 144, 220-229. https://doi.org/10.1016/j.fuproc.2016.01.001

Official Statistic Portal. (2017). Retrieved from https://osp.stat.gov.lt/EN/statistiniu-rodikliu-analize?hash=af9953af-3ff9-4d90-8c92-6335ddc0c012#/

Pampuro, N., Bagagiolo, G., Priarone, P. C., & Cavallo, E. (2017). Effects of pelletizing pressure and the addition of woody bulking agents on the physical and mechanicalproperties of pellets made from composted pig solid fraction. Powder Technology, 311, 112-119. https://doi.org/10.1016/j.powtec.2017.01.092

Pocius, A., Jotautiene, E., Pekarskas, J., & Palsauskas, M. (2016). Investigation of physical-mechanical properties of experimental organic granular fertilizers. In Engineering for Rural Development: 15th International Scientific Conference Proceedings (pp. 1115-1120). Jelgava, Latvia.

Roeper, H., Khan, S., Koerner, I., & Stegmann, R. (2005). Lowtech options for chicken manure treatment and application possibilities in agriculture. In Proceedings Sardinia, Tenth International Waste Management and Landfill Symposium (pp. 3-7). Environmental Sanitary Engineering Centre, Italy.

Romano, E., Brambilla, M., Bisaglia, C., Pampuro, N., Pedretti, E. F., & Cavallo, E. (2014). Pelletization of composted swine manure solid fraction with different organic co-formulates: effect of pellet physical properties on rotating spreader distribution patterns. International Journal of Recycling of Organic Waste in Agriculture, 3(4), 101-111. https://doi.org/10.1007/s40093-014-0070-2

Vandecasteele, B., Reubens, B., Willekens, K., & De Neve, S. (2014). Composting for increasing the fertilizer value of chicken manure: effects of feedstock on P availability. Waste and Biomass Valorization, 5(3), 491-503. https://doi.org/10.1007/s12649-013-9264-5

Zafari, A., & Kianmehr, M. H. (2014). Factors affecting mechanical properties of biomass pellet from compost. Environmental Technology, 35(4), 478-486. https://doi.org/10.1080/09593330.2013.833639