White mulberry (Morus alba L.) fruit-associated bacterial and fungal microbiota

    Juliana Lukša Affiliation
    ; Elena Servienė Affiliation


Morus alba L. has been worldwide cultivated and commercially exploited plant with profound potential in environmental management, food and medicinal industries. Plant-associated microbial communities are playing an essential role in sustainable plant development. In the present study, the bacterial and fungal microorganism populations distributed on the white mulberry fruits harvested in the Czech Republic for the first time were characterized by metagenomics approach. A total of 62 bacterial and 37 fungal families were identified on white mulberry. Bacterial population was represented by the genera Tatumella, Leuconostoc, Frateuria and Pseudomonas, while fungal microorganisms – by Hanseniaspora, Cryptococcus, Cladosporium and Phoma. Both potentially beneficial, inducing resistance in the hosting plant, and pathogenic, responsible for disease development, microorganisms were detected. The information on the prevalence of bacterial and fungal microorganisms on the carposphere of M. alba is highly relevant for the development of strategies for environment-friendly plant cultivation, disease management and prevention.

Keyword : metagenomic analysis, Moraceae, fungal microbiota, bacterial microbiota

How to Cite
Lukša, J., & Servienė, E. (2020). White mulberry (Morus alba L.) fruit-associated bacterial and fungal microbiota. Journal of Environmental Engineering and Landscape Management, 28(4), 183-191.
Published in Issue
Nov 25, 2020
Abstract Views
PDF Downloads
SM_1 Downloads
SM_2 Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Aveskamp, M. M., De Gruyter, J., & Crous, P. W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity, 31, 1–18.

Bennett, A., Ponder, M., & Garcia-Diaz, J. (2018). Phoma infections: classification, potential food sources, and their clinical impact. Microorganisms, 6(3), 58.

Bernal-Martinez, L., Gomez-Lopez, A., Castelli, M. V., MesaArango, A. C., Zaragoza, O., Rodriguez-Tudela, J. L., & Cuenca-Estrella, M. (2010). Susceptibility profile of clinical isolates of non-Cryptococcus neoformans/non-Cryptococcus gattii Cryptococcus species and literature review. Medical Mycology, 48(1), 90–96.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

Chinnaswamy, K. P., & Harisprasad, K. B. (1995). Energy potentiality of mulberry. Indian Silk, 34(4), 15–18.

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(D1), D633–D642.

Coutinho, T. A., & Venter, S. N. (2009). Pantoea ananatis: An unconventional plant pathogen. Molecular Plant Pathology, 10(3), 325–335.

da Silva, A. M., Urban, R. C., Manfre, L. A., Brossard, M., & Moreira, M. Z. (2017). Soil quality attributes related to urbanization in Brazilian watershed. Journal of Environmental Engineering and Landscape Management, 25(4), 317–328.

Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Herve, V., Labbe, J., Lastovetsky, O., Mieszkin, S., Millet, L. J., Vanja, B., Junier, P., Bonfante, P., Krom, B., Olsson, S., van Elsas, J. D., & Wick, L. (2018). Bacterial – fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiology Reviews, 42(3), 335–352.

Ercisli, S., & Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103(4), 1380–1384.

Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35, 154.

Graça, A., Santo, D., Esteves, E., Nunes, C., Abadias, M., & Quintas, C. (2015). Evaluation of microbial quality and yeast diversity in fresh-cut apple. Food Microbiology, 51, 179–185.

Hashem, M., Alamri, S. A., Hesham, A. E. L., Al-Qahtani, F. M. H., & Kilany, M. (2014). Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol Science and Technology, 24(10), 1137– 1152.

Holland, R., & Liu, S.-Q. (2011). Lactic Acid Bacteria | Leuconostoc spp. In Encyclopedia of dairy sciences (pp. 138–142). Elsevier.

Jiang, Y., Huang, R., Yan, X., Jia, C., Jiang, S., & Long, T. (2017). Mulberry for environmental protection. Pakistan Journal of Botany, 49(2), 781–788.

Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., Bates, S. T., Bruns, T. D., Bengtsson-Palme, J., Callaghan, T. M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G. W., Hartmann, M., Kirk, P. M., Kohout, P., Larsson, E., Lindahl, B. D., Lücking, R., Martín, M. P., Matheny, P. B., Nguyen, N. H., Niskanen, T., Oja, J., Peay, K. G., Peintner, U., Peterson, M., Põldmaa, K., Saag, L., Saar, I., Schüßler, A., Scott, J. A., Senés, C., Smith, M. E., Suija, A., Taylor, D. L., Telleria, M. T., Weiss, M., & Larsson, K.-H. (2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22(21), 5271–5277.

Khoshdel, A., & Vaziri, B. M. (2016). Novel mathematical models for prediction of microbial growth kinetics and contaminant degradation in bioremediation process. Journal of Environmental Engineering and Landscape Management, 24(3), 157– 164.

Li, W., Fu, L., Niu, B., Wu, S., & Wooley, J. (2012). Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics, 13(6), 656–668.

Lidor, O., Santos-Garcia, D., Mozes-Daube, N., Naor, V., Cohen, E., Iasur-Kruh, L., Bahar, O., & Zchori-Fein, E. (2019). Frateuria defendens sp. nov., bacterium isolated from the yellows grapevine’s disease vector Hyalesthes obsoletus. International Journal of Systematic and Evolutionary Microbiology, 69(5), 1281–1287.

Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H.-J., & Pee, K.-H. van. (2000). Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Management Science, 56(8), 688–695.<688::AIDPS186>3.0.CO;2-V

Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883.

Liu, H. M., Guo, J. H., Cheng, Y. J., Luo, L., Liu, P., Wang, B. Q., Deng, B. X., & Long, C. A. (2010). Control of gray mold of grape by Hanseniaspora uvarum and its effects on postharvest quality parameters. Annals of Microbiology, 60(1), 31–35.

Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153–160.

Łochyńska, M. (2015). Energy and nutritional properties of the white mulberry (Morus alba L.). Journal of Agricultural Science and Technology A, 5(9).

Lukša, J., Vepštaitė-Monstavičė, I., Yurchenko, V., Serva, S., & Servienė, E. (2018). High content analysis of sea buckthorn, black chokeberry, red and white currants microbiota – A pilot study. Food Research International, 111, 597–606.

Magoč, T., & Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 27(21), 2957–2963.

Mahboubi, M. (2019). Morus alba (mulberry), a natural potent compound in management of obesity. Pharmacological Research, 146, 104341.

Mardaneh, J., Soltan Dallal, M. M., Taheripoor, M., & Rajabi, Z. (2014). Isolation, identification and antimicrobial susceptibility pattern of Tatumella ptyseos strains isolated from powdered infant formula milk consumed in neonatal intensive care unit: first report from Iran. Jundishapur Journal of Microbiology, 7(6), e10608.

Oliveira, R. C., Goncalves, S. S., Oliveira, M. S., Dilkin, P., Mallmann, C. A., Freitas, R. S., Bianchi, P., & Correa, B. (2017). Natural occurrence of tenuazonic acid and Phoma sorghina in Brazilian sorghum grains at different maturity stages. Food Chemistry, 230, 491–496.

Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12(1), 385.

Ou, T., Xu, W., Wang, F., Strobel, G., Zhou, Z., Xiang, Z., Liu, J., & Xie, J. (2019). A microbiome study reveals seasonal variation in endophytic bacteria among different mulberry cultivars. Computational and Structural Biotechnology Journal, 17, 1091–1100.

Pinto, C., Pinho, D., Cardoso, R., Custódio, V., Fernandes, J., Sousa, S., Pinheiro M., Egas, C., & Gomes, A. C. (2015). Wine fermentation microbiome: A landscape from different Portuguese wine appellations. Frontiers in Microbiology, 6, 905.

Rodrigues, E. L., Marcelino, G., Silva, G. T., Figueiredo, P. S., Garcez, W. S., Corsino, J., Guimarães, R. de C. A., & Freitas, K. de C. (2019). Nutraceutical and medicinal potential of the Morus species in metabolic dysfunctions. International Journal of Molecular Sciences, 20(2), 301.

Sandoval-Denis, M., Gené, J., Sutton, D. A., Wiederhold, N. P., Cano-Lira, J. F., & Guarro, J. (2016). New species of Cladosporium associated with human and animal infections. Persoonia – Molecular Phylogeny and Evolution of Fungi, 36(1), 281–298.

Shin, S.-Y., & Han, N. S. (2015). Leuconostoc spp. as starters and their beneficial roles in fermented foods. In M. T. Liong (Ed.), Beneficial Microorganisms in food and nutraceuticals. Microbiology monographs (Vol. 27, pp. 111–132). Springer, Cham.

Termorshuizen, A. J. (2007). Fungal and fungus-like pathogens of potato. In Potato biology and biotechnology (pp. 643–665). Elsevier.

Tilocca, B., Cao, A., & Migheli, Q. (2020). Scent of a Killer: Microbial volatilome and its role in the biological control of plant pathogens. Frontiers in Microbiology, 11, 1–13.

Trotel-Aziz, P., Couderchet, M., Biagianti, S., & Aziz, A. (2008). Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environmental and Experimental Botany, 64(1), 21–32.

Vadkertiová, R., Molnárová, J., Vránová, D., & Sláviková, E. (2012). Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Canadian Journal of Microbiology, 58(12), 1344–1352.

Vepštaitė-Monstavičė, I., Lukša, J., Stanevičienė, R., StrazdaitėŽielienė, Ž., Yurchenko, V., Serva, S., & Servienė, E. (2018). Distribution of apple and blackcurrant microbiota in Lithuania and the Czech Republic. Microbiological Research, 206, 1–8.

Wang, X., Radwan, M. M., Taráwneh, A. H., Gao, J., Wedge, D. E., Rosa, L. H., Cutler, H. G., & Cutler, S. J. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61(19), 4551–4555.

Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., & Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, 126328.

Yu, C., Hu, X., Deng, W., Li, Y., Han, G., & Ye, C. (2016). Soil fungal community comparison of different mulberry genotypes and the relationship with mulberry fruit sclerotiniosis. Scientific Reports, 6(1), 28365.

Zhang, H., Ma, Z., Luo, X., & Li, X. (2018). Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidants, 7(5), 69.

Zhang, M. M., Wang, N., Zhang, J., Hu, Y., Cai, D., Guo, J., Wu, D., & Sun, G. (2019). Soil physicochemical properties and the rhizosphere soil fungal community in a mulberry (Morus alba L.)/Alfalfa (Medicago sativa L.) intercropping system. Forests, 10(2), 167.