Chemical and biological indicators for evaluation of Arctic soil degradation and its potential to remediation

    Tatiana S. Smirnova Affiliation
    ; Elena A. Mazlova Affiliation
    ; Olga A. Kulikova Affiliation
    ; Ilya M. Ostrovkin Affiliation
    ; Adam M. Gonopolsky Affiliation
    ; Kristina V. Cheloznova Affiliation


In recent years, significant efforts have been made to accelerate the economic development of the Arctic zone, leading to intense environmental pollution of this region, accompanied by the significant impact of accumulated environmental damage in the region. The solution to these problems is difficult due to the remoteness of these areas and severe climatic conditions. Therefore, it is important to evaluate the potential for restoration of arctic soils. For this purpose, various indicators are used, including biological ones.

In the analyzed arctic soil samples, high concentrations of petroleum hydrocarbons (up to 47,000 mg/kg) and chloride-ions (0.10–0.14 wt %) were established. Microbioassay demonstrated a presence of hydrocarbon-oxidizing microorganisms: Penicillium, Azotobacter chroococcum, Bacillus subtilis, Pseudomonas oleovorans.

A low enzymatic activity and specific Arctic climate point out a low self-restoration ability of the soil, demonstrated the need for its remediation.

The microbioassay with microbial strains identification and soil remediation methods suitable for the Arctic zone were recommended.

Keyword : arctic, soil quality, oil-contaminated soil, remediation, accumulated environmental damage, environmental monitoring

How to Cite
Smirnova, T. S., Mazlova, E. A., Kulikova, O. A., Ostrovkin, I. M., Gonopolsky, A. M., & Cheloznova, K. V. (2021). Chemical and biological indicators for evaluation of Arctic soil degradation and its potential to remediation. Journal of Environmental Engineering and Landscape Management, 29(1), 33-39.
Published in Issue
Mar 2, 2021
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Beyer, L., Huyke, W., Huttmann, S., Archegova, I., & Titarenko, T. V. (2000). The application of microbial activity indicators for a quality evaluation of highly crude oil contaminated soils in the Russian subpolar tundra at the Arctic circle. In Contaminated Soil 2000: Proceedings of the Seventh 7th International FZK/TNO Conference on Contaminated Soil, 1, 856–857.

Bünemanna, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., Groenigen, J. W., & Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105–125.

Bünemann, E. K., Mäder, P., Wohlfahrt, J., Brussaard, L., Bongiorno, G., de Goede, R., Geissen, V., Fleskens, L., Sukkel, W., Bai, Z., & Caspari, T. (2016). Concepts and indicators of soil quality – a review (Report No. 04). SQAPER.

Cardoso, E. J. B. N., Vasconcellos, R. L. F., Bini, D., Miyauchi, M. Y. H., dos Santos, C. A., Alves, P. R. L., de Paula, A. M., Nakatani, A. Sh., de Moraes Pereira, J., & Nogueira, M. A. (2013). Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola, 70(4), 274–289.

Chang, W., Akbari, A., David, C. A., & Ghoshal, S. (2018). Selective biostimulation of cold‐ and salt‐tolerant hydrocarbon‐degrading Dietzia maris in petroleum‐contaminated sub‐Arctic soils with high salinity. Chemical Technology and Biotechnology, 93(1), 294–304.

Doran, J. W., & Parkin, T. B. (1996). Quantitative indicators of soil quality: A minimum data set. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality: Vol. 49. SSSA, Inc., Madison, Wisconsin, USA.

Ferguson, D. K., Li, C., Jiang, C., Chakraborty, A., Grasby, S. E., & Hubert, C. R. J. (2020). Natural attenuation of spilled crude oil by cold-adapted soil bacterial communities at a decommissioned High Arctic oil well site. Science of The Total Environment, 722, 137258.

Gerasko, L. I., Callas, E. V., Kulizhsky, S. P., & Ogorodnikov, A. V. (2004). Fundamentals of soil science and soil geography. TSPU, Moscow (in Russian).

Guidelines for sanitary-microbiological soil research (MU 144676). (1976) (in Russian).

Ismailov, N. M. (1988). Microbiology and enzymatic activity of oil-contaminated soils. In Restoration of oil-contaminated soil ecosystems (pp. 42–56). Nauka (in Russian).

Jenkinson, D. S., Adams, D. E., & Wild, A. (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 104–106.

Kaczyńska, G., Borowik, A., & Wyszkowska, J. (2015). Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollution, 226(11), 372.

Khabarov, A. V., & Yaskin, A. A. (2001). Soil science. Kolos.

Kozlova, A. A. (2005). Educational practice in soil physics. Irkutsk State University (in Russian).

Kulikova, O. A. (2019). Environmental aspects of the surfactants use of for the restoration of disturbed Arctic lands (The dissertation for the degree of candidate of technical sciences). Russian Gubkin State University of Oil and Gas (NRU), Moscow (in Russian).

Lebedeva-Verba, M. P., & Gerasimova, M. I. (2009). Micromorphology of diagnostic horizons in aridic soils (Complementary to the new classification system of soils of Russia). Eurasion Soil Science, 42(13), 1427–1434.

Lima, A. C. R., Brussaard, L., Totola, M. R., Hoogmoed, W. B., & de Goede, R. G. M. (2013). A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology, 64, 194–200.

Medvedeva, O. E., & Vakula, M. A. (2016). Technique of the selection of investment projects for elimination of accumulated damage to the environment in the Russian Arctic based on cost-benefit analysis. Arctic and North, 25, 94–95 (in Russian).

Mikhailov, I. S. (2015). Soil map of the Russian Arctic on a scale of 1: 1,000,000: Content and compilation experience. Soil Science, 49(4), 411–419 (in Russian).

Ogbolosingha, A. J., Essien, E. B., & Ohiri, R. C. (2015). Variation of lipase, catalase and dehydrogenase activities during bioremediation of crude oil polluted soil. Journal of Environment and Earth Science, 5(14), 128–141.

Pankhurst, C. E., Doube, B. M. & Gupta, V. V. S. R. (Eds.). (1997). Biological indicators of soil health. CABI Publishing.

Rhykerd, R. L., Weaver, R. W., & McInnes, K. J. (1995). Influence of salinity on bioremediation of oil in soil. Environmental Pollution, 90(1), 127–130.

Stoops, G. (2003). Guidelines for analysis and description of soil and regolith thin sections. Madison, Wisconsin, USA.

USSR State Committee for Standards. (1984). Nature protection. Soils. Methods for sampling and preparation of soil for chemical, bacteriological, helmintological analysis (GOST RussianGost (in Russian).

USSR State Committee for Standards. (1985). Soils. Methods for determination of chloride ion in water extract (GOST 2642585). RussianGost (in Russian).

USSR State Committee for Standards. (1989). Soils. Sampling (GOST 28168-89). RussianGost (in Russian).

USSR State Committee for Standards. (1998). Guidelines for quantitative chemical analysis of soils. The methodology for measuring the mass fraction of oil products in mineral, organogenic, organomineral soils and bottom sediments by IR spectrometry (PND F 16.1: 2.2.22-98). RussianGost (in Russian).

Vishnevaya, Yu. S. (2016). Assessment of the ecological state and degree of heavy metal pollution in Arctic soils. Vestnik MGOU. Series: Natural Sciences, 2, 96–104 (in Russian).

Wang, Sh., Xu, Ya., Lin, Zh., Zhang, J., Norbu, N., & Liu, W. (2017). The harm of petroleum-polluted soil and its remediation research. AIP Conference Proceedings, 1864, 020222.