Exchange characteristics of an anthropogenically modified lagoon: an Eulerian-Lagrangian modeling case study with an emphasis on the number of particles

    Banu Tansel Büyükçelebi Affiliation
    ; Hasan Karabay Affiliation
    ; Ata Bilgili Affiliation


The transport pathways and exchange characteristics of the Kamil Abdüş Lagoon in Istanbul, Turkey, are simulated using a finite element model with a Lagrangian particle tracking module. The lagoon is in the process of being reconfigured. The simulations are performed using a draft configuration. The effect of winds and the number of particles on the e-folding time is simulated. Results show that the lagoon is strongly dominated by winds with a correlation coefficient of 0.897 between the wind and residual current magnitudes. The lagoon e-folds in 9.1 days under realistic winds and in 14.3 days when there is no wind with confidence levels of 5%. The Lagrangian study uses six simulations with particle numbers ranging between 65073 and 2730486. A methodology based on confidence levels is proposed. It is observed that approximately 784 000 particles are necessary to obtain 5% level of confidence. With a problematic history and new planning options, the lagoon has a potential to be used as an example setting, all-field study ground for anthropogenically engineered coastal ecosystems.

Keyword : particle tracking, number of particles, Lagrangian, exchange, residence time, wind, restoration, lagoon, numerical model, Tuzla

How to Cite
Tansel Büyükçelebi, B., Karabay, H., & Bilgili, A. (2021). Exchange characteristics of an anthropogenically modified lagoon: an Eulerian-Lagrangian modeling case study with an emphasis on the number of particles. Journal of Environmental Engineering and Landscape Management, 29(3), 251-262.
Published in Issue
Aug 23, 2021
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Alpar, B., & Yuce, H. (1998). Sea-level variations and their interactions between the Black Sea and the Aegean Sea. Estuarine Coastal and Shelf Science, 46(5), 609–619.

Andutta, F. P., Ridd, P. V., Deleersnijder, E., & Prandle, D. (2014). Contaminant exchange rates in estuaries – New formulae accounting for advection and dispersion. Progress in Oceanography, 120, 139–153.

Arega, F., & Badr, A. (2010). Numerical age and residence-time mapping for a small creek: Case study. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(4), 226–237.

Baudry, J., Dumont, D., & Schloss, I. R. (2018). Turbulent mixing and phytoplankton life history: A Lagrangian versus Eulerian model comparison. Marine Ecology Progress Series, 600, 55–70.

Bilgili, A., Swift, M. R., Lynch, D. R. & Ip, J. T. C. (2003). Modeling bed-load transport of coarse sediments in the Great Bay Estuary, New Hampshire. Estuarine, Coastal and Shelf Science, 58(4), 937–950.

Bilgili, A., Proehl, J. A., Lynch, D. R., Smith, K. W., & Swift, M. R. (2005). Estuary/Ocean exchange and tidal mixing in a Gulf of Maine Estuary: A Lagrangian modeling study. Estuarine Coastal and Shelf Science, 65(4), 607–624.

Bilgili, A., Smith, K. W., & Lynch, D. R. (2006). BatTri: A twodimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling. Computers & Geosciences, 32(5), 632–642.

Bilgili, A., Proehl, J. A., & Swift, M. R. (2016). Dredging for dilution: A simulation based case study in a Tidal River. Journal of Environmental Management, 167, 85–98.

Blanton, B. O. (1995). Drog3d: User’s manual for 3-dimensional drogue tracking on a finite element grid with linear finite elements. University of North Carolina at Chapel Hill.

Chagaris, D., Sagarese, S., Farmer, N., Mahmoudi, B., De Mutsert, K., Vanderkooy, S., Patterson, W. F., Kilgour, M., Schueller, A., Ahrens, R., & Lauretta, M. (2019). Management challenges are opportunities for fisheries ecosystem models in the Gulf of Mexico. Marine Policy, 101, 1–7.

Chen, Q., & Zhang, Z. (2007). Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric Environment, 41(25), 5236–5248.

Cucco, A., & Umgiesser, G. (2006). Modeling the Venice Lagoon residence time. Ecological Modelling, 193(1–2), 34–51.

Cucco, A., Umgiesser, G., Ferrarin, C., Perilli, A., Canu, D. M., & Solidoro, C. (2009). Eulerian and Lagrangian transport time scales of a tidal active coastal basin. Ecological Modelling, 220(7), 913–922.

Deleersnijder, E., Campin, J. M., & Delhez, E. J. M. (2001). The concept of age in marine modeling. I. Theory and preliminary model results. Journal of Marine Systems, 28(3–4), 229–267.

Delele, M. A., Jaeken, C., Debaer, C., Baetens, K., Melese Endalew, A., Ramon, H., Nicola, B. M., & Verboven, P. (2016). CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction. Computers and Electronics in Agriculture, 55(1), 16–27.

Delhez, E. J. M., De Brye, B., De Brauwere, A., & Deleersnijder, E. (2014). Residence time vs influence time. Journal of Marine Systems, 132, 185–195.

Dias, J. M., Lopes, J. F., & Dekeyser, I. (2001). Lagrangian transport of particles in Ria de Aveiro lagoon, Portugal. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(9), 721–727.

Diez, M., Mösso, C., Sierra, J. P., Mestres, M., Sanchez-Arcilla, A., Rodriguez, A., Bezerra, M. O., & Redondo, J. M. (1998). Estimation of dispersion coefficients in low wave energy surf zone using video images. In Proceedings of the 4th International Conference Littoral 98 (pp. 535–542), Barcelona, Spain.

Edwards, K. P., Hare, J. A., Werner, F. E., & Blanton, B. O. (2006). Lagrangian circulation on the Southeast US Continental Shelf: Implications for larval dispersal and retention. Continental Shelf Research, 26(12–13), 1375–1394.

Eheart, J. W. (2006). Some numerical properties of explicit solutions to the one-dimensional conservation equation. Water International, 31(2), 252–258.

Erturk, S. N., Bilgili, A., Swift, M. R., Brown, W. S., Çelikkol, B., Ip, J. T. C., & Lynch, D. R. (2002). Simulation of the Great Bay Estuarine System: Tides with tidal flats wetting and drying. Journal of Geophysical Research: Oceans, 107(5), 6-1–6-10.

Ferrarin, C., Bellafiore, D., Sannino, G., Bajo, M., & Umgiesser, G. (2018). Tidal dynamics in the inter-connected Mediterra nean, Marmara, Black and Azov seas. Progress in Oceanography, 161, 102–115.

Fugate, D. C., Friedrichs, C. T., & Bilgili, A. (2006). Estimation of residence time in a shallow back barrier lagoon, Hog Island Bay, Virginia, USA. In Proceedings of the 8th International Conference on Estuarine and Coastal Modeling (pp. 319–337). Charleston, South Carolina.

Graham, D. I., & Moyeed, R. A. (2002). How many particles for my Lagrangian simulations. Powder Technology, 125(2–3), 179–186.

Gosselin, F., Cordonnier, T., Bilger, I., Jappiot, M., Chauvin, C., & Gosselin, M. (2018). Ecological research and environmental management: We need different interfaces based on different knowledge types. Journal of Environmental Management, 218, 388–401.

Guyondet, T., & Koutitonsky, V. G. (2008). Tidal and residual circulations in coupled restricted and Leaky Lagoons. Estuarine Coastal and Shelf Science, 77(3), 396–408.

Harms, I. H., Karcher, M. J., & Burchard, H. (2003). Modelling radioactivity in the marine environment: The application of hydrodynamic circulation models for simulating oceanic dispersion of radioactivity. In E. M. Scott (Ed.), Modelling radioactivity in the environment (Vol. 4, pp. 55–85). Elsevier.

Hoyer, A. B., Wittman, M. E., Chandra, S., Schladow, S. G., & Rueda, F. J. (2014). A 3D individual-based aquatic transport model for the assessment of the potential dispersal of Planktonic Larvae of an Invasive Bivalve. Journal of Environmental Management, 145(12), 330–340.

Huggett, R. D., Purdie, D. A., & Haigh, I. D. (2020). Modelling the influence of Riverine inputs on the circulation and flushing times of small shallow estuaries. Estuaries and Coasts, 44, 54–69.

Inoue, M., & Wiseman Jr., W. J. (2000). Transport, mixing and stirring processes in a Louisiana estuary: A model study. Estuarine, Coastal and Shelf Science, 50(4), 449–466.

Ip, J. T. C., Lynch, D. R., & Friedrichs, C. T. (1998). Simulation of estuarine flooding and dewatering with application to Great Bay, New Hampshire. Estuarine Coastal and Shelf Science, 47(2), 119–141.

Larson, M. R., Foreman, M. G. G., Levings, C. D., & Tarbotton, M. R. (2003). Dispersion of discharged ship ballast water in Vancouver Harbor, Juan De Fuca Strait, and offshore of the Washington Coast. Journal of Environmental Engineering and Science, 2(3), 163–176.

Lynch, D. R., Greenberg, D. A., Bilgili, A., McGillicuddy Jr., D. J., Manning, J. P., & Aretxabaleta, A. L. (2015). Particles in the coastal ocean: Theory and applications. Cambridge University Press.

McLaughlin, J. M., Bilgili, A., & Lynch, D. R. (2003). Numerical modeling of tides in the Great Bay Estuarine System: Dynamical balance and spring–neap residual modulation. Estuarine, Coastal and Shelf Science, 57(1–2), 283–296.

Musiu, E. M., Qi, L., & Wu, Y. (2019). Evaluation of droplets size distribution and velocity pattern using Computational Fluid Dynamics modelling. Computers and Electronics in Agriculture, 164.

Ozbahceci, B. O. (2020). Extreme value statistics of wind speed and wave height of the Marmara Sea based on combined radar altimeter data. Advances in Space Research, 66(10), 2302– 2318.

Ozturk, H. (2005). Metropolitan development on drought history of the Tuzla Lake, Istanbul, Turkey. Journal of Coastal Research, 212, 255–262.

Pascal, P., & Oesterlé, B. (2000). On the dispersion of discrete particles moving in a turbulent shear flow. International Journal of Multiphase Flow, 26(2), 293–325.

Piattella, A., Brocchini, M., & Mancinelli, A. (2006). Topographically controlled, breaking-wave-induced macrovortices. Part 3. The mixing features. Journal of Fluid Mechanics, 559, 81–106.

Qin, X., Van Sebille, E., & Gupta, A. S. (2014). Quantification of errors by temporal resolution on Lagrangian particles in an Eddy-Resolving model. Ocean Modelling, 76(C), 20–30.

Schuwirth, N., Borgwardt, F., Domisch, S., Friedrichs, M., Kattwinkel, M., Kneis, D., Kuemmerlen, M., Langhans, S. D., Martínez-López, J., & Vermeiren, P. (2019). How to make ecological models useful for environmental management. Ecological Modelling, 411, 108784.

Shen, L. D., & Zou, Z. L. (2012). Study and verification on dispersion coefficient in wave field. Science China Technological Sciences, 55(5), 1443–1454.

Simons, R. D., Siegel, D. A., & Brown, K. S. (2013). Model sensitivity and robustness in the estimation of larval transport: A study of particle tracking parameters. Journal of Marine Systems, 119–120, 19–29.

Smagin, K. A., Khrenov, S. I., & Timofeev, E. M., (2018). Statistical aspects of particle behaviour in industrial electrostatic precipitators. In International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (pp. 1–5). IEEE.

Sofiev, M., Vira, J., Kouznetsov, R., Prank, M., Soares, J., & Genikhovich, E. (2015). Construction of an Eulerian atmospheric dispersion model based on the advection algorithm of M. Galperin: Dynamic cores v.4 and 5 of SILAM v.5.5. Geoscientific Model Development Discussions, 8, 2905–2947.

Stocker, R., & Imberger, J. (2003). Horizontal transport and dispersion in the surface layer of a medium sized lake. Limnology and Oceanography, 48(3), 971–982.

Swain, E. D., Wolfert, M. A., Bales, J. D., & Goodwin, C. R. (2004). Two dimensional hydrodynamic simulation of surfacewater flow and transport to Florida Bay through the Southern Inland and Coastal Systems (SICS) (US Geological Survey Water-Resources Investigations Report 2003–4287).

Swanson, C., Bilgili, A., & Lynch, D. (2015). Long-term simulations of wastewater treatment facility discharges into the Great Bay Estuarine System (New Hampshire). Water Quality, Exposure and Health, 7(1), 67–77.

Takeoka, H. (1984). Fundamental concepts of exchange and transport time scales in a coastal sea. Continental Shelf Research, 3(3), 311–326.

Tansel, B. (2010). High quality triangular grid generation for the risk analysis of a special lagoon. In M. Rahman & C. A. Brebbia (Eds.), Proceedings of the advances in fluid mechanics VIII (pp. 231–240). WIT Press.

Wu, J. (1982). Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research, 87(C12), 9704–9706.

Zecchetto, S., Umgiesser, G., & Brocchini, M. (1997). Hindcast of a storm surge induced by local real wind fields in the Venice Lagoon. Continental Shelf Research, 17(12), 1513–1538.

Zhang, L., Chen, L., Zhou, J., Wang, J., Yang, Q., & Han, L. (2020). Development and application of a new random walk model to simulate the transport of degradable pollutants. Journal of Hydrodynamics, 32(4), 784–789.

Zheng, L., Weisberg, R. H., Huang, Y., Luettich, R. A., Westerink, J. J., Kerr, P. C., Donahue, A. S., Crane, G., & Akli, L. (2013). Implications from the comparisons between two- and three- dimensional model simulations of the Hurricane Ike storm surge. Journal of Geophysical Research: Oceans, 118(7), 3350–3369.