Using historical aerial photography for monitoring of environment changes: a case study of Bovan Lake, Eastern Serbia

    Saša Bakrač Affiliation
    ; Viktor Marković Affiliation
    ; Siniša Drobnjak Affiliation
    ; Dejan Đorđević Affiliation
    ; Nikola Stamenković Affiliation


Useful and important information for the spatial, ecological, and many other changes in the living environment may be obtained using the analysis of historical aerial photography, with comparison to contemporary imagery. This method provides the ability to determine the state of elements of the space over a long period, encompassing the time when it was not possible to acquire the data from satellite imagery or some other contemporary sources. Aerial images are suitable for mapping spatial phenomena with relatively limited spatial distribution because they possess a high level of details and low spatial coverage. With a comparative analysis of aerial imagery from the past, contemporary aerial imagery, and other sources of aerial imagery, we can obtain information about the nature and trends of the observed phenomena as well as directions of future actions, considering changes detected in the environment, whether they are preventive or corrective in nature. This paper gives the methodological framework for the appliance of the existing knowledge from various fields, intending to use historical aerial photography for monitoring of environmental changes of the Bovan Lake in Eastern Serbia.

Keyword : environment, landscape, historical aerial photography, photography processing, mapping, remote sensing, spatial analysis

How to Cite
Bakrač, S., Marković, V., Drobnjak, S., Đorđević, D., & Stamenković, N. (2021). Using historical aerial photography for monitoring of environment changes: a case study of Bovan Lake, Eastern Serbia. Journal of Environmental Engineering and Landscape Management, 29(3), 305-317.
Published in Issue
Oct 13, 2021
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Alphan, H. (2003). Land‐use change and urbanization of Adana, Turkey. Land Degradation & Development, 14(6), 575–586.

Arango, C. P., & Tank, J. L. (2008). Land use influences the spatiotemporal controls on nitrification and denitrification in headwater streams. Journal of the North American Benthological Society, 27(1), 90–107.

Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (1999). Basi di dati, seconda edizione. McGraw-Hill.

Bakrač, S., Drobnjak, S., Stanković, S., Vučićević, A., & Stamenković, N. (2018). Preparation of photogrammetric archive documentation for scientific and other research. Sinteza, 2018, 17–22.

Baltrūnas, V., Slavinskienė, G., Karmaza, B., & Pukelytė, V. (2020). Effectiveness of a modern landfill liner system in controlling groundwater quality of an open hydrogeological system, SE Lithuania. Journal of Environmental Engineering and Landscape Management, 28(4), 174–182.

Bańales-Seguel, C., De la Barrera, F., & Salazar, A. (2018). An analysis of wildfire risk and historical occurrence for a mediterranean biosphere reserve, central Chile. Journal of Environmental Engineering and Landscape Management, 26(2), 128–140.

Battarbee, R. W., & Bennion, H. (2011). Palaeolimnology and its developing role in assessing the history and extent of human impact on lake ecosystems. Journal of Paleolimnology, 45(4), 399–404.

Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 251–259.

Cissel, R., Fly, C., Black, T., Luce, C., & Staab, B. (2011). Legacy roads and trails monitoring project. Road decommissioning in the Bull Run River watershed, Mt. Hood National Forest.

Collier, P., Inkpen, R., & Fontana, D. (2001). The use of historical photography in environmental studies. Cybergeo: European Journal of Geography.

Conte, G., Rudol, P., & Doherty, P. (2014). Evaluation of a lightweight LiDAR and a photogrammetric system for unmanned airborne mapping applications. Photogrammetrie-Fernerkundung-Geoinformation, 2014(4), 287–298.

Daigle, P. (2010). A summary of the environmental impacts of roads, management responses, and research gaps: A literature review. Journal of Ecosystems and Management, 10(3), 65–89.

Davidson, T. A., & Jeppesen, E. (2013). The role of palaeolimnology in assessing eutrophication and its impact on lakes. Journal of Paleolimnology, 49(3), 391–410.

Drobnjak, S., Sekulović, D., Amović, M., Gigović, L., & Regodić, M. (2016). Central geospatial database analysis of the quality of road infrastructure data. Geodetski Vestnik, 60(2), 270–284.

Dyce, M. (2013). Canada between the photograph and the map: Aerial photography, geographical vision and the state. Journal of Historical Geography, 39, 69–84.

Falk, D. A., Miller, C., McKenzie, D., & Black, A. E. (2007). Cross-scale analysis of fire regimes. Ecosystems, 10(5), 809–823.

Fensham, R. J., & Fairfax, R. J. (2002). Aerial photography for assessing vegetation change: a review of applications and the relevance of findings for Australian vegetation history. Australian Journal of Botany, 50(4), 415–429.

Firoz, A., Uddin, M. M., & Goparaju, L. (2018). 3D Mapping by photogrammetry and LiDAR in forest studies. World Scientific News, 95, 224–234.

Gaudėšius, R. (2020). Index of anthropogenic load on land (ALOL) as decision support method in territorial planning. Journal of Environmental Engineering and Landscape Management, 28(3), 116–124.

Government of Republic of Serbia. Ministry of Agriculture and Environmental Protection. (2015). Стратегијa управљања водама на територији републике Србије. Анализе и истраживања [Water management strategy on territories of the Republic of Serbia. Analysis and research]. Jaroslav Cerni Institute of Water Management. Belgrade.

Gong, P. (2012). Remote sensing of environmental change over China: A review. Chinese Science Bulletin, 57(22), 2793–2801.

Haque, M. I., & Basak, R. (2017). Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 251–263.

Jackson, M. M., Topp, E., Gergel, S. E., Martin, K., Pirotti, F., & Sitzia, T. (2016). Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. Canadian Journal of Forest Research, 46(3), 437–443.

Johnson, L. B., & Host, G. E. (2010). Recent developments in landscape approaches for the study of aquatic ecosystems. Journal of the North American Benthological Society, 29(1), 41–66.

Kanakiya, R. S., Singh, S. K., & Sharma, J. N. (2014). Determining the water quality index of an urban water body Dal Lake, Kashmir, India. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(12), 64–71.

Koff, T., Vandel, E., Marzecová, A., Avi, E., & Mikomägi, A. (2016). Assessment of the effect of anthropogenic pollution on the ecology of small shallow lakes using the palaeolimnological approach. Estonian Journal of Earth Sciences, 65(4), 221–233.

Kourgialas, N. N., & Karatzas, G. P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas – a case study. Hydrological Sciences Journal – Journal Des Sciences Hydrologiques, 56(2), 212–225.

Kull, C. A. (2005). Historical landscape repeat photography as a tool for land use change research. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 59(4), 253–268.

Li, X., Ming, X., Song, W., Qiu, S., Qu, Y., & Liu, Z. (2016). A fuzzy technique for order preference by similarity to an ideal solution-based quality function deployment for prioritizing technical attributes of new products. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2249–2263.

Lillesand, T. M., & Kiefer, R. W. (Eds.). (2000). Remote sensing and image interpretation (4 ed.). Wiley.

Linder, W. (2009). Digital photogrammetry. Springer.

Liu, X., Zhang, Z., Peterson, J., & Chandra, S. (2007). LiDARderived high quality ground control information and DEM for image orthorectification. GeoInformatica, 11(1), 37–53.

Liu, Z., & Yang, H. (2018). The impacts of spatiotemporal landscape changes on Water quality in Shenzhen, China. International Journal of Environmental Research and Public Health, 15(5), 1038.

Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Núñez Vargas, P., Pitman, N. C. A., Alberto Quesada, C., Salomão, R., Silva, J. N. M., Torres Lezama, A., Terborgh, J., Vásquez Martínez, R., & Vinceti, B. (2006). The regional variation of aboveground live biomass in old‐growth Amazonian forests. Global Change Biology, 12(7), 1107–1138.

Melnyk, A. (2008). Ecological analysis of landscapes. Methodology of Landscape Research. Commission of Cultural Landscape of Polish Geographical Society. Sosnowiec.

Military Geographical Institute. (2020). Archive photo documentation. Photogrammetry Department, Cartography Department, GIS Department.

Morgan, J. L., & Gergel, S. E. (2013). Automated analysis of aerial photographs and potential for historic forest mapping. Canadian Journal of Forest Research, 43(8), 699–710.

Morgan, J. L., Gergel, S. E., & Coops, N. C. (2010). Aerial photography: A rapidly evolving tool for ecological management. BioScience, 60(1), 47–59.

Newton, A. C., Hill, R. A., Echeverría, C., Golicher, D., Rey Benayas, J. M., Cayuela, L., & Hinsley, S. A. (2009). Remote sensing and the future of landscape ecology. Progress in Physical Geography, 33(4), 528–546.

Pflugmacher, D., Cohen, W. B., & Kennedy, R. E. (2012). Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sensing of Environment, 122, 146–165.

Pinto, A. T., Gonçalves, J. A., Beja, P., & Honrado, J. P. (2019). From archived historical aerial imagery to informative orthophotos: A framework for retrieving the past in long-term socioecological research. Remote Sensing, 11(11), 1388.

Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84.

Redecker, A. P. (2008). Historical aerial photographs and digital photogrammetry for impact analyses on derelict land sites in human settlement areas. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B8), 5–10.

Robinson, A. H., & Kimerling, A. (1995). Elements of cartography. Wiley.

Salinas‐Melgoza, M. A., Skutsch, M., & Lovett, J. C. (2018). Predicting aboveground forest biomass with topographic variables in human‐impacted tropical dry forest landscapes. Ecosphere, 9(1), e02063.

Sonnentag, O. (2009). Neteler, M., Mitasova, H., 2008. Open Source GIS A GRASS GIS Approach, 3rd ed. Springer, NY, USA, ISBN 978-0-387-35767-6, 406 pp., USD 99.00, CDN 128.95, EUR 81.95, Hardbound. Computers and Geosciences, 35(11), 2282.

Spellerberg, I. A. N. (1998). Ecological effects of roads and traffic: A literature review. Global Ecology & Biogeography Letters, 7(5), 317–333.

Sun, J. (2000a). Dynamic monitoring and yield estimation of crops by mainly using the remote sensing technique in China. Photogrammetric Engineering and Remote Sensing, 66(5), 645–650.

Sun, L. (2020b). Pollution assessment and source approximation of trace elements in the farmland soil near the trafficway. Journal of Environmental Engineering and Landscape Management, 28(1), 20–27.

Switalski, T. A., Bissonette, J. A., DeLuca, T. H., Luce, C. H., & Madej, M. A. (2004). Benefits and impacts of road removal. Frontiers in Ecology and the Environment, 2(1), 21–28.[0021:BAIORR]2.0.CO;2

Szatmári, J., Tobak, Z., & Novák, Z. (2016). Environmental monitoring supported by aerial photography – a case study of the burnt down Bugac Juniper Forest, Hungary. Journal of Environmental Geography, 9(1–2), 31–38.

Tobak, Z., Szatmári, J., & van Leeuwen, B. (2008). Small format aerial photography – remote sensing data acquisition for environmental analysis. Journal of Environmental Geography, 1(3–4), 21–26.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.

Valta-Hulkkonen, K., Kanninen, A., Ilvonen, R., & Leka, J. (2005). Assessment of aerial photography as a method for monitoring aquatic vegetation in lakes of varying trophic status. Boreal Environment Research, 10(1), 57–66.

Van Eetvelde, V., & Antrop, M. (2004). Analyzing structural and functional changes of traditional landscapes – two examples from Southern France. Landscape and Urban Planning, 67(1– 4), 79–95.

Wagner, T., Bremigan, M. T., Cheruvelil, K. S., Soranno, P. A., Nate, N. A., & Breck, J. E. (2007). A multilevel modeling approach to assessing regional and local landscape features for lake classification and assessment of fish growth rates. Environmental Monitoring and Assessment, 130(1–3), 437–454.

Wolf, P., Dewitt, B., & Wilkinson, B. (2014). Elements of photogrammetry with applications in GIS (4th ed.). McGraw-Hill Education.

Wrobel, B. P. (1991). The evolution of digital photogrammetry from analytical photogrammetry. The Photogrammetric Record, 13(77), 765–776.

Zhang, L., Xia, M., Zhang, L., Wang, C., & Lu, J. (2008). Eutrophication status and control strategy of Taihu Lake. Frontiers of Environmental Science & Engineering in China, 2(3), 280–290.