Assessing relations among landscape preference, informational variables, and visual attributes

    Gaochao Zhang Affiliation
    ; Jun Yang Affiliation
    ; Jing Jin Affiliation


The theory of preference matrix proposes coherence and complexity as informational variables to explain landscape preferences. To understand the relationship between the perceived coherence/complexity and the visual attributes of landscape scenes, we constructed multivariate generalized linear models based on a questionnaire study. A total of 488 respondents’ ratings of the preference, the perceived coherence and complexity, and four visual attributes, namely, the openness of visual scale (openness), the richness of composing elements (richness), the orderliness of organization (orderliness), and the depth of view (depth), of a set of digitally manipulated landscape scenes were analyzed. The results showed that landscape preference needed to be explained with coherence and complexity together. Meanwhile, rather than showing the one-one connection with a single visual attribute, the degree of perceived coherence/complexity should be explained with multiple visual attributes. Ranked by explanatory power, the coherence was positively related to orderliness, negatively related to richness, and positively related to openness. The complexity was positively influenced by the level of richness, depth, and negatively influenced by orderliness and openness. Based on the results, feasible ways to build landscape environments with both preferable coherence and complexity were proposed.

Keyword : preference matrix, coherence, complexity, visual attributes, explanatory model, landscape management

How to Cite
Zhang, G., Yang, J., & Jin, J. (2021). Assessing relations among landscape preference, informational variables, and visual attributes. Journal of Environmental Engineering and Landscape Management, 29(3), 294-304.
Published in Issue
Sep 23, 2021
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Appleton, J. (1996). The experience of landscape. Wiley.

Beute, F., & de Kort, Y. A. (2013). Let the sun shine! Measuring explicit and implicit preference for environments differing in naturalness, weather type and brightness. Journal of Environmental Psychology, 36, 162–178.

Buss, D. (2015). Evolutionary psychology: The new science of the mind (5th ed.). Psychology Press.

Chiang, Y.-C., Li, D., & Jane, H.-A. (2017). Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. Landscape and Urban Planning, 167, 72–83.

Coeterier, J. (1996). Dominant attributes in the perception and evaluation of the Dutch landscape. Landscape and Urban Planning, 34(1), 27–44.

Daniel, T. C. (2001). Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landscape and Urban Planning, 54(1–4), 267–281.

Daniel, T. C., & Meitner, M. M. (2001). Representational validity of landscape visualizations: the effects of graphical realism on perceived scenic beauty of forest vistas. Journal of Environmental Psychology, 21(1), 61–72.

Deng, L., Luo, H., Ma, J., Huang, Z., Sun, L.-X., Jiang, M.-Y., Zhu, C.-Y., & Li, X. (2020). Effects of integration between visual stimuli and auditory stimuli on restorative potential and aesthetic preference in urban green spaces. Urban Forestry & Urban Greening, 53, 126702.

Dronova, I. (2017). Environmental heterogeneity as a bridge between ecosystem service and visual quality objectives in management, planning and design. Landscape and Urban Planning, 163, 90–106.

Foelske, L., & van Riper, C. J. (2020). Assessing spatial preference heterogeneity in a mixed-use landscape. Applied Geography, 125.

Foltête, J.-C., Ingensand, J., & Blanc, N. (2020). Coupling crowd-sourced imagery and visibility modelling to identify landscape preferences at the panorama level. Landscape and Urban Planning, 197, 103756.

Hoyle, H., Hitchmough, J., & Jorgensen, A. (2017). All about the ‘wow factor’? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting. Landscape and Urban Planning, 164, 109–123.

Hunter, M. R., & Askarinejad, A. (2015). Designer’s approach for scene selection in tests of preference and restoration along a continuum of natural to manmade environments. Frontiers in Psychology, 6, 1228.

Hunziker, M., & Kienast, F. (1999). Potential impacts of changing agricultural activities on scenic beauty – a prototypical technique for automated rapid assessment. Landscape Ecology, 14(2), 161–176.

Ibarra, F. F., Kardan, O., Hunter, M. R., Kotabe, H. P., Meyer, F. A., & Berman, M. G. (2017). Image feature types and their predictions of aesthetic preference and naturalness. Frontiers in Psychology, 8, 632.

Kalivoda, O., Vojar, J., Skrivanova, Z., & Zahradnik, D. (2014). Consensus in landscape preference judgments: the effects of landscape visual aesthetic quality and respondents’ characteristics. Journal of Environmental Management, 137, 36–44.

Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. Cambridge University Press.

Kaplan, R., Kaplan, S., & Ryan, R. (1998). With people in mind: Design and management of everyday nature. Island Press.

Kotabe, H. P., Kardan, O., & Berman, M. G. (2017). The naturedisorder paradox: A perceptual study on how nature is disorderly yet aesthetically preferred. Journal of Experimental Psychology: General, 146(8), 1126–1142.

Kubovy, M., & Cohen, D. J. (2001). What boundaries tell us about binding. Trends in Cognitive Sciences, 5(3), 93–95.

Kuper, R. (2017). Evaluations of landscape preference, complexity, and coherence for designed digital landscape models. Landscape and Urban Planning, 157, 407–421.

Kuper, R. (2020). Preference and restorative potential for landscape models that depict diverse arrangements of defoliated, foliated, and evergreen plants. Urban Forestry & Urban Greening, 48, 126570.

Marselle, M. R., Irvine, K. N., Lorenzo-Arribas, A., & Warber, S. L. (2015). Moving beyond green: exploring the relationship of environment type and indicators of perceived environmental quality on emotional well-being following group walks. International Journal of Environmental Research and Public Health, 12(1), 106–130.

Murphy, M. (2005). Landscape architecture theory. Island Press.

Nasar, J., & Li, M. (2004). Landscape mirror: the attractiveness of reflecting water. Landscape and Urban Planning, 66(4), 233–238.

Nasar, J., & Lin, Y.-H. (2003). Evaluative responses to five kinds of water features. Landscape Research, 28(4), 441–450.

Ode, Å., Hagerhall, C. M., & Sang, N. (2010). Analysing visual landscape complexity: theory and application. Landscape Research, 35(1), 111–131.

Ode, Å., Tveit, M. S., & Fry, G. (2008). Capturing landscape visual character using indicators: touching base with landscape aesthetic theory. Landscape Research, 33(1), 89–117.

Schirpke, U., Tappeiner, G., Tasser, E., & Tappeiner, U. (2019). Using conjoint analysis to gain deeper insights into aesthetic landscape preferences. Ecological Indicators, 96, 202–212.

Schüpbach, B., Weiß, S. B., Jeanneret, P., Zalai, M., Szalai, M., & Frör, O. (2021). What determines preferences for seminatural habitats in agrarian landscapes? A choice-modelling approach across two countries using attributes characterising vegetation. Landscape and Urban Planning, 206, 103954.

Sevenant, M., & Antrop, M. (2010). The use of latent classes to identify individual differences in the importance of landscape dimensions for aesthetic preference. Land Use Policy, 27(3), 827–842.

Sowinska-Swierkosz, B., & Soszynski, D. (2019). The index of the Prognosis Rural Landscape Preferences (IPRLP) as a tool of generalizing peoples’ preferences on rural landscape. Journal of Environmental Management, 248, 109272.

Stamps, A. (2004). Mystery, complexity, legibility and coherence: A meta-analysis. Journal of Environmental Psychology, 24(1), 1–16.

Suppakittpaisarn, P., Larsen, L., & Sullivan, W. C. (2019). Preferences for green infrastructure and green stormwater infrastructure in urban landscapes: Differences between designers and laypeople. Urban Forestry & Urban Greening, 43, 126378.

Taylor, R., Spehar, B., Hagerhall, C., & Van Donkelaar, P. (2011). Perceptual and physiological responses to Jackson Pollock’s fractals. Frontiers in Human Neuroscience, 5, 60.

Tempesta, T. (2010). The perception of agrarian historical landscapes: A study of the Veneto plain in Italy. Landscape and Urban Planning, 97(4), 258–272.

Tveit, M., Ode, Å., & Fry, G. (2006). Key concepts in a framework for analysing visual landscape character. Landscape Research, 31(3), 229–255.

Ulrich, R. S. (1983). Aesthetic and affective response to natural environment. In Human Behavior and Environment: Vol. 6. Behavior and the natural environment (pp. 85–125). Springer.

Valtchanov, D., & Ellard, C. G. (2015). Cognitive and affective responses to natural scenes: effects of low level visual properties on preference, cognitive load and eye-movements. Journal of Environmental Psychology, 43, 184–195.

van der Jagt, A. P. N., Craig, T., Anable, J., Brewer, M. J., & Pearson, D. G. (2014). Unearthing the picturesque: The validity of the preference matrix as a measure of landscape aesthetics. Landscape and Urban Planning, 124, 1–13.

Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Klatzky, R. L., Lederman, S. J., & Merfeld, D. (2008). Sensation & perception (2nd ed.). Sinauer Associates.

Yang, B.-E., & Brown, T. J. (1992). A cross-cultural comparison of preferences for landscape styles and landscape elements. Environment and Behavior, 24(4), 471–507.