Share:


Optimization of EDTA enhanced soil washing on multiple heavy metals removal using response surface methodology

    Liwei He Affiliation
    ; Bin Li Affiliation
    ; Ping Ning Affiliation
    ; Xiao Gong Affiliation

Abstract

This research presents the optimization of soil washing conditions in the removal of multiple heavy metals (Cu-Pb-Zn-Cd) under the using of ethylenediaminetetraacetic acid (EDTA). The optimum combination of washing parameters in a bench-scale soil washing experiments is determined by response surface methodology (RSM). Central composite design is applied after single factor experiment, EDTA concentration, solid-to-liquid ratio and washing time are evaluated variables for the removal processes, and the regression models of HMs are constructed. The results show that, EDTA concentration and solid-to-liquid ratio are significant factors for this process. Subsequently, 50% of Cu removal was set as the optimum target to optimize the combined conditions, through the building of multiple quadratic regression models, the optimal condition combination is determined that EDTA concentration is 0.0026 mol·L-1, solid-to-liquid ratio is 1:22, washing time is 3.89 h, the extraction rate of Pb, Zn, Cd is predicted to be 78%, 75% and 71%, respectively.

Keyword : soil cleaning technologies, soil washing, multiple heavy metals pollution, response surface methodology

How to Cite
He, L., Li, B., Ning, P., & Gong, X. (2018). Optimization of EDTA enhanced soil washing on multiple heavy metals removal using response surface methodology. Journal of Environmental Engineering and Landscape Management, 26(4), 241-250. https://doi.org/10.3846/jeelm.2018.6121
Published in Issue
Nov 15, 2018
Abstract Views
1018
PDF Downloads
631
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Arao, T., Ishikawa, S., Murakami, M., Abe, K., Maejima, Y., & Makino, T. (2010). Heavy metal contamination of agricultural soil and countermeasures in japan. Paddy Water Environs, 8(3), 247-257. https://doi.org/10.1007/s10333-010-0205-7

Barker, T. B. (1985). Quality by experimental design. New York: Marcel Dekker.

Cameselle, C., & Alberto, P. (2016). Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals. Process Safety & Environmental Protection, 104, 209-217. https://doi.org/10.1016/j.psep.2016.09.002

Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Peretti, R., & Zucca, A. (2003). Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Minerals Engineering, 16(3), 187-192. https://doi.org/10.1016/S0892-6875(03)00003-7

Dean, A., & Voss, D. (2010). Design and analysis of experiments. Beijing: World Publishing Corporation.

Dermont, G., Bergeron, M., Mercier, G., & Richerlaflèche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043

Di Palma, L., Ferrantelli, P., & Medici, F. (2005). Heavy metals extraction from contaminated soil: recovery of the flushing solution. Journal of Environmental Management, 77(3), 205-211. https://doi.org/10.1016/j.jenvman.2005.02.018

Elnaggar, N. E. A., Elshweihy, N. M., & Elewasy, S. M. (2016). Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing streptomyces cavourensis strain neae-42. BMC Microbiology, 16(1), 217. https://doi.org/10.1186/s12866-016-0830-4

Evangelou, M. W., Bauer, U., Ebel, M., & Schaeffer, A. (2007). The influence of edds and edta on the uptake of heavy metals of cd and cu from soil with tobacco nicotiana tabacum. Chemosphere, 68(2), 345-353. https://doi.org/10.1016/j.chemosphere.2006.12.058

Ferraro, A., Fabbricino, M., Hullebusch, E. D. V., Esposito, G., & Pirozzi, F. (2016). Effect of soil/contamination characteristics and process operational conditions on aminopolycarboxylates enhanced soil washing for heavy metals removal: a review. Reviews in Environmental Science & Bio/technology, 15(1), 111-145. https://doi.org/10.1007/s11157-015-9378-2

Finzgar, N., Jez, E., Voglar, D., & Lestan, D. (2014). Spatial distribution of metal contamination before and after remediation in the Meza Valley, Slovenia. Geoderma, 217-218, 135-143. https://doi.org/10.1016/j.geoderma.2013.11.011

Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., & Pandey, A. (2003). Use of response surface methodology for optimizing process parameters for the production of α-amylase by aspergillus oryzae. Biochemical Engineering Journal, 15(2), 107-115. https://doi.org/10.1016/S1369-703X(02)00192-4

Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K. M., Sukumaran, R. K., & Pandey, A. (2008). Response surface methodology for the optimization of alpha amylase production by bacillus amyloliquefaciens. Bioresour Technology, 99(11), 4597-4602. https://doi.org/10.1016/j.biortech.2007.07.028

Gao, Y., He, J., Ling, W., Hu, H., & Liu, F. (2003). Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International, 29(5), 613-618. https://doi.org/10.1016/S0160-4120(03)00048-5

GB 9834-88:1988. Method for determination of soil organic matter. Ministry of Agriculture of the People’s Republic of China.

Guo, X., Wei, Z., Wu, Q., Li, C., Qian, T., & Zheng, W. (2016). Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments. Chemosphere, 147, 412-419. https://doi.org/10.1016/j.chemosphere.2015.12.087

Gupta, B., Poudel, B. K., Pathak, S., Tak, J. W., Lee, H. H., Jeong, J. H., Choi, H. G., Yong, C. S., & Kim, J. O. (2016). Effects of formulation variables on the particle size and drug encapsulation of imatinib-loaded solid lipid nanoparticles. Aaps Pharmscitech, 17(3), 652-662. https://doi.org/10.1208/s12249-015-0384-z

Haapea, P., & Tuhkanen, T. (2006). Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. Journal of Hazardous Materials, 136(2), 244-250. https://doi.org/10.1016/j.jhazmat.2005.12.033

Hwang, C. F., Chang, J. H., Houng, J. Y., Tsai, C. C., Lin, C. K., & Tsen, H. Y. (2012). Optimization of medium composition for improving biomass production of Lactobacillus plantarum, Pi06 using the Taguchi array design and the Box-Behnken method. Biotechnology & Bioprocess Engineering, 17(4), 827-834. https://doi.org/10.1007/s12257-012-0007-4

Kang, C. H., & So, J. S. (2016). Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecological Engineering, 97, 304-312. https://doi.org/10.1016/j.ecoleng.2016.10.016

Khosravi, K. D., Vasheghani, F. E., Shojaosadati, S. A., & Yamini, Y. (2004). Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for Poly(R‐hydroxybutyrate) recovery. Biotechnology Progress, 20, 1757-1765. https://doi.org/10.1021/bp0498037

Kulikowska, D., Gusiatin, Z. M., Bułkowska, K., & Kierklo, K. (2015). Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil. Chemosphere, 136, 42-49. https://doi.org/10.1016/j.chemosphere.2015.03.083

Leštan, D., Luo, C. L., & Li, X. D. (2008). The use of chelating agents in the remediation of metal-contaminated soils: A review. Environmental Pollution, 153(1), 3-13. https://doi.org/10.1016/j.envpol.2007.11.015

Lionberger, R. A., Lee, S. L., Lee, L., Raw, A., & Yu, L. X. (2008). Quality by design: concepts for andas. AAPS Journal, 10(2), 268-276. https://doi.org/10.1208/s12248-008-9026-7

Lo, I. M. C., Tanboonchuy, V., Yan, D. Y. S., Grisdanurak, N., & Liao, C. H. (2012). A hybrid approach for Pahs and metals removal from field-contaminated sediment using activated persulfate oxidation coupled with chemical-enhanced washing. Water Air & Soil Pollution, 223(8), 4801-4811. https://doi.org/10.1007/s11270-012-1236-z

Madeira, C., Ribeiro, S. C., Turk, M. Z., & Cabral, J. M. (2010). Optimization of gene delivery to HEK293T cells by microporation using a central composite design methodology. Biotechnology Letters, 32(10), 1393-1399. https://doi.org/10.1007/s10529-010-0327-4

Mandal, A., Purakayastha, T. J., & Patra, A. K. (2014). Phytoremediation of arsenic contaminated soil by Chinese brake fern (Pteris vittata): Effect on soil microbiological activities. Biology & Fertility of Soils, 50, 1247-1252. https://doi.org/10.1007/s00374-014-0941-8

Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: a review. Journal of Hazardous Materials, 285, 419-435. https://doi.org/10.1016/j.jhazmat.2014.12.009

Moradpour, Z., Ghasemian, A., Mohkam, M., & Ghasemi, Y. (2012). Isolation, molecular identification and statistical optimization of culture condition for a new extracellular cholesterol oxidase-producing strain using response surface methodology. Annals of Microbiology, 63(3), 941-950. https://doi.org/10.1007/s13213-012-0547-z

Moutsatsou, A., Gregou, M., Matsas, D., & Protonotarios, V. (2016). Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities. Chemosphere, 63(10), 1632-1640. https://doi.org/10.1016/j.chemosphere.2005.10.015

Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193-207. https://doi.org/10.1016/S0013-7952(00)00101-0

Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66(1-2), 151-210. https://doi.org/10.1016/S0304-3894(99)00010-2

Poudel, B. K., Marasini, N., Tran, T. H., Choi, H. G., Yong, C. S., & Kim, J. O. (2012). Formulation, characterization and optimization of valsartan self-microemulsifying drug delivery system using statistical design of experiment. Chemical & Pharmaceutical Bulletin, 60(11), 1409-1418. https://doi.org/10.1248/cpb.c12-00502

Shen, N., Wang, Q., Qin, Y., Zhu, J., Zhu, Q., Mi, H., Wei, H., & Huang, R. (2014). Optimization of succinic acid production from cane molasses by Actinobacillus succinogenes GXAS137 using response surface methodology (RSM). Food Science & Biotechnology, 23(6), 1911-1919. https://doi.org/10.1007/s10068-014-0261-7

Sugashini, S., & Begum, K. M. M. S. (2013). Optimization using central composite design (CCD) for the biosorption of Cr(VI) ions by cross linked chitosan carbonized rice husk (CCACR). Clean Technologies & Environmental Policy, 15(2), 293-302. https://doi.org/10.1007/s10098-012-0512-3

Sun, B., Zhao, F. J., & Lombi, E. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113(2), 111-120. https://doi.org/10.1016/S0269-7491(00)00176-7

Tanyildizi, M. S. (2011). Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chemical Engineering Journal, 168, 1234-1240. https://doi.org/10.1016/j.cej.2011.02.021

Tsang, D. C., & Lo, I. M. 2006. Competitive cu and cd sorption and transport in soils: a combined batch kinetics, column, and sequential extraction study. Environmental Science & Technology, 40(21), 6655-6661. https://doi.org/10.1021/es060625i

Voglar, D., & Lestan, D. (2012). Pilot-scale washing of metal contaminated garden soil using EDTA. Journal of Hazardous Materials, 215-216, 32-39. https://doi.org/10.1016/j.jhazmat.2012.02.022

Wasay, S. A., Barrington, S., & Tokunaga, S. (2001). Organic acids for the in-situ remediation of soils polluted by heavy metals: soil flushing in columns. Water, Air, & Soil Pollution, 127(1), 301-314. https://doi.org/10.1023/A:1005251915165

Wuana, R. A., Okieimen, F. E., & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science & Technology, 7, 485-496. https://doi.org/10.1007/BF03326158

Xia, W. B., Gao, H., Wang, X. H., Zhou, C. H., Liu, Y. G., Fan, T., & Wang, X. (2009). Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants. Journal of Hazardous Materials, 164(2-3), 936-940. https://doi.org/10.1016/j.jhazmat.2008.08.092

Yin, X. L., You, Q. H., & Jiang, Z. H. (2011). Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydrate Polymers, 86(3), 1358-1364. https://doi.org/10.1016/j.carbpol.2011.06.053