Reduction in adverse environmental impacts associated with the operation of combine harvesters during the harvesting of winter oilseed rape

    Liudvikas Špokas Affiliation
    ; Dainius Steponavičius Affiliation
    ; Gediminas Žebrauskas Affiliation
    ; Aušra Čiplienė Affiliation
    ; Laimis Bauša Affiliation


When harvesting winter oilseed rape (WOSR), leaving higher (~0.3–0.4 m) crop stubble is an effective method of reducing fuel consumption and contaminant emissions of a combine harvester equipped with the tangential threshing apparatus and straw walkers. At a speed of 4 km h−1, when the stubble height of WOSR was increased from 0.2 to 0.4 m, the mass of material other than grain (MOG) fed to the harvester was reduced by 7 t h−1, resulting in a reduction of 6.2 l h−1 in fuel consumption, 5.7 kg h−1 in carbon equivalent (CE), and 16.3 kg h−1 in CO2 emissions. A more accurate estimate of harvester performance is the fuel consumption per ton of threshed seeds. On increasing the MOG mass feed rate to 15.6 t h−1, the fuel consumption per ton of threshed rapeseeds decreased to 3.33 l t−1, CE reached 40.2 kg h−1 or 3.0 kg t−1, and CO2 emissions reached 121.3 kg h−1 or 9.2 kg t−1 of threshed rapeseed. When optimizing the automatic speed control system of the combine harvester, the MOG mass feed rate, the permissible limit of seed losses, and fuel consumption per ton of threshed seeds must be considered.

Keyword : combine harvester, fuel consumption, carbon dioxide, carbon equivalence, grain losses

How to Cite
Špokas, L., Steponavičius, D., Žebrauskas, G., Čiplienė, A., & Bauša, L. (2019). Reduction in adverse environmental impacts associated with the operation of combine harvesters during the harvesting of winter oilseed rape. Journal of Environmental Engineering and Landscape Management, 27(2), 72-81.
Published in Issue
Apr 17, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


ASAE. (1993). Moisture measurement – forages (No. S358.2). Michigan: ASAE.

Assefa, Y., Prasad, P. V., Foster, C., Wright, Y., Young, S., Bradley, P., Stamm, M., & Ciampitti, I. A. (2018). Major management factors determining spring and winter canola yield in North America. Crop Science, 58(1), 1-16.

Bauša, L., Steponavičius, D., Jotautienė, E., Kemzūraitė, A., & Zaleckas, E. (2018). Application of oilseed rape pod sealants to reduce adverse environmental impacts. Journal of the Science of Food and Agriculture, 98(6), 2428-2436.

Bennett, E. J., Jeremy, A. R., & Wagstaff, C. (2011). The role of the pod in seed development: strategies for manipulating yield. Tansley Review. New Phytologist, 190(4), 838-853.

Chico-Santamarta, L., Godwin, R. J., Chaney, K., White, D. R., & Humphries, A. C. (2013). On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the ombustion related properties. Energy, 50, 429-437.

Christen, O., & Friedt, W. (2011). Winterraps (2 Aufl.). Frankfurt am Main: DLG-Verlag.

Dyer, J. A., & Desjardins, R. L. (2003). Simulated farm fieldwork, energy consumption and related greenhouse gas emissions in Canada. Biosystems Engineering, 85(4), 503-513.

Feiffer, A., Feiffer, P., Kutschenreiter, W., & Rademacher, T. (2005). Cereals harvest – clean, safe, fast. Frankfurt: DLG- Verlag.

Fríd, M., Dolan, A., Celjak, I., Filip, M., & Bartos, P. (2017). Harvest of cereals and oilseeds rape by combine harvesters New Holland CX 8090 and New Holland CR 9080. Poljoprivredna Tehnika, 42(2), 19-24.

Gulden, R. H., Shirtliffe, S. J., & Thomas, A. G. (2003). Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Science, 51(1), 83-86.[0083:HLOCBN]2.0.CO;2

Haile, T. A., Holzapfel, C. B., & Shirtliffe, S. J. (2014). Canola genotypes and harvest methods affect seedbank addition. Agronomy Journal, 106(1), 236-242. https://doi:10.2134/agronj2013.0376

Hobson, R. N., & Bruce, D. M. (2002). Seed loss when cutting a standing crop of oilseed rape with two types of combine harvester header. Biosystems Engineering, 81(3), 281-286.

Jensen, L. S., Mueller, T., Magid, J., & Nielsen, N. E. (1997). Temporal variation of C and N mineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field. Soil Biology and Biochemistry, 29(7), 1043-1055.

Jeong, H. S., Kim, H. Y., Ahn, S. H., Oh, S. C., Yang, I., & Choi, I. G. (2014). Optimization of enzymatic hydrolysis conditions for extraction of pectin from oilseed rapeseed cake (Brassica napus L.) using commercial enzymes. Food Chemistry, 157, 332-338.

Juostas, A., & Janulevičius, A. (2014). Tractor’s engine efficiency and exhaust emissions’ research in drilling work. Journal of Environmental Engineering and Landscape Management, 22(2), 141-150.

Kehayov, D., Vezirov, C., & Atanasov, A. (2004). Some technical aspects of cut height in wheat harvest. Agronomy Research, 2(2), 181-186.

Koga, N., Tsuruta, H., Tsuji, H., & Nakano, H. (2003). Fuel consumption-derived CO2 emissions under conventional and reduced tillage cropping systems in northern Japan. Agriculture, Ecosystems & Environment, 99(1-3), 213-219.

Kosteckas, R., Liakas, V., Šiuliauskas, A., Rauckis, V., Liakienė, E., & Jakienė, E. (2009). Effect of Pinolen on winter oilseed rape seed losses in relation to maturity. Agronomy Research, 7(1), 347-354.

Lal, R. (2004). Carbon emission from farm operations. Environment International, 30(7), 981-990.

Lutman, P. J. W., Freeman, S. E., & Pekrun, C. (2003). The longterm persistence of seeds of oilseed rape (Brassica napus) in arable fields. The Journal of Agricultural Science, 141(2), 231-240.

Miu, P. I. (2015). Cereal threshing and separating processes: threshing units. In P. Miu (Ed.), Theory, modelling, and design (pp. 189-260). CRC Press.

Olivier, J. G. J., Maenhout, G. J., & Peters, J. A. H. W. (2012). Trends in global CO2 emissions-2012 (Report). Netherlands Environmental Assessment Agency, Hague.

Oyediran, O. B., & Wufem, B. M. (2017). Models for computing emission of carbon dioxide from liquid fuel in Nigeria. American Journal of Mathematical and Computer Modelling, 2(1), 29-38.

Pari, L., Assirelli, A., Suardi, A., Civitarese, V., Del Giudice, A., Costa, C., & Santangelo, E. (2012). The harvest of oilseed rape (Brassica napus L.): The effective yield losses at on-farm scale in the Italian area. Biomass and Bioenergy, 46, 453-458.

Peltonen-Sainio, P., Pahkala, K., Mikkola, H., & Jauhiainen, L. (2014). Seed loss and volunteer seedling establishment of oilseed rapeseed in the northernmost European conditions. Agricultural and Food Science, 23, 327-339.

Price, J. S., Hobson, R. N., Neale, M. A., & Bruce, D. M. (1996). Seed losses in commercial harvesting of oilseed rape. Journal of Agricultural Engineering Research, 65(3), 183-191.

Rathke, G. W., Behrens, T., & Diepenbrock, W. (2006). Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agriculture, Ecosystems & Environment, 117(2-3), 80-108.

Reckleben, Y., & Vosshenrich, H.-H. (2008). Cereals harvest by the high cut. Getreide, 13(2), 108-109.

Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2015). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27.

Špokas, L., & Steponavičius, D. (2011). Fuel consumption during cereal and oilseed rape harvesting and methods of its reduction. Journal of Food, Agriculture & Environment, 9(3/4, part 1), 257-263.

Špokas, L., Velička, R., Marcinkevičienė, A., & Domeika, R. (2004). Optimization of spring oilseed rape harvest time by choosing crop varieties. Die Bodenkultur, 55(3), 113-120.

Strakšas, A., Kučinskas, V., Šniauka, P., & Vaiciukevičius, E. (2013). Singularities of white clover seed harvesting in Lithuania. Agricultural Engineering, 45(1), 96-110.

Teper, D., Skubida, P., Semkiw, P., & Skowronek, W. (2013). Exploitation of oilseed rape flow by bee colonies in stationary and migratory apiary. Journal of Apicultural Science, 57(1), 85-94.

Thiyam, U., Kuhlmann, A., Stöckmann, H., & Schwarz, K. (2004). Prospects of oilseed rapeseed oil by-products with respect to antioxidative potential. Comptes Rendus Chimie, 7(6-7), 611-616.

Tomita, M., Kawase, Y., Takahashi, H., Shimizu, K., Chiba, M., Harano, M., Sugiura, Y., & Seki, E. (2013). Development of a torque measurement device for a head-feeding combine harvester engine output shaft. Japan Agricultural Research Quarterly: JARQ, 47(3), 243-248.

United States Department of Agriculture. (2018). World agricultural production. Retrieved from

West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91(1-3), 217-232.

Zając, T., Klimek-Kopyra, A., Oleksy, A., Lorenc-Kozik, A., & Ratajczak, K. (2016). Analysis of yield and plant traits of oilseed rape (Brassica napus L.) cultivated in temperate region in light of the possibilities of sowing in arid areas. Acta Agrobotanica, 69(4), 1-13.