Unmanned aerial vehicle appliance in microgravity research


Microgravity experiments are important in field of space development; they give the possibility to simulate near-space conditions to test new systems and subsystems for space or to perform researches in various fields. The existing platforms, to perform reduced gravity experiments, allow us to achieve the targets of the researches. Otherwise these platforms are either very expensive or very short duration. Another key issue is the repeatability of the experiment. Fast repeatability platform (ensuring fast turn-around time), can guarantee only few seconds of microgravity time. For these reason, there is the need of platforms for microgravity experiments that will cover the needs of all the experiments that cannot fit into required time, cost and repeatability of any other experiment methodology. The paper explains the mission plan and first scientific data of parabolic unmanned plane research.

Article in English.

Bepiločio orlaivio naudojimas mikrogravitaciniams tyrimams


Šio darbo tikslas – analitiškai ir eksperimentiškai ištirti bepiločio orlaivio naudojimą nulinės (sumažintos) gravitacijos sąlygoms simuliuoti. Darbe aprašytos ir palygintos jau esamos mikrogravitacijos tyrimų platformos. Akivaizdu, kad reikalinga pigesnė ir prieinamesnė tyrimo platforma. Darbe analizuojama bepiločio orlaivio naudojimo galimybė, parinktas ir išbandytas parabolinio skrydžio algoritmas orlaivio tyrimų platformos koncepcijai, atlikti skrydžiai su simuliatoriumi ir realiu orlaiviu.

Reikšminiai žodžiai: bepilotis orlaivis, mikrogravitacija, tyrimų platforma.


Keyword : UAV, parabola flight, microgravity research

How to Cite
Pupinis, T., Bručas, D., Razgūnas, M., & Valdatta, M. (2018). Unmanned aerial vehicle appliance in microgravity research. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 9(6), 579-582.
Published in Issue
Jan 18, 2018
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Anderson, S. 1992. Microgravity: UQ Honours Thesis. Illinois Institute, JAV, 58–60.

Dreyer, M. 2006. The Drop tower Bremen, Microgravity Science and Technology 28(8–9): 22–35.

Hofmeister, P. G.; Blum, J. 2015. Parabolic flights @ home, Microgravity Science and Technology 48(5–6): 191–197.

Hart, M.; Liable, M.; Fox, J.; Bacque, D.; Morin, L.; Rosso, D. 2011. Unmanned microgravity flight program, exploration and planetary science. John Space Centre, JAV. 198 p.

Haber, H.; Haber, F. 2004. Possible methods of producing the gravity-free state for medical research, The Journal of Aviation Medicine 21(5): 395–400.

Jules, K.; McPherson, K.; Hrovat, K.; Kelly, E.; Reckart, T. 2010. A status report on the characterization of the micro-gravity environment of the International space station, Acta Astronautica 6(5): 316–365.

Pletser, V. 2004. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns, Acta Astronautica 55(10): 829–854.

Pletser, V.; Pacros, A.; Minster, O. 2003. International heat and mass transfer experiments on the 48th ESA parabolic flight campaign of March 2008, Microgravity Science and Technology 20(3–4): 177–182.

Shin-Ichiro, H.; Shotaro, K. 2010. Automatic microgravity flight system and flight testing using a small UA, Japan Social Microgravity appliance 27(1): 3–10.