Share:


Using skeletons of urban shape to model social capital in Lithunania

Abstract

How and to what extent does the environment affect people’s behavior? This study focuses on a narrow and specialized statistical indicator describing human sociability – social capital, and an easily replicable method of researching the urban environment – the skeleton analysis of the urban form. Social capital is a growing in popularity and important statistical indicator which describes social environment of the place. Shape skeleton analysis allow us to model how a person perceives shapes. In this study, social capital is measured by the Putnam methodology adapted to Lithuania, and the shape skeleton methodology of the urban form is adapted based on psychological research. Artificial intelligence methods using data from urban form generated prediction which had statistically weak relationship with social capital.


Article in Lithuanian.


Lietuvos socialinio kapitalo modeliavimas taikant urbanistinės formos skeleto metodą


Santrauka


Kaip ir kiek aplinka veikia žmonių elgesį? Šiame tyrime koncentruojamasi į siaurą ir specializuotą žmonių visuomeniškumą apibūdinantį statistinį rodiklį – socialinį kapitalą ir nesunkiai pakartojamą urbanistinės aplinkos tyrimo būdą – urbanistinės formos skeleto analizę. Socialinis kapitalas yra populiarėjantis ir svarbus statistinis vietovės rodiklis, apibūdinantis socialinę aplinką. Formos skeleto analizės tyrimai, supaprastintai galima sakyti, leidžia modeliuoti, kaip žmogus suvokia formą. Šiame tyrime socialinis kapitalas išmatuojamas adaptuota Lietuvai Putnamo metodika, o urbanistinės formos skeleto metodologija pritaikyta remiantis psichologijos tyrimais. Modeliuoti taikant dirbtinio intelekto metodus buvo rastas statistiškai silpnas ryšys tarp urbanistinės formos ir socialinio kapitalo.


Reikšminiai žodžiai: socialinis kapitalas, urbanistinė forma, formos skeletas, parametrizacija, formos suvokimas, modeliavimas.

Keyword : social capital, urban form, shape skeleton, parameterization, shape perception, modeling

How to Cite
Ivaškevičius, M. (2020). Using skeletons of urban shape to model social capital in Lithunania. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 12. https://doi.org/10.3846/mla.2020.12319
Published in Issue
Jul 9, 2020
Abstract Views
201
PDF Downloads
87
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alexander, C. (1977). A pattern language: towns, buildings, construction. Oxford University Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl­King, I., & Angel, S. (1977). A pattern language: towns, buildings, construction. Oxford University Press.

Aichholzer, O., & Aurenhammer, F. (1996). Straight skeletons for general polygonal figures in the plane. In J. Y. Cai, & C. K. Wong (Eds.), COCOON 1996: Computing and combinatorics (Vol. 1090, pp.117–126). Springer. https://doi.org/10.1007/3-540-61332-3_144

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167–11177. https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003

Belen, M. (2002). Logic Gates made with DNA. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.1221&rank=1

Blum, H. (1964). A transformation for extracting new descriptors of shape. http://isgwww.cs.uni­magdeburg.de/~stefans/npr/entry­Blum­1967­ATF.html

Chen, T. (2016). Story and lessons behind the evolution of XGBoost. https://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html

Cournapeau, D. (2018). Scikit-learn: Machine learning in Python—Scikit-learn 0.21.2 documentation. https://scikit-learn.org/stable/

Demaine, E., Demaine, M., & Lubiw, A. (1998). Folding and cutting paper. https://erikdemaine.org/papers/JCDCG98/

Firestone, C., & Scholl, B. J. (2014). “Please tap the shape, anywhere you like”: Shape skeletons in human vision revealed by an exceedingly simple measure. Psychological Science, 25(2), 377–386. https://doi.org/10.1177/0956797613507584

Floares, A., Ferisgan, M., Onita, D., Ciuparu, A., Calin, G., & Manolache, F. (2017). The smallest sample size for the desired diagnosis accuracy. International Journal of Oncology and Cancer Therapy, 2, 13–19. https://www.iaras.org/iaras/home/caijoct/the-smallest-sample-size-for-the-desired-diagnosis-accuracy

Flom, P., & Cassell, D. (2007). Stopping stepwise: why stepwise and similar selection methods are bad, and what you should use. https://www.lexjansen.com/cgi-bin/xsl_transform.php?x=nesug2007

Gehl, J., & Rogers, L. R. (2010). Cities for people (1st ed.). Island Press.

Geofabrik. (2016). http://download.geofabrik.de/north-america.html

GeoPandas. (2018). GeoPandas is an open source project to make working with geospatial data in python easier. http://geopandas.org/

Gunji, Y.­P., Nishiyama, Y., & Adamatzky, A. (2012). Robust soldier crab ball gate. ArXiv:1204.1749 [Cs, Nlin]. https://doi.org/10.1063/1.3637777

Hanifan, L. J. (1916). The rural school community center. The ANNALS of the American Academy of Political and Social Science, 67(1), 130–138. https://doi.org/10.1177/000271621606700118

Held, M., & Palfrader, P. (2017). Straight skeletons with additive and multiplicative weights and their application to the algorithmic generation of roofs and terrains. Computer-Aided Design, 92, 33–41. https://doi.org/10.1016/j.cad.2017.07.003

Hillier, B. (1989). The social logic of space (Reprint ed.). Cambridge University Press.

Hillier, B., Burdett, R., Peponis, J., & Penn, A. (1987). Creating life: or, does architecture determine anything? ResearchGate. https://www.researchgate.net/publication/32884797_Creating_Life_Or_Does_Architecture_Determine_Anything

Hillier, B., & Leaman, A. (1974). How is design possible? ResearchGate. https://www.researchgate.net/publication/32886713_How_is_design_possible

Hillier, P. B., & Sahbaz, O. (2008). An evidence based approach to crime and urban design: or, can we have vitality, sustainability and security all at once? (pp. 1–28). London, United Kingdom.

Holtan, M., Dieterlen, S., & Sullivan, W. (2015). Social life under cover: tree canopy and social capital in Baltimore, Maryland. Environment and Behavior, 47(5), 502–525. https://doi.org/10.1177/0013916513518064

Huber, S. (2011). Computing straight skeletons and motorcycle graphs: theory and practice (pp. 1–134). Shaker Verlag.

ISI, I. S. I. (2011). Factor analysis. http://isi.cbs.nl/glossary/term1220.htm

Knox, P. L. (2010). Cities and design (1 ed.). Routledge. https://doi.org/10.4324/9780203848555

KTU Politikos ir viešojo administravimo institutas. (2017). ESS8, kontaktavimo su respondentais formų duomenys, Lietuva, 2017 m. spalis – gruodis. http://www.lidata.eu/index_search_results_data.php?pid=LiDA%3Aquant.LiDA_ESS_0309

Lang, J. (1987). Creating architectural theory: the role of the behavioral sciences in environmental design. Van Nostrand Reinhold.

Lawton, M. P., & Nahemow, L. (1973). Ecology and the aging process. In The psychology of adult development and aging (pp. 619–674). American Psychological Association. https://doi.org/10.1037/10044-020

Microsoft Corporation. (2019). LightGBM. https://lightgbm.readthedocs.io/en/latest/

Moughtin, C., Cuesta, R., Signoretta, P., & Sarris, C. (1999). Urban design: method and technique. Architectural Press.

NumPy. (2018). NumPy is the fundamental package for scientific computing with Python. https://www.numpy.org/

OpenStreetMap. (2019). https://www.openstreetmap.org/

PostGIS. (2018). PostGIS — Spatial and geographic objects for PostgreSQL. https://postgis.net/

Psycopg. (2018). Psycopg is the most popular PostgreSQL adapter for the Python programming language. http://initd.org/psycopg/

Putnam, R. D. (2001). Bowling alone: the collapse and revival of American community. https://doi.org/10.1145/358916.361990

QGIS. (2017). http://www.qgis.org/en/site/

Rekvizitai.lt. (2019). https://rekvizitai.vz.lt/

Rosenfeld, A., & Pfaltz, J. L. (1966). Sequential operations in digital picture processing. Journal of the ACM, 13(4), 471–494. https://doi.org/10.1145/321356.321357

Rossum, G. V., & Drake, F. L. J. (2011). The Python language reference manual. Network Theory Ltd.

stat.gov.lt. (2011). Lietuvos Respublikos 2011 metų visuotinio gyventojų ir būstų surašymo eigos aprašas. https://osp.stat.gov.lt/documents/10180/130368/2011_GBSurasymo_aprasas.pdf/eb5a6a4a-2006-44d5-ac50-2d41734c36c9

Verikas, A. ir Gelžinis, A. (2003). Neuroniniai tinklai ir neuroniniai skaičiavimai. Technologija.

vrk.lt. (2016). Atviri duomenys—Vrk.lt. https://www.vrk.lt/atviriduomenys

Whyte, W. H. (2001). The social life of small urban spaces (unknown ed.). Project for Public Spaces.

Wilder, J., Feldman, J., & Singh, M. (2011). Superordinate shape classification using natural shape statistics. Cognition, 119(3), 325–340. https://doi.org/10.1016/j.cognition.2011.01.009

Zaleckis, K. (2018). Erdvės sintaksė urbanistinei analizei: Koncepcijos, apskaičiavimai ir pavyzdžiai. Lietuvos architektų sąjunga.